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Abstract: The behavior of acoustic waves in a rarefied high-temperature plasma is studied; as
an example, the plasma of the solar corona is considered. Effects of thermal conductivity and a
heating/radiative loss are taken into account; data on a temperature distribution of a radiation
intensity obtained from the CHIANTI 10 code are used. The classical Spitzer expression for a full-
ionized plasma is used for the thermal conductivity. Based on the found values of the radiation-loss
function, the cubic spline method is used to construct an approximate analytical expression necessary
for studying linear waves. A dispersion relation is obtained, and a frequency, a phase speed, and a
damping coefficient are found. Dispersion and damping properties are considered for a temperature
of about 106 K and a particle density of about 1015 m−3, which are typical for the coronal plasma. In
sum, superiority in the dispersion and damping of the thermal conduction is shown; the heating and
radiation loss manifest themselves at large wavelengths. In accordance with general results by Field, a
condition was found under which the acoustic oscillations become unstable. It is shown that at certain
values of the temperature and density, the wave damping is dominated by the heating/radiative loss
misbalance. Thus, the earlier results on mechanisms of damping of observed acoustic waves in the
solar corona are refined here.

Keywords: high-temperature plasma of the solar corona; radiation of the coronal plasma; acous-
tic waves; fast damping and dispersion of the acoustic waves; quasi-periodic oscillations;
coronal seismology

1. Introduction

A study of acoustic waves, which are observed all over in the lower corona by vari-
ations in the intensity of plasma radiation in various electromagnetic ranges, plays an
important role in solar research [1–5]. Acoustic waves can provide useful information
about parameters of the coronal plasma [6,7] or indicate sources of its heating. In the latter
case, the mechanism and efficiency of wave energy dissipation are of interest. In a rarefied
high-temperature coronal plasma, the role of viscous dissipation is insignificant [8,9], so
wave damping due to thermal conductivity is more often taken into account. At the same
time, it was noticed that, along with thermal conductivity, damping of loop oscillations
in the corona can be noticeably affected by radiative loss [10,11]. Radiation affects slow
magnetoacoustic oscillations more than fast ones [12]. This is explained by the fact that
under conditions of the solar corona, where the Alfvén speed significantly exceeds the
sound speed, slow waves are practically longitudinal. For this reason, slow waves are
sometimes considered approximately as acoustic.

The study of the damping of acoustic waves in high-temperature coronal plasma in
recent years has been carried out while taking into account the effects of thermal conduction
and heating/radiative loss [13–15]. We follow this approach in the present study. Absorp-
tion leads not only to the damping of the acoustic wave, but also to its dispersion [16].
This should lead to the appearance of quasi-periodic oscillations generated as a result
of the spreading of an initial localized perturbation. A misbalance between heating and
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radiative loss has a similar effect on the wave [14]. A goal of this study is to compare both
the effects of thermal conductivity and heating/cooling on the damping and dispersion of
the acoustic wave. Unlike other similar studies, which are based on general assumptions
about the properties of plasma heating and radiation, we use the established values of the
radiative-loss function obtained using the the CHIANTI [17–19] code.

We built an approximate analytical representation of the radiative-loss function by
cubic spline interpolation. This is then used in the analysis of a linear acoustic wave.
This allows one, together with the known expression for the thermal conductivity of a
highly-ionized high-temperature plasma, to determine the specific physical conditions for
the wave and compare the results of the analysis with observational data. The definiteness
of the physical model makes it possible to estimate the parameters of the coronal plasma,
which is the main task of coronal seismology.

We consider several papers to be published in this direction by us. This paper is
the first of the series. In Section 2, we show in detail how an interpolation is built and
define the basic equations. In Section 3, two examples of applying the constructed model
are considered. Due to the complex behavior of the radiatiave-loss function, except that
for damping, there is also an effect of wave instability, which requires further detailed
study. Moreover, as known, there are numerous cases of observation of compression
waves in the corona, and we consider applying our model to these phenomena in our
forthcoming studies.

