Selected Topics of Social Physics: Nonequilibrium Systems †
Abstract
:1. Introduction
2. Dynamical Social Systems
2.1. Dynamical Systems
2.2. Stability of Solutions
2.3. Method of Linearization
2.4. Plane Motion
2.5. Evolution Equations
2.5.1. Differential Rate Equations
2.5.2. Delay Differential Equations
2.6. Examples of Evolution Equations
2.6.1. Malthus Equation
2.6.2. Neo-Malthusian Catastrophe
2.6.3. Logistic Equation
2.6.4. Lotka-Volterra Model
2.6.5. Singular Malthus Equation
2.6.6. Generalized Lotka-Volterra Model
2.6.7. Predator–Prey Kolmogorov Model
2.6.8. Jacob–Monod Equations
2.6.9. Hutchinson Delayed Equation
2.6.10. Multiple-Processes Delayed Equation
2.6.11. Peschel-Mende Hyperlogistic Equation
2.6.12. Hyperlogistic Delayed Equations
2.7. Replicator Equation
2.8. Free Replicator Equation
2.9. Influence of Noise
2.10. Fokker-Planck Equation
3. Generalised Evolution Equations
3.1. Functional Carrying Capacity
3.2. Evolutionary Stable States
3.3. Punctuated Evolution
3.4. Symbiosis of Species
3.4.1. Interaction through Carrying Capacities
3.4.2. Uncorrelated Symbiosis
- (i)
- unbounded growth of populations with time,
- (ii)
- convergence to a stationary state.
- (i)
- convergence to single stationary state,
- (ii)
- bistability with two stationary states;
3.4.3. Correlated Symbiosis
- (i)
- unbounded growth of both populations,
- (ii)
- convergence of populations to stationary states.
- (i)
- convergence to stationary states,
- (ii)
- unbounded growth of parasitic population and dying out of host population;
3.4.4. Mixed Symbiosis
- (i)
- unbounded growth of both populations,
- (ii)
- convergence to stationary states.
- (i)
- convergence to stationary states,
- (ii)
- everlasting oscillations;
3.5. Role of Growth Rates
3.6. Self-Organised Society
3.6.1. Trait Groups
- Cooperators , who contribute to the whole society. In a human society, the cooperators form the working force producing the gross domestic product. In a biological organism, cooperators can be associated with healthy cells.
- Defectors , who do not contribute to the society and can exist only owing to the work of cooperators. In a social system, the groups that benefit from the society support without contributing are prisoners, pensioners, and unemployed people. In a biological organism, defectors can be represented by ill cells.
- Regulators , who maintain order in the society and punish defectors and harmful outsiders. In a human society, this role is played by the police, the army, and the order enforcing bureaucracy. To support the existence of regulators, the society has to pay the necessary costs. In a biological organism, regulators can correspond to the cells of the immune system.
- Outsiders , who also exploit the society, but, contrary to defectors, the difference is that they enter the society from outside. The harmful outsiders could be interpreted as terrorists or as foreign invading armies. For biological organisms, outsiders could be pathogens or viruses infecting the organism.
3.6.2. Coexistence of Cooperators and Defectors
3.6.3. Three Coexisting Groups
4. Models of Financial Markets
4.1. Efficient Market Model
- all prices on traded assets already reflect all past available information;
- all prices instantly adjust to any newly appearing information;
- all prices instantly reflect even hidden information.
- possesses all existing information necessary for the correct price evaluation;
- can immediately process all existing information;
- makes objective unbiased conclusions based on the maximisation of expected utility.
4.2. Diffusion Price Model
4.3. Herding Market Model
- they have numerous cognitive biases;
- they do not possess all necessary information;
- they are not able to accomplish instantaneous calculations;
- atually, they do not maximise some expected utility or other functionals.
4.4. Time Series Analysis
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iggers, G.G. Further remarks about early uses of the term “social science”. J. Hist. Ideas 1959, 20, 433–436. [Google Scholar] [CrossRef]
- Comte, A. Phisique Sociale. Cours de Philosophie Positive, Leçons 46 á 60; Enthoven, J.-P., Ed.; Hermann: Paris, France, 1975. [Google Scholar]
- Quetelet, A. Sur l’Homme et le Développment de ses Facultés. Essai de Physique Sociale. Tome I.; Bachelier, Imprimeur-Libraire: Paris, France, 1835; Available online: https://gallica.bnf.fr/ark:/12148/bpt6k81570d (accessed on 28 May 2023).
