Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide
Abstract
:1. Introduction
2. Experimental Details
2.1. Substrate Preparation
2.2. Spray Pyrolysis Deposition Process
2.3. Characterization Instruments
3. Results
3.1. Optical Characterization
3.2. Deposition Thicknesses
3.3. Electrical Characterization
3.4. Nanostructural Characterization
3.4.1. X-ray Diffraction Characterization
3.4.2. SEM Characterization
3.4.3. TEM Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar del Valle, M.d.P.; Garrido, L.F.; Alonso-Huitrón, J.C.; Terrones Pacheco, L.; Cruz-Manjarrez, H.; Reyes-Gasga, J.; Pérez-Martínez, A.L.; Rodríguez-Gómez, A. Design, growth, and characterization of crystalline copper oxide p-type transparent semiconductive thin films with figures of merit suitable for their incorporation into translucent devices. Cryst. Growth Des. 2022, 22, 2168–2180. [Google Scholar] [CrossRef]
- Nateq, M.H.; Ceccato, R. Enhanced sol–gel route to obtain a highly transparent and conductive aluminum-doped zinc oxide thin film. Materials 2019, 12, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portillo-Cortez, K.; Islas, S.R.; Serrano-Lázaro, A.; Ortiz, A.; García-Sánchez, M.F.; Alonso, J.C.; Martínez, A.; Ramos, C.; Dutt, A.; Santana, G. A novel soft deposition methodology for textured ZnO:Al thin films as efficient transparent conductive oxide layers. Appl. Surf. Sci. Adv. 2022, 9, 100255. [Google Scholar] [CrossRef]
- Zamani Meymian, M.-R.; Mousavi, M.-A.; Rabbani, M.; Fallah, M. Effects of thallium–aluminum-codoped zinc oxide thin film as a new transparent conducting oxide. Phys. Stat. Solidi 2021, 218, 2000619. [Google Scholar] [CrossRef]
- Muñoz-Rosas, A.; Rodríguez-Gómez, A.; Alonso-Huitrón, J. Enhanced electroluminescence from silicon quantum dots embedded in silicon nitride thin films coupled with gold nanoparticles in light emitting devices. Nanomaterials 2018, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Kurtaran, S. Al doped ZnO thin films obtained by spray pyrolysis technique: Influence of different annealing time. Opt. Mater. 2021, 114, 110908. [Google Scholar] [CrossRef]
- Das, A.; Das, G.; Kabiraj, D.; Basak, D. High conductivity along with high visible light transparency in Al implanted sol-gel ZnO thin film with an elevated figure of merit value as a transparent conducting layer. J. Alloys Compd. 2020, 835, 155221. [Google Scholar] [CrossRef]
- Zhao, K.; Xie, J.; Zhao, Y.; Han, D.; Wang, Y.; Liu, B.; Dong, J. Investigation on transparent, conductive ZnO:Al films deposited by atomic layer deposition process. Nanomaterials 2022, 12, 172. [Google Scholar] [CrossRef]
- Akhmedov, A.K.; Murliev, E.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. Transparent conductive indium zinc oxide films: Temperature and oxygen dependences of the electrical and optical properties. Coatings 2022, 12, 1583. [Google Scholar] [CrossRef]
- Pan, P.-C.; Koo, H.-S.; Chen, D.-X.; Chen, C.-M. Fabricating high-conduction and high-transparency tungsten-doped zinc oxide films by pulse laser deposition technique. Crystals 2022, 12, 1032. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, F.; Zhao, N.; Yang, P. Influence of annealing temperature on optical properties of sandwiched ZnO/Metal/ZnO transparent conductive thin films. Micromachines 2022, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Zdyb, A.; Krawczak, E.; Gułkowski, S. The influence of annealing on the properties of ZnO:Al layers obtained by RF magnetron sputtering. Opto-Electron. Rev. 2018, 26, 247–251. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Peng, S.; Wang, W.; Yao, T.; Guan, M.; Gan, Z.; Chu, J.; Gai, L. Excellent properties of Ga-doped ZnO film as an alternative transparent electrode for thin-film solar cells. Int. J. Appl. Glas. Sci. 2022, 14, 133–139. [Google Scholar] [CrossRef]