2. Method and Basic Equations
2.1. Heating/Cooling Function

Radiative energy loss per unit mass of a rarefied plasma per unit time is written as the
following expression for the density, ρ, and the temperature, T:

Qrad = ρΛ(T), (1)

where the temperature function, Λ(T), is called the radiative-loss function [20,21]. The
radiative-loss function plays an important role in many physical processes happenning
in the solar atmosphere, so this function received much attention in solar physics studies.
At the same time, there are no clear and precise methods determining the radiative-loss
function some uncertainty exists in finding the values of it. This uncertainty has various
reasons, including significant atmospheric inhomogeneity and uncertainty in the distribu-
tion of ions. Figure 1 shows a graph of the radiative-loss function obtained by different
authors in different years [18]. The curve obtained using the CHIANTI [17,22,23] code is
characterized by the presence of two maxima near 1 and 10 MK in the coronal temperature
intervals of interest here. This leads to a different effect of temperature change in the wave
process in the intervals of increasing and decreasing functions. In this paper, we used the
CHIANTI data of the new version is used [19]. The main feature of the curve shown in
Figure 1, in the temperature range of 0.5–10 MK being of interest for the current study is
the presence of two maxima near 1 and 10 MK, along with a minimum near 4.5 MK. This
leads to a different effect of temperature change in the wave process in the intervals of
increasing and decreasing functions. Despite the behavior of the radiative-loss function
is known in general, relatively little attention was given to its specific properties in the
study of wave phenomena. In theoretical studies of wave phenomena, a commonly ac-
cepted analytical representation of the radiative-loss function is used. Since the plasma
density and temperature change insignificantly in each particular case, the local power-law
approximation,

Λ(T) = χTα, (2)

is traditionally used [13,14,24,25].
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Here, χ and α are constant for a local temperature interval. For example, Klim-
chuk et al. [26] presented the following expressions for the radiative-loss function (here, n
is the particle density):

ρ2Λ(T)/n2 =



1.09 · 1031T2, T ≤ 104.97,
8.87 · 1017T, 104.97 ≤ T ≤ 105.67,
1.90 · 1022, 105.67 ≤ T ≤ 106.18,
3.53 · 1013T3/2, 106.18 ≤ T ≤ 106.55,
3.46 · 1025T1/3, 106.55 ≤ T ≤ 106.90,
5.49 · 1016T, 106.90 ≤ T ≤ 107.63,
1.96 · 1027T1/2, 107.63 ≤ T.

(3)

It should be noted that these expressions are convenient for use, but do not always
provide us with good-accuracy results when studying finite perturbations; a more precise
expression is needed then. Here, we use a cubic spline interpolation, which gives the
continuity of the first and second derivatives over the entire temperature range under
consideration.

Figure 1. Radiative-loss function as given by CHIANTI v5.2 earlier studies [27]. Adopted from
Ref. [18].

Energy losses due to thermal conductivity disappear in a homogeneous equilibrium
medium, where there is no temperature gradient, but radiative loss is present. Since
oscillatory processes involve an inflow of energy along with radiative loss, consider the
heating/cooling function,

Qhc = Qrad − H, (4)

where H = H(ρ, T) is the heating function, which has the meaning of an energy inflow
due to the various causes. At the same time, it is considered that in the equilibrium state
(ρ0, T0), there is a balance between the inflow and energy loss:

ρ0Λ(T0)− H(ρ0, T0) = 0.

With changes in density and temperature, heating/cooling misbalance occurs between
the inflow and energy loss. In the case considered here, the causes of energy losses are
identified, and those can be analyzed. On the contrary, one cannot determine the possible
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sources of heating, since there are many, and it is difficult to determine the source of heating
in each specific case. The quantity H is often assumed to be constant [21,28,29], so that

H = ρ0Λ(T0). (5)

Here, a similar approach is considered. The reasons why such a choice is possible may
be as follows. The phenomena considered here, namely, the repeated events of variations
in the intensity of radiation from the coronal plasma, are interpreted by us as compression
waves. There is an alternative assumption that periodically repeating heating processes
take place here—for example, magnetic reconnection processes. When the phenomenon
as a wave is considered here, heating is not refused: we assume that simultaneously with
the waves, there are also permanent heating processes. These processes have their own
space-time scales, and if those scales are much larger than the wave scales, the permanent
heating process can be considered constant. The primary task of coronal seismology is to
determine the density and temperature of a plasma. In conditions when the heating/loss
function is unknown, the task of seismology can be directed to finding it [30,31]. In the
present study, the radiative-loss function is found in an independent way by calculating
the plasma radiation intensity, and the heating is assumed to be constant.The study here
deals with a given heating/loss function.

