Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles
Abstract
:1. Introduction
2. Lifshitz Theory and the Hamaker Constant
3. Finite-Size Effects
4. Results
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, M.R.; Macfarlane, R.J.; Lee, B.; Zhang, J.; Young, K.L.; Senesi, A.J.; Mirkin, C.A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mat. 2010, 9, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, R.J.; Lee, B.; Jones, M.R.; Harris, N.; Schatz, G.C.; Mirkin, C.A. Nanoparticle superlattice engineering with DNA. In Spherical Nucleic Acids. Volume 2; Mirkin, C.A., Ed.; Jenny Stanford Publishing/Taylor & Francis Group: New York, NY, USA, 2020; Chapter 23. [Google Scholar] [CrossRef]
- Wu, C.; Han, D.; Chen, T.; Peng, L.; Zhu, G.; You, M.; Qiu, L.; Sefah, K.; Zhang, X.; Tan, W. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J. Am. Chem. Soc. 2013, 135, 18644–18650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genix, A.C.; Oberdisse, J. Nanoparticle self-assembly: From interactions in suspension to polymer nanocomposites. Soft Matt. 2018, 14, 5161–5179. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.C.; Baran, E.T.; Reis, R.L.; Azevedo, H.S. Self-assembly in nature: Using the principles of nature to create complex nanobiomaterials. WIREs (Wiley Interdiscip. Rev.) Nanomed. Nanobiotechnol. 2013, 5, 582–612. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol. 2020, 8, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verwey, E.J.W. Theory of the stability of lyophobic colloids. J. Phys. Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Birdi, K.S. Handbook of Surface and Colloid Chemistry; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Jose, N.A.; Zeng, H.C.; Lapkin, A.A. Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures. Nat. Comm. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- French, R.H.; Parsegian, V.A.; Podgornik, R.; Rajter, R.F.; Jagota, A.; Luo, J.; Asthagiri, D.; Chaudhury, M.K.; Chiang, Y.M.; Granick, S.; et al. Long range interactions in nanoscale science. Rev. Mod. Phys. 2010, 82, 1887–1944. [Google Scholar] [CrossRef]
- Trokhymchuk, A.; Henderson, D. Depletion forces in bulk and in confined domains: From Asakura–Oosawa to recent statistical physics advances. Curr. Opin. Colloid Interface Sci. 2015, 20, 32–38. [Google Scholar] [CrossRef]
- Hamaker, H.C. The London—van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Vinogradov, E.A.; Dorofeev, I.A. Thermally stimulated electromagnetic fields of solids. Phys.-Usp. 2009, 52, 425–459. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 1 March 2023).
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. General theory of Van der Waals’ forces. Sov. Phys. Usp. 1961, 4, 153–176. [Google Scholar] [CrossRef]
- Young, K.L.; Jones, M.R.; Zhang, J.; Macfarlane, R.J.; Esquivel-Sirvent, R.; Nap, R.J.; Wu, J.; Schatz, G.C.; Lee, B.; Mirkin, C.A. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc. Nat. Acad. Sci. USA 2012, 109, 2240–2245. [Google Scholar] [CrossRef] [Green Version]
- Munkhbat, B.; Canales, A.; Küçüköz, B.; Baranov, D.G.; Shegai, T.O. Tunable self-assembled Casimir microcavities and polaritons. Nature 2021, 597, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Esteso, V.; Carretero-Palacios, S.; Míguez, H. Casimir–Lifshitz force based optical resonators. J. Phys. Chem. Lett. 2019, 10, 5856–5860. [Google Scholar] [CrossRef]
- Tadmor, R. The London-van der Waals interaction energy between objects of various geometries. J. Phys. Cond. Matt. 2001, 13, L195–L202. [Google Scholar] [CrossRef]
- Dantchev, D.; Valchev, G. Surface integration approach: A new technique for evaluating geometry dependent forces between objects of various geometry and a plate. J. Colloid Interface Sci. 2012, 372, 148–163. [Google Scholar] [CrossRef]
- Rusanov, A.I.; Brodskaya, E.N. Dispersion forces in nanoscience. Russ. Chem. Rev. 2019, 88, 837–874. [Google Scholar] [CrossRef]
- Gao, B.; Arya, G.; Tao, A.R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotech. 2012, 7, 433–437. [Google Scholar] [CrossRef]
- Langbein, D. Normal modes at small cubes and rectangular particles. J. Phys. A Math. Gen. 1976, 9, 627–644. [Google Scholar] [CrossRef]
- Parsegian, V.A. Van der Waals Forces. A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- De Rocco, A.G.; Hoover, W.G. On the interaction of colloidal particles. Proc. Nat. Acad. Sci. USA 1960, 46, 1057–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, R.H. Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 2000, 83, 2117–2146. [Google Scholar] [CrossRef] [Green Version]
- Pinto, F. Computational considerations in the calculation of the Casimir force between multilayered systems. Int. J. Mod. Phys. A 2004, 19, 4069–4084. [Google Scholar] [CrossRef]
- Esquivel-Sirvent, R.; Svetovoy, V. Nonlocal thin films in calculations of the Casimir force. Phys. Rev. 2005, 72, 045443. [Google Scholar] [CrossRef] [Green Version]
- Mochán, W.L.; Villarreal, C.; Esquivel-Sirvent, R. On Casimir forces for media with arbitrary dielectric properties. Rev. Mex. Fis. 2002, 48, 339–342. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2002000400010 (accessed on 1 March 2023).
- Roth, C.M.; Lenhoff, A.M. Improved parametric representation of water dielectric data for Lifshitz theory calculations. J. Colloid Interface Sci. 1996, 179, 637–639. [Google Scholar] [CrossRef]
- Fiedler, J.; Walter, M.; Buhmann, S.Y. Effective screening of medium-assisted van der Waals interactions between embedded particles. J. Chem. Phys. 2021, 154, 104102. [Google Scholar] [CrossRef]
- Nunes, R.O.; Spreng, B.; de Melo e Souza, R.; Ingold, G.L.; Maia Neto, P.A.; Rosa, F.S.S. The Casimir interaction between spheres immersed in electrolytes. Universe 2021, 7, 156. [Google Scholar] [CrossRef]
- Pinchuk, A.O. Size-dependent Hamaker constant for silver nanoparticles. J. Phys. Chem. C 2012, 116, 20099–20102. [Google Scholar] [CrossRef]
- Esquivel-Sirvent, R.; Schatz, G.C. Spatial nonlocality in the calculation of Hamaker coefficients. J. Phys. Chem. C 2012, 116, 420–424. [Google Scholar] [CrossRef]
- Reid, M.H.; Rodriguez, A.W.; White, J.; Johnson, S.G. Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett. 2009, 103, 040401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquivel-Sirvent, R. Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles. Physics 2023, 5, 322-330. https://doi.org/10.3390/physics5010024
Esquivel-Sirvent R. Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles. Physics. 2023; 5(1):322-330. https://doi.org/10.3390/physics5010024
Chicago/Turabian StyleEsquivel-Sirvent, Raul. 2023. "Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles" Physics 5, no. 1: 322-330. https://doi.org/10.3390/physics5010024
APA StyleEsquivel-Sirvent, R. (2023). Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles. Physics, 5(1), 322-330. https://doi.org/10.3390/physics5010024