- Barman, B.; Swami, S.K.; Dutta, V. Fabrication of highly conducting ZnO/Ag/ZnO and AZO/Ag/AZO transparent conducting oxide layers using RF magnetron sputtering at room temperature. Mater. Sci. Semicond. Process. 2021, 129, 105801. [Google Scholar] [CrossRef]
- Rivera, M.J.; Ramírez, E.B.; Juárez, B.; González, J.; García-León, J.M.; Escobar-Alarcón, L.; Alonso, J.C. Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts. Thin Solid Films 2016, 605, 108–115. [Google Scholar] [CrossRef]
- Marouf, S.; Beniaiche, A.; Kardarian, K.; Mendes, M.J.; Sanchez-Sobrado, O.; Águas, H.; Fortunato, E.; Martins, R. Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. J. Anal. Appl. Pyrolys. 2017, 127, 299–308. [Google Scholar] [CrossRef]
- Ghosh, S.; Mallick, A.; Dou, B.; van Hest, M.F.A.M.; Garner, S.M.; Basak, D. A novel blanket annealing process to achieve highly transparent and conducting Al doped ZnO thin films: Its mechanism and application in perovskite solar cells. Sol. Energy 2018, 174, 815–825. [Google Scholar] [CrossRef]
- Koralli, P.; Fiat Varol, S.; Mousdis, G.; Mouzakis, D.E.; Merdan, Z.; Kompitsas, M. Comparative studies of undoped/Al-doped/In-doped ZnO transparent conducting oxide thin films in optoelectronic applications. Chemosensors 2022, 10, 162. [Google Scholar] [CrossRef]
- Sahu, D.R.; Lin, S.-Y.; Huang, J.-L. Improved properties of Al-doped ZnO film by electron beam evaporation technique. Microelectron. J. 2007, 38, 245–250. [Google Scholar] [CrossRef]
- Ali, H.M.; Abd El-Raheem, M.M.; Megahed, N.M.; Mohamed, H.A. Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications. J. Phys. Chem. Solids 2006, 67, 1823–1829. [Google Scholar] [CrossRef]
- Bizarro, M. High photocatalytic activity of ZnO and ZnO:Al nanostructured films deposited by spray pyrolysis. Appl. Catal. B Environ. 2010, 97, 198–203. [Google Scholar] [CrossRef]
- Biswal, R.; Maldonado, A.; Vega-Pérez, J.; Acosta, D.; De La Luz Olvera, M. Indium doped ainc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride. Materials 2014, 7, 5038–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuler, T.; Aegerter, M. Optical, electrical and structural properties of sol gel ZnO:Al coatings. Thin Solid Films 1999, 351, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghamdi, A.A.; Al-Hartomy, O.A.; El Okr, M.; Nawar, A.M.; El-Gazzar, S.; El-Tantawy, F.; Yakuphanoglu, F. Semiconducting properties of Al doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 512–517. [Google Scholar] [CrossRef]
- Rozati, S.M.; Akesteh, S. Characterization of ZnO:Al thin films obtained by spray pyrolysis technique. Mater. Charact. 2007, 58, 319–322. [Google Scholar] [CrossRef]
- Jayathilake, D.; Nirmal Peiris, T. Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. Sci. Forec. J. Mater. Chem. Engin. 2018, 1, 1004. Available online: https://scienceforecastoa.com/Articles/SJMCE-V1-E1-1004.pdf (accessed on 25 November 2020).