2.2. Interpolation of a Radiative-Loss Function

To obtain an analytical representation of the radiative-loss function, the cubic spline
interpolation method was used. The interpolation for the temperature range from 1 to
10 MK was built for the points where wave phenomena were observed. This method allows
us to express the radiative-loss function given by a number of values at some points. For
each interval between adjacent points, a polynomial is constructed in such a way that the
function and its derivatives are continuous up to a certain order on the boundary between
adjacent intervals. These complete ones are called splines; for cubic splines, derivatives up
to the second order inclusive are continuous. Thus, interpolation by cubic splines gives us
an approximate analytical representation of the function Λ(T) with a continuous second
derivative. The interpolation is based on the temperature range from 0.5 to 14.1 MK—that is,
for all the temperatures of interest here. This allows us to obtain an approximate analytical
expression around any point in this interval. Table 1 lists the values of the coronal plasma
emission intensity at particle density n = 1015 m−3, obtained using the code CHIANTI
10 [32]. In what follows, the intensity is calculated in ergs.

The temperature values used, Ti, i = 0, 1, 2, . . . , 28, are distributed in 29 intervals (Ti,
Ti+1). A third-degree polynomial was constructed for each interval, so that at the ends of
the interval, the polynomial takes the values of the function Λ(T): Λi ≡ Λ(Ti) = Di and
Λi+1 ≡ Λ(Ti+1) = Di+1. This is convenient for finding the inflection points of a function
where the second derivative vanishes. For the temperature and radiative-loss function,
the scales m(T) = 106 K and m(Λ) = 1026 erg · g−2 · cm3 · s−1 are introduced, then their
dimensionless values are:

T̃ = m(T)−1T, Λ̃ = m(Λ)−1Λ, (6)

so that the interpolation polynomials and the derivatives can be written in the form:

Λ̃ = Ãi(T̃ − T̃i)
3 + B̃i(T̃ − T̃i)

2 + C̃i(T̃ − T̃i) + D̃i, (7)

Λ̃′ = 3Ãi(T̃ − T̃i)
2 + 2B̃i(T̃ − T̃i) + C̃i, i = 0, 1, . . . , 28.

Heareafter, the prime denotes the T̃-derivative and the tilde denotes dimensionless
quantity. The values of the coefficients of the interpolation polynomials are given in Table 2.
The interpolation is shown in Figure 2. The linear scale of values was chosen.
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Table 1. The values of the radiative-loss function Λi, as a function of temperature, Ti. ρ and n denote
the plasma and particle densities, respectively.

i Ti (K),×106 ρ2Λi/n2 (erg · cm3 · s−1),
×10−22

Λi(erg · g−2 · cm3 · s−1),
×1026

0 0.5011872 2.267829 2.108884
1 0.562341 2.367434 2.201509
2 0.630957 2.418156 2.248675
3 0.707946 2.469151 2.296096
4 0.794328 2.547926 2.369351
5 0.891251 2.622882 2.439053
6 1 2.646271 2.460803
7 1.122018 2.602311 2.419923
8 1.258925 2.523537 2.346671
9 1.412538 2.421656 2.25193
10 1.584893 2.266581 2.107724
11 1.778279 2.019601 1.878054
12 1.995262 1.665344 1.548626
13 2.238721 1.269071 1.180126
14 2.511886 0.946541 0.880201
15 2.818383 0.729857 0.678704
16 3.162278 0.59583 0.55407
17 3.548134 0.52004 0.483592
18 3.981072 0.483017 0.449164
19 4.466836 0.471106 0.438087
20 5.011872 0.474839 0.441559
21 5.623413 0.487475 0.45331
22 6.309573 0.504156 0.468822
23 7.079458 0.520485 0.484006
24 7.943282 0.531125 0.493901
25 8.912509 0.530389 0.493216
26 10 0.513176 0.47721
27 11.220185 0.476465 0.443071
28 12.589254 0.421238 0.391715
29 14.125375 0.357961 0.332873

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

Figure 2. Interpolation curve (7) of the radiative-loss function for temperatures 1 to 10 MK. The red
dots represent the radiative-loss function values from Table 1. The asterisks indicate the extremum
and inflection points.
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Table 2. Coefficients of the dimensionless cubic interpolation (7)
.