- Yukalov, V.I. Selected topics of social physics: Equilibrium systems. Physics 2023, 5, 590–635. [Google Scholar] [CrossRef]
- Zipf, G.K. Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology; Addison-Wesley Press, Inc.: Cambridge, MA, USA, 1949; Available online: https://archive.org/details/in.ernet.dli.2015.90211/mode/2up (accessed on 28 May 2023).
- Makse, H.A.; Havlin, S.; Stanley, H.E. Modelling urban growth patterns. Nature 1995, 377, 608–612. [Google Scholar] [CrossRef]
- Soo, K.T. Zipf’s law for cities: A cross-country investigation. Region. Sci. Urban Econ. 2005, 35, 239–263. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef] [Green Version]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [Green Version]
- Saichev, A.; Malevergne, Y.; Sornette, D. Theory of Zipf’s Law and Beyond; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Batty, M. The New Science of Cities; The MIT Press: Cambridge, MA, USA, 2013; Available online: https://www.jstor.org/stable/j.ctt9qf7m6 (accessed on 28 May 2023).
- Barthelemy, M. The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Barthelemy, M. Morphogenesis of Spatial Networks; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Barthelemy, M. The statistical physics of cities. Nat. Rev. Phys. 2019, 1, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, L.M.A. Introduction to Urban Science: Evidence and Theory of Cities As Complex Systems; The MIT Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Stouffer, S.A. Intervening opportunities: A theory relating mobility and distance. Am. Soc. Rev. 1940, 5, 845–867. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Park, J.; Lee, D.S.; Gonzalez, M.C. The eigenmode analysis of human motion. J. Stat. Mech. 2010, 2010, 11021. [Google Scholar] [CrossRef]
- Lee, M.; Holme, P. Relating land use and human intra-city mobility. PLoS ONE 2015, 10, 0140152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leutzbach, W. Introduction to the Theory of Traffic Flow; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Kessels, F. Traffic Flow Modelling: Introduction to Traffic Flow Theory Through a Genealogy of Models; Springer International Publishing AG: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Chowdhury, D.; Santen, L.; Schadschneider, A. Statistical physics of vehicular traffic and some related systems. Phys. Rep. 2000, 329, 199–329. [Google Scholar] [CrossRef] [Green Version]
- Helbing, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 2001, 73, 1067–1141. [Google Scholar] [CrossRef] [Green Version]
- Nagatani, T. The physics of traffic jams. Rep. Prog. Phys. 2002, 65, 1331–1386. [Google Scholar] [CrossRef] [Green Version]
- Ni, D. Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical Techniques; Elsevier Inc.: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Kerner, B.S. Breakdown in Traffic Networks: Fundamentals of Traffic Science; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Sornette, D. Why Stock Markets Crash: Critical Events in Complex Financial Systems; Princeton University Press: Princeton, NJ, USA, 2003; Available online: https://www.jstor.org/stable/j.ctt1h1htkg (accessed on 28 May 2023).