- Aguilar-Del-Valle, M.d.P.; Cruz-Manjarrez, H.; Rodríguez-Gómez, A. Simple fabrication and characterization of an aluminum nanoparticle monolayer with well-defined plasmonic resonances in the far ultraviolet. Metals 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Gómez, A.; Moreno-Rios, M.; García-García, R.; Pérez-Martínez, A.L.; Reyes-Gasga, J. Role of the substrate on the growth of silicon quantum dots embedded in silicon nitride thin films. Mater. Chem. Phys. 2018, 208, 61–67. [Google Scholar] [CrossRef]
- Rodríguez, A.; Arenas, J.; Pérez-Martínez, A.L.; Alonso, J.C. Role of ammonia in depositing silicon nanoparticles by remote plasma enhanced chemical vapor deposition. Mater. Lett. 2014, 125, 44–47. [Google Scholar] [CrossRef]
- Muñoz-Rosas, A.L.; Rodríguez-Gómez, A.; Arenas-Alatorre, J.A.; Alonso-Huitrón, J.C. Photoluminescence enhancement from silicon quantum dots located in the vicinity of a monolayer of gold nanoparticles. RSC Adv. 2015, 5, 92923–92931. [Google Scholar] [CrossRef]
- Zaiour, A.; Benhaya, A.; Bentrcia, T. Impact of deposition methods and doping on structural, optical and electrical properties of ZnO-Al thin films. Optik 2019, 186, 293–299. [Google Scholar] [CrossRef]
- Manifacier, J.C.; Gasiot, J.; Fillard, J.P. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E 1976, 9, 1002–1004. [Google Scholar] [CrossRef]
- Cisneros-Contreras, I.R.; Muñoz-Rosas, A.L.; Rodríguez-Gómez, A. Resolution improvement in Haacke’s figure of merit for transparent conductive films. Results Phys. 2019, 15, 102695. [Google Scholar] [CrossRef]
- Feng, Y.; Lin, S.; Huang, S.; Shrestha, S.; Conibeer, G. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals? J. Appl. Phys. 2015, 117, 125701. [Google Scholar] [CrossRef]
- Dolgonos, A.; Mason, T.O.; Poeppelmeier, K.R. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. J. Solid State Chem. 2016, 240, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Mergen, Ö.B.; Arda, E. Determination of optical band gap energies of CS/MWCNT bio-nanocomposites by Tauc and ASF Methods. Synth. Met. 2020, 269, 116539. [Google Scholar] [CrossRef]
- Zanatta, A.R. Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 2019, 9, 11225. [Google Scholar] [CrossRef] [Green Version]
- Bacaksiz, E.; Aksu, S.; Yilmaz, S.; Parlak, M.; Altunbaş, M. Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis. Thin Solid Films 2010, 518, 4076–4080. [Google Scholar] [CrossRef]
- Pandey, R.; Yuldashev, S.; Nguyen, H.D.; Jeon, H.C.; Kang, T.W. Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis. Curr. Appl. Phys. 2012, 12, S56–S58. [Google Scholar] [CrossRef]
- Alam, M.J.; Cameron, D.C. Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Films 2000, 377–378, 455–459. [Google Scholar] [CrossRef]
- Benamar, E.; Rami, M.; Messaoudi, C.; Sayah, D.; Ennaoui, A. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis. Sol. Energy Mater. Sol. Cells 1999, 56, 125–139. [Google Scholar] [CrossRef]
- Snure, M.; Tiwari, A. Structural, electrical, and optical characterizations of epitaxial Zn1−xGaxO films grown on sapphire (0001) substrate. J. Appl. Phys. 2007, 101, 124912. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna Reddy, K.T.; Miles, R.W. Growth and characterization of sprayed ZnO:Ga thin films. J. Mater. Sci. Lett. 1998, 17, 279–281. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Yang, J.; Mao, W.; Wang, J.; Liu, Z.; Dong, Y.; Yang, S.; Li, J. Fabrication of AZO and FAZO films using low-cost spin-coating method. Opt. Mater. 2022, 126, 112204. [Google Scholar] [CrossRef]