i Ãi B̃i C̃i D̃i

0 −8.164325 −6.655046 1.952125 2.108884
1 42.533874 −8.152892 1.046559 2.201509
2 6.927944 0.602624 0.52849 2.248675
3 −11.622274 2.202738 0.74447 2.296096
4 −7.161141 -0.809143 0.864853 2.36935
5 0.696996 −2.891375 0.506189 2.439053
6 5.9093052 −2.6639816 −0.097951 2.4608027
7 0.940888 −0.500849 −0.484119 2.419923
8 −1.306459 −0.114406 −0.568352 2.3466709
9 −0.579185 −0.71647 −0.695985 2.25193
10 0.091538 −1.015948 −0.994577 2.107724
11 1.443157 −0.962841 −1.377247 1.878054
12 1.4062024 −0.02342 −1.591249 1.548626
13 −0.261502 1.003637 −1.352606 1.180126
14 −0.388805 0.789338 −0.862828 0.880201
15 −0.189246 0.431835 −0.488543 0.678704
16 −0.102562 0.236593 −0.258674 0.55407
17 −0.046161 0.117871 −0.121902 0.483592
18 −0.021779 0.057916 −0.045797 0.449164
19 −0.009937 0.026178 −0.004947 0.438087
20 −0.004251 0.009929 0.0147325 0.044156
21 −0.002043 0.002131 0.0221072 0.453309
22 −0.001395 −0.20738 0.022146 0.468822
23 −0.000595 −0.005296 0.0164728 0.484006
24 −0.000074 −0.006839 0.005991 0.4939
25 0.000361 −0.007054 −0.007474 0.493216
26 0.00049 −0.005878 −0.021536 0.47721
27 0.000944 −0.004084 −0.033691 0.443071
28 0.000667 −0.000021 −0.039563 0.391715

2.3. Basic Equations

Let us assume that the coronal plasma is an ideal gas, so that

p = ρ
RT
M

, (8)

where R is the gas constant, M is the mean molar mass; M = µNA, where µ is the
average mass of a gas particle, and NA is the Avogadro constant. Further, we con-
sider acoustic waves in an equilibrium medium with temperature T0 and density ρ0;
ρ0 = µn0. Coronal loops where wave processes are observed are characterized by the
value n0 ∼ 1015 m−3 [8,9,33]. Let us define it as particle-density scale, m(n) = 1015 m−3.
If define the mass density scale is defined as m(ρ) = 10−12 kg ·m−3, one gets the relation
ρ̃0 = 1.037ñ0 between dimensionless values of mass and particle densities.

We use the equations of one-dimensional gas dynamics for studying waves:

∂vx

∂t
+ vx

∂vx

∂x
= − R

M
∂T
∂x
− RT

Mρ

∂ρ

∂x
, (9)

∂ρ

∂t
+

∂(ρvx)

∂x
= 0. (10)

Here, x, v, and t denote the space coordinate, the gas velocity, and the time, respectively.
Let us write the energy balance equation in terms of temperature:

∂T
∂t

+ vx
∂T
∂x

+ (γ− 1)T
∂vx

∂x
= −(γ− 1)

M
R

Q , (11)
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where Q (in J · kg−1 · s−1) denotes the amount of heat loss per unit time per unit mass of
gas. Here, γ is an adiabatic index; γ = 5/3 here. In recent years, the study of the damping
of acoustic waves in high-temperature coronal plasma has been carried out [13–15], while
taking into account the effects of thermal conduction and heating/radiative loss:

Q = Qth + Qhc, (12)

Qth = −1
ρ

∂

∂x

(
κ(T)∂T

∂x

)
. (13)

We follow this approach in the present study and take the thermal conductivity as
equal to

κ = 4.4 · 10−10 T5/2

ΛC

J
m · s ·K, (14)

according to Spitzer [34]. In this case, the Coulomb logarithm is ΛC = 19.3 for temperature
T ≈ 1 MK and ΛC = 21.6 for T ≈ 10 MK and concentration n = 1015 m−3. Let us
introduce the scale of the thermal conductivity, m(κ) = 104 J ·m−1 · s−1 · K−1, and its
dimensionless value:

κ̃ = 44 · T̃5/2/ΛC. (15)

When T̃ ≈ 1 MK and T̃ ≈ 10 MK, one gets:

κ̃(1) = 2.28 · T̃5/2, κ̃(10) = 2.04 · T̃5/2, (16)

respectively.
Let us write linearized equations for linear waves in an equilibrium medium with the

parameters ρ0 and T0:
∂vx

∂t
= − R

M
∂T
∂x
− RT0

Mρ0

∂ρ

∂x
, (17)

∂ρ

∂t
+ ρ0

∂vx

∂x
= 0, (18)

∂T
∂t

+ (γ− 1)T0
∂vx

∂x
=

(γ− 1)M
Rρ0

κ(T0)
∂2T
∂x2 −

(γ− 1)M
R

[ρ0Λ′(T0)T + ρΛ(T0)]. (19)

The observed waves have a period about of 1 min or larger, which means that the
oscillation frequency has values about of 0.1 s or smaller. Let us take the frequency scale
equal to m(ω) = 0.1 s−1. We use a dispersion relation for an adiabatic acoustic wave to
obtain the wavenumber scale; that is, we assume m(ω) = m(Cs)m(k). For T0 = 1 MK,
the speed of sound is equal to 1.49 · 105m · s−1. Then, the speed of sound scale, m(Cs) =
105 m · s−1; as a result, the scale of the wavenumber values is equal to m(k) = 10−6 m−1.