- Bouchaud, J.-P.; Potters, M. Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Watanabe, K.; Takayasu, H.; Takayasu, M. Observation of two types of behaviours of financial bubbles and the related higher-order potential forces. Prog. Theor. Phys. Suppl. 2009, 179, 8–16. [Google Scholar] [CrossRef]
- Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Iyetomi, H.; Souma, W. Econophysics and Companies: Statistical Life and Death in Complex Business Networks; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Takayasu, M.; Watanabe, T.; Takayasu, H. (Eds.) Econophysics Approaches to Large-Scale Business Data and Financial Crisis. Proceedings of the Tokyo Tech-Hitotsubashi Interdisciplinary Conference + APFA7; Springer: Tokyo, Japan, 2010. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.V.; Nowak, A. An Introduction to Socio-Finance; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Takayasu, H. Empirical Science of Financial Fluctuations: The Advent of Econophysics; Springer: Tokyo, Japan, 2002. [Google Scholar] [CrossRef]
- Ormerod, P. Ten years after “Worrying trends in econophysics”: Developments and current challenges. Eur. Phys. J. Spec. Top. 2016, 225, 3281–3291. [Google Scholar] [CrossRef] [Green Version]
- Abergel, F.; Aoyama, H.; Chakrabarti, B.K.; Chakraborti, A.; Deo, N.; Raina, D.; Vodenska, I. (Eds.) Econophysics and Sociophysics: Recent Progress and Future Directions; Springer International Publishing AG: Cham, Swizerland, 2017. [Google Scholar] [CrossRef]
- Slanina, F. Essentials of Econophysics Modelling; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Bouchaud, J.-P.; Bonart, J.; Donier, J.; Gould, M. Trades, Quotes and Prices: Financial Markets under the Microscope; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Dawes, R.M. Social dilemmas. Annu. Rev. Psychol. 1980, 31, 169–193. [Google Scholar] [CrossRef]
- Smith, J.M. Evolution and the Theory of Games; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar] [CrossRef] [Green Version]
- Weibull, J.W. Evolutionary Game Theory; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Roca, C.P.; Cuesta, J.A.; Sanchez, A. Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 2009, 6, 208–249. [Google Scholar] [CrossRef] [Green Version]
- Perc, M.; Szolnoki, A. Coevolutionary games—A mini review. BioSystems 2010, 99, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, J. Fundamentals of Evolutionary Game Theory and Its Applications; Springer: Tokyo, Japan, 2015. [Google Scholar] [CrossRef]
- Wang, Z.; Jusup, M.; Kokubo, S.; Tanimoto, J. Universal scaling for the dilemma strength in evolutionary games. Phys. Life Rev. 2015, 14, 1–30. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M. Evolutionary games on multilayer networks: A colloquium. Eur. Phys. J. B 2015, 88, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Li, A.; Wang, L. Evolution of cooperation with interactive identity and diversity. J. Theor. Biol. 2018, 442, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Henrich, J.; Muthukrishna, M. The origins and psychology of human cooperation. Ann. Rev. Psychol. 2021, 72, 207–240. [Google Scholar] [CrossRef]
- Grönlund, A.; Holme, P. Networking the seceder model: Group formation in social and economic systems. Phys. Rev. E 2004, 70, 036108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, N.; Gibert, N.; Redner, S. Heterogeneous voter models. Phys. Rev. E 2010, 82, 010103. [Google Scholar] [CrossRef] [Green Version]
- Perc, M.; Szolnoki, A. Self-organization of punishment in structured populations. New J. Phys. 2012, 14, 043013. [Google Scholar] [CrossRef]
- Chen, X.; Perc, M. Optimal distribution of incentives for public cooperation in heterogeneous interaction environments. Front. Behav. Neurosci. 2014, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Suchecki, K.; Eguiluz, V.M.; San Miguel, M. Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Phys. Rev. E 2005, 72, 036132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobilia, M.; Petersen, A.; Redner, S. On the role of zealotry in the voter model. J. Stat. Mech. 2007, 2007, 08029. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A review of Galam models. Int. J. Mod. Phys. C 2008, 19, 409–440. [Google Scholar] [CrossRef]
- Redner, S. Reality-inspired voter models: A mini-review. Compt. Rend. Phys. 2019, 20, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2002; Available online: https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf (accessed on 28 May 2023).
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; Available online: https://www.deeplearningbook.org/ (accessed on 28 May 2023).
- Floridi, L. Establishing the rules for building trustworthy AI. Nat. Mach. Intell. 2019, 1, 261–262. [Google Scholar] [CrossRef]
- Liang, X.; Yan, Z. A survey on game theoretical methods in human-machine networks. Future Gener. Comput. Syst. 2019, 92, 674–693. [Google Scholar] [CrossRef]
- Theodorou, A.; Dignum, V. Towards ethical and socio-legal governance in AI. Nat. Mach. Intell. 2020, 2, 10–12. [Google Scholar] [CrossRef]
- Bachrach, Y.; Everett, R.; Hughes, E.; Lazaridou, A.; Leibo, J.Z.; Lanctot, M.; Johanson, M.; Czarnecki, W.M.; Graepel, T. Negotiating team formation using deep reinforcement learning. Artif. Intell. 2020, 288, 103356. [Google Scholar] [CrossRef]
- Bonnefon, J.F.; Rahwan, I. Machine thinking, fast and slow. Trends Cogn. Sci. 2020, 24, 1019–1027. [Google Scholar] [CrossRef]
- Yukalov, V.I. Quantum operation of affective artificial intelligence. Laser Phys. 2023, 33, 065204. [Google Scholar] [CrossRef]
- Becker, G.S. Crime and punishment: An economic approach. J. Polit. Econ. 1968, 76, 169–217. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Bardhan, P. Corruption and development: A review of issues. J. Econ. Lit. 1997, 35, 1320–1346. Available online: https://www.jstor.org/stable/2729979 (accessed on 28 May 2023).