- Koseoglu, H.; Turkoglu, F.; Kurt, M.; Yaman, M.D.; Akca, F.G.; Aygun, G.; Ozyuzer, L. Improvement of optical and electrical properties of ITO thin films by electro-annealing. Vacuum 2015, 120, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Winkler, N.; Wibowo, A.; Kubicek, B.; Kautek, W.; Ligorio, G.; List-Kratochvil, E.; Dimopoulos, T. Rapid processing of In-doped ZnO by spray pyrolysis from environment-friendly precursor solutions. Coatings 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Dimova-Malinovska, D.; Tzenov, N.; Tzolov, M.; Vassilev, L. Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films. Mater. Sci. Engin. B 1998, 52, 59–62. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, G.S.; Xu, H.R.; Jiang, X.P.; Zhang, X.Y.; Zhao, Y.Y.; Yan, D.L.; Yuan, L.; Yu, A.B. Preparation of indium tin oxide (ITO) thin film with (400) preferred orientation by sol–gel spin coating method. J. Mater. Sci. Mater. Electron. 2019, 30, 8047–8054. [Google Scholar] [CrossRef]
- Sofi, A.H.; Shah, M.A.; Asokan, K. Structural, optical and electrical properties of ITO thin Films. J. Electron. Mater. 2018, 47, 1344–1352. [Google Scholar] [CrossRef]
- Seeber, W.; Abou-Helal, M.; Barth, S.; Beil, D.; Höche, T.; Afify, H.; Demian, S. Transparent semiconducting ZnO:Al thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 1999, 2, 45–55. [Google Scholar] [CrossRef]
- Bizarro, M.; Sánchez-Arzate, A.; Garduño-Wilches, I.; Alonso, J.C.; Ortiz, A. Synthesis and characterization of ZnO and ZnO:Al by spray pyrolysis with high photocatalytic properties. Catal. Today 2011, 166, 129–134. [Google Scholar] [CrossRef]
- Rozati, S.M. Effect of film thickness on the physical properties of ZnO:Al thin films deposited using a spray pyrolysis technique. Can. J. Phys. 2008, 86, 379–382. [Google Scholar] [CrossRef]
Sample | Average Transmittance (%) | Sheet Resistance | |||
---|---|---|---|---|---|
Glass | 75.7 | 19.0 | 56.4 | 59.2 | 65.4 |
Fused Silica | 80.2 | 31.9 | 57.0 | 60.1 | 67.4 |
Material | Deposition Technique | Sheet Resistance | Average Transmittance (%) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
ZnO:Al-Tl | 1 at% of Tl to aluminum-doped zinc oxide (AZO) | Sol-gel-spin coating | 1920 | 2.83 | 85 | 76.6 | 77.9 | 80.7 | [4] |
ITO | - | Sol-gel | 250 | 1.50 | 80 | 76.8 | 77.3 | 78.4 | [41] |
ZnO:Al | Annealed at 550 °C with Zn film | DC magnetron sputtering | 350 | 8.80 | 90 | 72.4 | 75.1 | 80.7 | [18] |
ITO | - | Spray pyrolysis | 500 | 5.00 | 85 | 72.4 | 74.3 | 78.4 | [42] |
ZnO:Ga | Prepared on float glass at 400 °C | Magnetron sputtering | 825 | 5.50 | 85 | 71.8 | 73.9 | 78.2 | [14] |
Zn1−xGaxO | 1% of Ga | Pulsed laser deposition | 200 | 7.20 | 87 | 71.4 | 73.8 | 78.8 | [43] |
ZnO:Ga | - | Magnetron sputtering | 300 | 7.33 | 85 | 69.6 | 72.0 | 76.9 | [44] |
ZnO:Al/Ag/ZnO:Al | - | Magnetron sputtering | 70 | 5.30 | 80 | 67.7 | 69.6 | 73.6 | [15] |
ZnO:Al | Prepared on float glass at 400 °C | Magnetron sputtering | 825 | 10.80 | 83 | 65.7 | 68.4 | 74.0 | [14] |