The wave distributions will be considered as functions of dimensionless variables in
the form exp(ik̃x̃− iω̃t̃). Scales of spatial and temporal variables are taken from relations,
m(k)m(x) = 1 and m(ω)m(t) = 1, so m(x) = 106 m = 1 Mm and m(t) = 10 s. We take the
dispersion relation as the basis for studying linear waves, from which we find the frequency,
ω, at a given wavenumber. The dispersion relation derived from Equations (17)–(19) can
be written as

ω̃3 + iAω̃2 − ω̃C̃2
s k̃2 + iB = 0, (20)

A = A1k̃2 + A2, B =
1
γ

(
−A1k̃2 − A2 + A3

)
C̃2

s k̃2.

The coefficients A1, A2, and A3, included in the imaginary part of the relation and hav-
ing a central place in the analysis of a non-adiabatic behavior of the wave, are determined
by the following expressions:

S = (γ− 1)Mm(ρ)/(Rm(ω)),
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A1 = Sm(κ)m(k)2κ̃(T̃0)/(m(ρ)2ρ̃0) ≈ 5.01κ̃(T̃0)/ρ̃0,

A2 = Sm(Λ)ρ̃0Λ̃′(T̃0)/m(T) ≈ 5.01 · 10−3ρ̃0Λ̃′(T̃0),

A3 = Sm(Λ)ρ̃0Λ̃(T̃0)/(m(T)T̃0) ≈ 5.01 · 10−3ρ̃0Λ̃(T̃0)/T̃0.

The coefficient A1 is determined by the thermal conductivity, the coefficient A3 is
determined by the radiative-loss function, and the coefficient A2 is determined by the
derivative of the radiative-loss function. The coefficient A1 enters the equation along with
the factor k2, which means that the role of thermal conductivity is small in the limit k→ 0.
From the analysis of the radiative-loss function, one knows that there is a temperature
interval where the function decreases and the coefficient A2 has negative values. In this
interval, an impact of the coefficient A2 will be opposite to an impact of the coefficient A3.
If the A3 leads damping of the wave, then A2 will weaken this damping, and probably,
instead of damping, there will be an increase in oscillation.

The coefficients A1, A2, A3 depend on the equilibrium parameters, T̃0 and ρ̃0, and one
can write the dispersion relation solution as ω̃ = ω̃(k̃, T̃0, ρ̃0); in other words, the frequency
is a function not only of the wavenumber, but also of the thermodynamic parameters of the
equilibrium medium.

3. Results
3.1. Wave Instability

If the imaginary part of the frequency takes negative values, Imω̃ < 0, then the
oscillations are damped, and at Imω̃ > 0, instability appears. Since frequency is a function
of the wavenumber and thermodynamic parameters, the inequality Imω̃(k̃, T̃0, ρ̃0) > 0
defines a domain of parameters, for which the acoustic wave is unstable. The equation
Imω̃(k̃, T̃0, ρ̃0) = 0 obviously determines the boundary of this domain. At the boundary,
the dispersion relation can be written as

(Reω̃)3 + i(Reω̃)2(A1k̃2 + A2)− Reω̃C̃2
s k̃2 − i

1
γ

A1C̃2
s k̃4 + i

1
γ
(A3 − A2)C̃2

s k̃2 = 0.

From the real part of the relation, one obtains the value Reω̃ = Cs k̃ and substitute it
into the imaginary part:

(γ− 1)A1k̃2 + (γ− 1)A2 + A3 = 0. (21)

The stability exists when

(γ− 1)A1k̃2 + (γ− 1)A2 + A3 > 0. (22)

This inequality corresponds to the acoustic wave stability condition found by Field [20].
Since A1 ≥ 0 and A3 ≥ 0, the appearance of instability is possible at (γ− 1)A2 + A3 ∼
(γ− 1)T̃0Λ̃′(T̃0) + Λ̃(T̃0) < 0, if the condition,

k̃ < k̃c, k̃c =

√
− (γ− 1)A2 + A3

(γ− 1)A1
, (23)

is met.
As the wavenumber increases, the influence of thermal conductivity increases, and

when k̃ > k̃c, an instability is stabilized by thermal conduction.
By writing the critical wavenumber as a function of the basic parameters,

k̃c(ρ̃0, T̃0) = ρ̃0F(T̃0), F(T̃0) =

√
− (γ− 1)T̃0Λ̃′(T̃0) + Λ̃(T̃0)