- Johnson, S.D.; Bowers, K.J. The stability of space-time clusters of burglary. Brit. J. Criminol. 2004, 44, 55–65. [Google Scholar] [CrossRef]
- Zimring, F.E. The Great American Crime Decline; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Nuno, J.C.; Herrero, M.A.; Primicerio, M. A mathematical model of a criminal-prone society. Disc. Cont. Dyn. Syst. 2011, S4, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Ball, P. Why Society Is a Complex Matter; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- D’Orsogna, M.R.; Perc, M. Statistical physics of crime: A review. Phys. Life Rev. 2015, 12, 1–21. [Google Scholar] [CrossRef]
- Szolnoki, A.; Perc, M. Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment. Phys. Rev. X 2017, 7, 041027. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.L.; Piereson, J.; Marcus, G.E. Political Tolerance and American Democracy; The University of Chicago Press: Chicago, IL, USA, 1993. [Google Scholar]
- Borjas, G.J. The economics of immigration. J. Econ. Lit. 1994, 32, 1667–1717. [Google Scholar]
- Kunovich, R.M. Labor market competition and anti-immigrant sentiment: Occupations as contexts. Int. Migr. Rev. 2013, 47, 643–685. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Hufnagel, L.; Brockmann, D.; Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 2004, 101, 15124–15129. [Google Scholar] [CrossRef]
- Salathé, M. Digital epidemiology: What is it, and where is it going? Life Sci. Soc. Policy 2018, 14, 1–5. [Google Scholar] [CrossRef]
- Lindeman, R.L. The trophic-dynamic aspect of ecology. Ecology 1942, 23, 399–417. [Google Scholar] [CrossRef]
- Scheffer, M.; Brock, W.; Westley, F. Socioeconomic mechanisms preventing optimum use of ecosystem services: An interdisciplinary theoretical analysis. Ecosystems 2000, 3, 451–471. [Google Scholar] [CrossRef]
- De Roos, A.M.; Persson, L. Physiologically structured models-from versatile technique to ecological theory. Oikos 2001, 94, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L.F. Weather Prediction by Numerical Process; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Tsonis, A.A.; Roebber, P.J. The architecture of the climate network. Physica A 2004, 333, 497–504. [Google Scholar] [CrossRef]
- Gladwell, M. The Tipping Point: How Little Things Can Make a Big Difference; Little, Brown and Company: Boston, MA, USA, 2006; Available online: https://www.scribd.com/doc/57087106/Gladwell-Malcolm-The-Tipping-Point (accessed on 28 May 2023).