ZnO/Ag/ZnO | - | Magnetron sputtering | 70 | 5.40 | 78 | 65.9 | 67.8 | 71.7 | [15] |
ZnO:Al | - | Magnetron sputtering | 2210 | 24.00 | 88 | 64.0 | 67.5 | 75.1 | [12] |
ZnO:Al | Films prepared at 450 °C | Spin-coating | 547 | 60.70 | 93 | 61.6 | 65.9 | 75.6 | [45] |
ZnO:In | - | Radio frequency magnetron sputtering | 380 | 8.95 | 77 | 61.8 | 64.1 | 69.0 | [9] |
ITO | - | Electro annealing | 256 | 15.00 | 79 | 60.3 | 63.0 | 69.0 | [46] |
ZnO:In | - | Ultrasonic spray pyrolysis | 1800 | 21.20 | 80 | 58.9 | 62.0 | 68.7 | [47] |
ZnO:Al | - | Magnetron sputtering | 400 | 45.00 | 85 | 58.1 | 61.9 | 70.3 | [48] |
ZnO:Al-F | Films prepared at 450 °C | Spin-coating | 620 | 91.30 | 89 | 56.4 | 60.9 | 70.7 | [45] |
ZnO:Al | Films prepared below 390 °C and without subsequent annealing | Low-cost, own-designed ultrasonic spray pyrolysis | 642 | 31.00 | 80 | 56.7 | 60.1 | 67.4 | This work |
ZnO/Metal/ZnO | 50 nm ZnO/Ti/Cu/Ti/50 nm ZnO | Magnetron sputtering | 70 | 6.60 | 65 | 53.8 | 55.5 | 59.1 | [11] |
ITO | - | Sol-gel-spin coating | 180 | 230.00 | 85 | 49.3 | 54.0 | 64.8 | [49] |
ZnO:Al | - | Sol-gel-spin coating | 350 | 156.00 | 82 | 49.5 | 53.8 | 63.7 | [7] |
ZnO/Metal/ZnO | 50 nm ZnO/Cu/50 nm ZnO | Magnetron sputtering | 60 | 10.10 | 60 | 47.6 | 49.5 | 53.4 | [11] |
ZnO:W | 1.0 wt% tungsten | Pulsed laser deposition | 86 | 229.00 | 75 | 43.6 | 47.7 | 57.2 | [10] |
ZnO:In | 450 °C and a ratio of [In]/[In+Zn] = 3.0 at% | Ultrasonic spray pyrolysis | 1000 | 34.20 | 60 | 42.1 | 44.7 | 50.3 | [23] |
ITO | - | Thermal evaporation | 150 | 166.00 | 60 | 36.0 | 39.2 | 46.5 | [50] |
ZnO:Al | FAr 5 sccm and 45 W | DC magnetron sputtering | 51 | 6.86 × 103 | 75 | 31.0 | 35.9 | 48.2 | [3] |
ZnO:Al | Thin films containing 2 at% Al | Sol–gel | 106 | 3.84 × 104 | 79 | 27.5 | 32.8 | 46.7 | [2] |
ZnO:Al | - | Sol-gel-spin coating | 244 | 2.35 × 106 | 85 | 19.6 | 25.0 | 40.8 | [19] |
ZnO:Al | 3% | Atomic layer deposition | 18 | 5.56 × 105 | 75 | 20.0 | 24.9 | 38.7 | [8] |
ZnO:In | - | Sol-gel-spin coating | 245 | 3.51 × 106 | 85 | 18.8 | 24.2 | 40.0 | [19] |
ZnO:Al | 3 h annealing (400 °C) | Ultrasonic spray pyrolysis | 94 | 1.48 × 106 | 50 | 12.1 | 15.3 | 24.6 | [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisneros-Contreras, I.R.; López-Ganem, G.; Sánchez-Dena, O.; Wong, Y.H.; Pérez-Martínez, A.L.; Rodríguez-Gómez, A. Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide. Physics 2023, 5, 45-58. https://doi.org/10.3390/physics5010004
Cisneros-Contreras IR, López-Ganem G, Sánchez-Dena O, Wong YH, Pérez-Martínez AL, Rodríguez-Gómez A. Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide. Physics. 2023; 5(1):45-58. https://doi.org/10.3390/physics5010004
Chicago/Turabian StyleCisneros-Contreras, Ivan Ricardo, Geraldine López-Ganem, Oswaldo Sánchez-Dena, Yew Hoong Wong, Ana Laura Pérez-Martínez, and Arturo Rodríguez-Gómez. 2023. "Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide" Physics 5, no. 1: 45-58. https://doi.org/10.3390/physics5010004
APA StyleCisneros-Contreras, I. R., López-Ganem, G., Sánchez-Dena, O., Wong, Y. H., Pérez-Martínez, A. L., & Rodríguez-Gómez, A. (2023). Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide. Physics, 5(1), 45-58. https://doi.org/10.3390/physics5010004