(γ− 1)T̃0κ̃(T̃0)
, (24)
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one can find the boundary of the stability region in the parameter area (k̃, T̃0, ρ̃0):

k̃ = k̃c(ρ̃0, T̃0). (25)

The dimensionless values of the thermal conductivity, the radiative-loss function,
and the derivative of the radiative-loss function are given in Table 3. From this Table,
one can find the temperature values, at which the instability of the acoustic wave is
possible; those temperature values are around T̃0 ≈ 2. The derivative of the radiative-loss
function has the largest negative value as an absolute value. For T̃0 ≈ 2.24, one gets
F(T̃0) ≈ 0.2 and k̃c ≈ 0.2ρ̃0. Then, one can estimate the critical wavelength: λ̃c = 10π/ρ̃0:
λ̃c = 30.3, λc = 30.3 Mm for ñ0 = 1, i.e., n0 = 1015 m−3. The instability appears at
wavelengths exceeding the critical value. As the concentration of particles increases, the
critical wavelength decreases, and at n0 = 5 · 1015 m−3, the critical wavelength gets the
value, λc = 6.06 Mm.

Table 3. The values of the dimensionless thermal conductivity, κ̃, the radiative-loss function, Λ̃, and
the its derivative, Λ̃′. γ = 5/3 is the adiabatic index.

i T̃i κ̃κκ(T̃i) Λ̃′(T̃i) Λ̃(T̃i)/T̃i
(γ− 1)Λ̃′(T̃i) +

Λ̃(T̃i)/T̃i

0 0.501187 0.405448 1.952125 4.207778 5.509194
1 0.562341 0.540673 1.04656 3.9149 4.6126
2 0.63096 0.721 0.52849 3.5639 3.916237
3 0.707946 0.961468 0.744471 3.243322 3.739636
4 0.794328 1.282138 0.864853 2.982836 3.559404
5 0.891251 1.709759 0.506189 2.736663 3.074122
6 1 2.28 −0.097951 2.460803 2.395502
7 1.122019 3.040429 −0.484119 2.156759 1.834013
8 1.258925 4.054477 −0.568352 1.864027 1.485126
9 1.412538 5.406732 −0.695985 1.594244 1.130255

10 1.584893 7.209993 −0.994577 1.329884 0.666833
11 1.778279 9.61468 −1.377247 1.056107 0.137943
12 1.995262 12.821382 −1.591249 0.776152 −0.284681
13 2.238721 17.097588 −1.352606 0.527143 −0.374595
14 2.5118864 22.8 −0.862828 0.350415 −0.224804
15 2.818383 30.404289 −0.488543 0.240813 −0.084882
16 3.162278 40.544771 −0.258674 0.175212 0.002763
17 3.548134 54.06732 −0.121902 0.136295 0.055027
18 3.981072 72.099931 −0.045797 0.112825 0.008229
19 4.466836 96.146803 −0.004947 0.098076 0.094778
20 5.011872 128.21382 0.014733 0.088103 0.097924
21 5.623413 170.97588 0.022107 0.080611 0.095349
22 6.309573 228 0.022146 0.074303 0.089068
23 7.079458 304.04289 0.016473 0.068368 0.07935
24 7.943282 405.44771 0.005991 0.062178 0.066172
25 8.912509 540.6732 −0.007474 0.05534 0.050357
26 10 720.9993 −0.021536 0.047721 0.033363
27 11.220185 961.46803 −0.033691 0.039489 0.017028
28 12.589254 1 282.1382 −0.039563 0.031115 0.00474

3.2. Wave Damping

The acoustic oscillations are damped when Imω̃ < 0, and the quantity δ = −Imω̃
is the damping coefficient. We found the real and imaginary parts of the frequency and
the phase velocity, Vph = Reω/k, using the numerical solution of the dispersion relation
(18) in the Maple 18 package. Figures 3 and 4 show the corresponding dependence curves
on the wavenumber in two special cases: T0 = 106 K, n0 = 1 · 1015 m−3 and T0 = 106 K,
n0 = 5 · 1015 m−3. In the future, we consider to perform a complete analysis of the behavior
of the non-adiabatic waves based on the obtained interpolation of the radiative-loss function.
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Here, we show that the roles of thermal conductivity and heating/cooling in the wave
damping may be ambiguous. In applications, one often ignores the role of heating/cooling
in the damping of compression waves. As it is shown below, heating/cooling can make a
noticeable contribution to the damping. In particular, a case when the effect of misbalance
heating/cooling plays a dominant role in the wave damping is presented.
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Figure 3. The frequency real part (left), the phase speed, Vph = ω/k (middle) and the damping
coefficient, δ = −Imω̃ (right) for T0 = 106 K, n0 = 1 · 1015 m−3. See text for more details.
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Figure 4. The frequency real part (left), the phase speed, Vph = ω/k (middle) and the damping
coefficient, δ = −Imω̃ (right) for T0 = 106 K, n0 = 5 · 1015 m−3. See text for more details.