- Ranson, M. Crime, weather, and climate change. J. Environ. Econ. Manag. 2014, 67, 274–302. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Albert, R.; Barabasi, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of Networks: From Biological Networks to the Internet and WWW; Oxford University Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Watts, D.J. Small Worlds: The Dynamics of Networks between Order and Randomness; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Pastor-Satorras, R.; Vespignani, A. Evolution and Structure of the Internet: A Statistical Physics Approach; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Barrat, A.; Barthélemy, M.; Vespignani, A. Dynamical Processes on Complex Networks; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Lewis, T.G. Network Science: Theory and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Newman, M. Networks: An Introduction; Oxford University Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Estrada, E. The Structure of Complex Networks: Theory and Applications; Oxford University Press: New York, NY, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Caldarelli, G.; Catanzaro, M. Networks: A Very Short Introduction; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Sen, P.; Chakrabarti, B.K. Sociophysics: An Introduction; Oxford University: Oxford, UK, 2013. [Google Scholar]
- Latora, V.; Nicosia, V.; Russo, G. Complex Networks: Principles, Methods and Applications; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Manoj, B.S.; Chakraborty, A.; Singh, R. Complex Networks: A Networking and Signal Processing Perspective; Pearson Education, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L.M.; Moreno, Y. Evolutionary dynamics of group interactions on structured populations: A review. J. Roy. Soc. Interface 2013, 10, 20120997. [Google Scholar] [CrossRef] [Green Version]
- Perc, M.; Jordan, J.J.; Rand, D.G.; Wang, Z.; Boccaletti, S.; Szolnoki, A. Statistical physics of human cooperation. Phys. Rep. 2017, 687, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Jusup, M.; Holme, P.; Kanazawa, K.; Takayasu, M.; Romic, I.; Wang, Z.; Gecek, S.; Lipic, T.; Podobnik, B.; Wang, L.; et al. Social physics. Phys. Rep. 2022, 948, 1–148. [Google Scholar] [CrossRef]
- Nemytskii, V.V.; Stepanov, V.V. Qualitative Theory of Differential Equations; Princeton University Press: Princeton, NJ, USA, 1960; Available online: https://www.jstor.org/stable/j.ctt183pssh (accessed on 28 May 2023).
- Rudolph, D.J. Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Robinson, C. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar] [CrossRef]
- Mikhailov, A.S.; Loskutov, A.Y. Foundations of Synergetics II. Chaoos and Noise; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Orlando, G.; Taglialatela, G. Dynamical systems. In Nonlinearities in Economics. An Interdisciplinary Approach to Economic Dynamics, Growth and Cycles; Orlando, G., Pisarchik, A.N., Stoop, R., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 13–37. [Google Scholar] [CrossRef]
- Lyapunov, A.M. Stability of Motion; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Ruelle, D. Chaotic Evolution and Strange Attractors; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar] [CrossRef]
- Lorentz, E.N. The Essence of Chaos; University of Washington Press: Washington, DC, USA, 1993; Available online: https://eclass.uoa.gr/modules/document/file.php/PHYS289/%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CE%B1/Edward%20N.%20Lorenz%20-%20The%20Essence%20of%20Chaos-CRC%20%282005%29.pdf (accessed on 28 May 2023).
- Zaslavsky, G.M.; Sagdeev, R.Z.; Usikov, D.A.; Chernikov, A.A. Weak Chaos and Quasi-Regular Patterns; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Springer Science+Business Media B.V: Dordrecht, The Netherlands, 1992. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations. With Applications in Population Dynamics; Academic Press, Inc.: San Diego, CA, USA, 1993; Available online: https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/191/suppl/C (accessed on 28 May 2023).
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics; Springer-Verlag New York Inc.: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Malthus, T.R. An Essay on the Principle of Population. In Two Volumes; John Murray: London, UK, 1826; Available online: https://oll.libertyfund.org/title/malthus-an-essay-on-the-principle-of-population-2-vols-1826-6th-ed (accessed on 28 May 2023).
- Hern, W.M. How many times has the human population doubled? Comparison with cancer. Populat. Environ. 1999, 21, 59–80. [Google Scholar] [CrossRef]
- Verhulst, P.-F. Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 1838, 10, 113–121. Available online: https://books.google.ch/books?hl=fr&id=8GsEAAAAYAAJ&jtp=113 (accessed on 28 May 2023).
- English translation: Verhulst, P.-F. Notice on the Law that a Population Follows in its Growth. In Delphenich, D. Neo-Classical Physics. General System Theory. Available online: https://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/verhulst_-_law_of_population.pdf (accessed on 28 May 2023).
- Lotka, A.J. Elements of Physical Biology; Williams and Wilkins Company: Baltimore, MD, USA, 1925; Available online: https://archive.org/details/elementsofphysic017171mbp (accessed on 28 May 2023).
- Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef] [Green Version]
- von Foerster, H.; Mora, P.M.; Amiot, L.W. Doomsday: Friday, 13 November, A.D. 2026. Science 1960, 132, 1291–1295. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Extreme events in population dynamics with functional carrying capacity. Eur. Phys. J. Spec. Top. 2012, 205, 313–354. [Google Scholar] [CrossRef] [Green Version]
- Hofbauer, J.; Sigmund, K. The Theory of Evolution and Dynamical Systems; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef] [Green Version]
- Freedman, H.I. Deterministic Mathematical Models in Population Ecology; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Brauer, F.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology; Springer Science+Business Media, LCC: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- May, R.M. Stability and Complexity in Model Ecosystems; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Hutchinson, G.E. Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 1948, 50, 221–246. [Google Scholar] [CrossRef]
- Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations; Springer Science+Business Media, B.V.: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Peschel, M.; Mende, W. The Predator-Prey Model. Do We Leave in a Volterra World? Akademie-Verlag Berlin: Berlin, Germany, 1986. [Google Scholar] [CrossRef]
- Haberl, H.; Aubauer, H.P. Simulation of human population dynamics by a hyperlogistic time-delay equation. J. Theor. Biol. 1992, 156, 499–511. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, C.W. Stochastic Methods: A Handbook for the Natural and Social Sciences; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lindenberg, K.; West, B.J. The Nonequilibrium Statistical Mechanics of Open and Closed Systems; Wiley-VCH Verlag GmbH: Hoboken, NJ, USA, 1990. [Google Scholar]
- Honerkamp, J. Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis.; Wiley-VCH, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Maruyama, G. Continuous Markov processes and stochastic equations. Rend. Circ. Math. Palermo 1955, 4, 48–90. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation: Methods of Solutions and Applications; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations and Communities; Blackwell Scientific Publications LTD: Cambridge, MA, USA, 1990. [Google Scholar]
- Ricklefs, R.E. Ecology; W.H. Freeman and Company: New York, NY, USA, 1990; Available online: https://archive.org/details/ecology0003rick/mode/2up (accessed on 28 May 2023).
- Freedman, B. Environmental Ecology; Academic Press, Inc.: San Diego, CA, USA, 1995; Available online: https://www.sciencedirect.com/book/9780122665424/environmental-ecology (accessed on 28 May 2023).
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Punctuated evolution due to delayed carrying capacity. Physica D 2009, 238, 1752–1767. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Gluzman, S. Self-similar bootstrap of divergent series. Phys. Rev. E 1997, 55, 6552–6565. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Gluzman, S. Self-similar exponential approximants. Phys. Rev. E 1998, 58, 1359–1382. [Google Scholar] [CrossRef] [Green Version]
- Gluzman, S.; Sornette, D.; Yukalov, V.I. Reconstructing generalized exponential laws by self-similar exponential approximants. Int. J. Mod. Phys. C 2003, 14, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Population dynamics with nonlinear delayed carrying capacity. Int. J. Bifur. Chaos 2014, 24, 1450021. [Google Scholar] [CrossRef] [Green Version]
- Gould, J.; Eldredge, N. Punctuated equilibia: The tempo and mode of evolution reconsidered. Paleobiology 1977, 3, 115–151. [Google Scholar] [CrossRef] [Green Version]
- Eldredge, N. Time Frames: The Evolution of Punctuated Equilibria; Princeton University Press: Princeton, NJ, USA, 1985; Available online: https://www.jstor.org/stable/j.ctt7zv155 (accessed on 28 May 2023).
- Gould, S.J. The Structure of Evolutionary Theory; Belknap Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Boucher, D. The Biology of Mutualism: Ecology and Evolution; Oxford University Pres: New York, NY, USA, 1988. [Google Scholar]
- Douglas, A.E. Symbiotic Interactions; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Sapp, J. Evolution by Association: A History of Symbiosis; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Paracer, S.; Ahmadjian, V. Symbiosis: An Introduction to Biological Associations; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Townsend, C.R.; Begon, M.; Harper, J.D. Ecology: Individuals, Populations and Communities; Balckwell Science: Oxford, UK, 2002. [Google Scholar]
- Fasano, A.; Flaherty, S. Gut Feelings: The Microbiome and Our Health; The MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Modeling symbiosis by interactions through species carrying capacities. Physica D 2012, 241, 1270–1289. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. New approach to modeling symbiosis in biological and social systems. Int. J. Bifur. Chaos 2014, 24, 1450117. [Google Scholar] [CrossRef] [Green Version]
- Rheinboldt, W.C. Methods of Solving Systems of Nonlinear Equations; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998. [Google Scholar] [CrossRef]
- Ivanitskiĭ, G.R.; Medvinskiĭ, A.B.; Tsyganov, M.A. From disorder to order as applied to the movement of micro-organisms. Sov. Phys. Usp. 1991, 34, 289–316. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Dynamical system theory of periodically collapsing bubbles. Eur. Phys. J. B 2015, 88, 179. [Google Scholar] [CrossRef] [Green Version]
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851–1112. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Dynamic transition in symbiotic evolution induced by growth rate variation. Int. J. Bifur. Chaos 2017, 27, 1730013. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859; Available online: http://darwin-online.org.uk/EditorialIntroductions/Freeman_OntheOriginofSpecies.html (accessed on 28 May 2023).