The asymptotic behavior of the frequency when k̃→ ∞ has the form ω̃ ≈ v∞k− iδ∞,
with v∞ = C̃s/

√
γ, δ∞ = (γ− 1)C̃2

s /2γA1. The limit value of the damping coefficient does
not depend on k̃ but depends on A1. At large wavenumbers, the damping weakens with an
increase in A1, i.e., with an increase in the thermal conductivity. In the absence of thermal
conductivity, the limit values of the phase speed and damping coefficient are equal to
v∞ = C̃s, δ∞ = ((γ− 1)A2 + A3)/2γ. The value (γ− 1)A2 + A3 is a certain parameter that
characterizes a radiative damping. For example, when (γ− 1)A2 + A3 < 0, stability of the
acoustic oscillations may be lost.

From the damping coefficient curves k-dependence (Figures 3 and 4), one can conclude
that at large wavenumbers, the thermal conductivity dominates in the damping. The
heating/radiative losses effect can compete only in the area of small wavenumbers. The
boundary wavenumber separating the areas of influence of one and the other effect is equal
to k̃ = 0.04 in the case when ñ0 = 1 and k̃ = 0.2, and when ñ0 = 5. The corresponding
wavelengths are λ = 1.5 · 108 m and λ = 3 · 107 m, and the oscillation periods are about
600 s [1,4] and 200 s [2], respectively. These values are similar to the observed ones, which
allows us to apply the theoretical model to the description of the observed events and
estimate the plasma density from the parameters of the observed oscillations.
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3.3. Wave Dispersion

The dispersion due to heating/radiative loss is effective only in a small range of
small wavenumbers [35], and this area expands with increasing n0. For large k values, the
dispersion is due to thermal conductivity. The cases considered here differ in the spectral
localization of the dispersion: for n0 = 1 · 1015 m−3, it is noticeable only in the intervals
0 < k̃ < 0.4 and 0 < ω̃ < 0.6; for n0 = 5 · 1015 m−3, it goes into the area k̃ > 1 and ω̃ > 1.2.
The nature of the spectral localization of the dispersion affects the propagation of a group
of waves. Here, this feature is shown with examples using modeling in Maple 18. Consider
the initial localized Gaussian pulse,

ρ̃(x̃, 0) =
1
6

∫ ∞

0
e−k̃2/32 cos(k̃x̃)dk̃. (26)

Here ρ̃ is an unnormalized distribution describing the relative change in density.
The degree of pulse localization in this example is high, its spatial extension is about
m(x) = 1 Mm. For t̃ > 0, a behavior of a wave packet is determined by the Fourier’s cosine
integral,

ρ̃(x̃, t̃) =
1
6

∫ ∞

0
e−k̃2/32 cos(k̃x̃− ω̃t̃)dk̃. (27)

The integral (27) takes into account the dependence ω̃(k̃) obtained numerically from
the dispersion relation (20). The simulation results are presented in Figures 5 and 6.
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Figure 5. Localized pulse dispersion due to thermal conductivity and heating/cooling (left), thermal
conductivity only (middle), and heating/cooling only (right) for T0 = 106 K, n0 = 1 · 1015 m−3.
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Figure 6. Localized pulse dispersion due to thermal conductivity and heating/cooling (left), thermal
conductivity only (middle), and heating/cooling only (right) for T0 = 106 K, n0 = 5 · 1015 m−3.

In the second case (n0 = 5 · 1015 m−3), shown in Figure 6, there is a decomposition of
the initial pulse into separate components with different wavelengths. The observation
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of such perturbations in practice shows the presence of quasi-periodic oscillations of the
plasma radiation intensity caused by a change in density. Knowing the periods can provide
us with the information about the real dependence ω(k) and the physical parameters of
the plasma. In the case when n0 = 1 · 1015 m−3, the initial pulse during the first 1000 s
(17 min) propagates practically without changing its shape. The propagation speed of
the pulse is close to the speed of sound: Cs = 1.49 · 105 m · s−1. The dispersion is mainly
due to the action of the thermal conductivity. From a comparison of Figures 5 and 6, one
can also conclude that the dispersion is more significant in the case of a dense plasma.
One can consider this contradicting the remark made above that the effect of thermal
conductivity weakens with increasing density. To resolve this contradiction, let us turn to
the phase speed distributions. The phase speed of the wave under an influence of thermal
conductivity changes within certain limits from C̃s at k̃ = 0 to C̃s/

√
γ for k̃→ ∞. The area

of wavenumbers, in which the conductivity charge varies is localized next to zero for large
A1. As the density increases, the coefficient A1, which determines an influence of thermal
conductivity, indeed decreases, but the area of this change in the phase speed expands, as
can be seen from Figures 3 and 4. The dispersion area affects large wavenumbers. This leads
to the spreading of a narrow localized impulse, since the width of its Fourier transform in
the area of large wavenumbers is quite large.

4. Discussion

When studying the mechanisms of the damping of acoustic waves in a highly-ionized,
high-temperature plasma of the solar corona, preference is given to the effect of the thermal
conduction [8,9]. At the same time, the role of radiative loss and possible sources of heating
of the coronal plasma are noted. In particular, the misbalance of the heating/radiative
loss leads to wave instability and dispersion [13–15]. The latter may be the cause of
the generation of the quasi-periodic oscillations observed in the lower corona. Unlike
thermal conductivity, the law of which is known for a strongly-ionized high-temperature
plasma, the regularities of heating in various coronal regions are poorly understood. This
circumstance strongly complicates the study of the non-adiabatic waves, and one often
has to proceed from general ideas about how plasma heating can be described. In this
case, a property of non-adiabaticity means that a possibility of energy exchange between
individual parts of a plasma or between a plasma and an external medium. It is known
that adiabatic waves are described by the energy balance equation (11) when the right-
hand side equals zero. For non-adiabatic waves, the right-hand side of the equation is
determined by the elementary processes of particle collision, radiation, and absorption of
energy. To obtain these expressions, it is necessary to carry out an adequate procedure for
closing kinetic equations for moments of the distribution functions. While these remain
undefined, there are various approaches to this procedure, and of the most commonly used,
Grad’s method can be noted. It should be noted that closure can lead to the appearance
of additional relations for the thermodynamic parameters of plasma. This point requires
further attentive study.

The calculation of the radiation intensity of the plasma of the solar atmosphere is possi-
ble and was carried out using the transfer equations and by taking into account all possible
sources. There are various codes for this calculation, among which the CHIANTI [17,19,23]
code is mostly used. This makes it possible to construct a radiative-loss function, which is
done in this paper using the cubic interpolation method. Thus, in our opinion, we have
obtained quite an adequate analytical description of radiative losses, which can be used
in the study of acoustic waves. The sources of heating still remain unidentified in the
phenomena under consideration, and we assume that heating has a stationary character.
Actually, this means that the spatial and temporal scales of heating processes are large
compared to the scales of wave phenomena.

An analysis of the dispersion relation showed that, over a significant interval of
wavenumber values, thermal conductivity plays a decisive role in the damping and dis-
persion of the acoustic waves. The misbalance heating/cooling can compete with thermal
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conductivity only at low wavenumbers [35]. This statement was confirmed by the calcu-
lations here. The dispersion due to thermal conductivity extends over a wide area of the
oscillation spectrum and can be the cause of the appearance of quasi-periodic oscillations
with a wide frequency spectrum. On the contrary, the dispersion caused by the misbalance
heating/cooling is localized in the area of low wavenumbers.

The specific form of the radiative-loss function obtained in this paper, makes it possible
to find the conditions, under which the acoustic wave becomes unstable. Earlier, some
abstract assumptions about the form of the heating/cooling function [13] were used for this.
Its is shown here that instability is possible for certain wavelengths at temperatures where
the radiative-loss function decreases. These findings are consistent with Field’s theoretical
results [20].

The definiteness of the form of the radiative-loss function provides us with a model of
the acoustic oscillations that can be used to diagnose coronal plasma. We built here a simple
model of non-adiabatic acoustic waves and set a constant heating function. The main
parameters in this model are the temperature and density of the coronal plasma, which can
be determined from the parameters of the acoustic wave. In addition, a simple model of
observed damped compression waves is built here for coronal seismology. The calculations
made show that the obtained results agree with the observational data [1,2,4]. A more
detailed and extended analysis of the acoustic oscillations using this model is beyond the
scope of this paper. The constructed model can be changed by setting the heating function
as a non-constant later, just as in coronal seismology, then the model of a magnetic tube to
be modified with the heterogeneity introduced.
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