- Darwin, C. The Descent of Man and Selection in Relation to Sex. In Two Volumes; John Murray: London, UK, 1871; Available online: http://darwin-online.org.uk/EditorialIntroductions/Freeman_TheDescentofMan.html (accessed on 28 May 2023).
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Utility rate equations of group population dynamics in biological and social systems. PLoS ONE 2013, 8, 83225. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Sornette, D.; Yukalova, E.P.; Henry, J.Y.; Cobb, J.P. Stable states of biological organisms. Concepts Phys. 2009, 6, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Sornette, D.; Yukalov, V.I.; Yukalova, E.P.; Henry, J.Y.; Schwab, D.; Cobb, J.P. Endogenous versus exogenous origins of diseases. J. Biol. Syst. 2009, 17, 225–267. [Google Scholar] [CrossRef] [Green Version]
- Acocella, N. The Foundations of Economic Policy. Values and Techniques; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Moulin, H.J. Fair Division and Collective Welfare; The MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Courtault, J.M.; Kabanov, Y.; Bru, B.; Crepel, P.; Lebon, I.; Le Marchand, A. Louis Bachelier on the Centenary of Theorie de la Speculation. Math. Financ. 2000, 10, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Franck, J. Bachelier: Not the forgotten forerunner he has been depicted as: An analysis of the dissemination of Louis Bachelier’s work in economics. Eur. J. History Econ. Thought 2012, 19, 431–451. [Google Scholar] [CrossRef]
- Bachelier, L. Théorie de la speculation. Ann. Scientif. Ecole Norm. Super. 1900, 3, 21–86. [Google Scholar] [CrossRef] [Green Version]
- Fama, E. The behaviour of stock market prices. J. Business 1965, 38, 34–105. [Google Scholar] [CrossRef] [Green Version]
- Fama, E. Efficient capital markets: A review of theory and empirical work. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Simon, H. A Behavioural Model of Rational Choice; John Wiley & Sons, Inc.: New York, NY, USA, 1957. [Google Scholar]
- Kahneman, D. Thinking Fast and Slow; Farrar, Straus and Geroux: New York, NY, USA, 2011. [Google Scholar]
- Yukalov, V.I. A resolution of St. Petersburg paradox. J. Math. Econ. 2021, 97, 102537. [Google Scholar] [CrossRef]
- Yukalov, V.I. Quantification of emotions in decision making. Soft Comput. 2022, 26, 2419–2436. [Google Scholar] [CrossRef]
- Poincaré, H.H. La Valeur de la Science; Ernest Flammarion, Éditeur: Paris, France, 1908; Available online: http://classiques.uqac.ca/classiques/poincare_henri/valeur_de_la_science/valeur_de_la_science.html (accessed on 28 May 2023).
- Friedman, M. Price Theory: A Provisional Text; Aldine Publishing Company: Chicago, IL, USA, 1970. [Google Scholar]
- Plummer, T. Forecasting Financial Markets. Technical Analysis and the Dynamics of Price; John Wiley & Sons, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Haugen, R.A. Modern Investment Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Gordon, R.A. Business Fluctuations; Harper: New York, NY, USA, 1952. [Google Scholar]
- Schumpeter, J.A. Business Cycles; McGraw-Hill Company: New York, NY, USA, 1964; Available online: https://discoversocialsciences.com/wp-content/uploads/2018/03/schumpeter_businesscycles_fels.pdf (accessed on 28 May 2023).
- Hall, T.E. Business Cycles: The Nature and Causes of Economic Fluctuations; Praeger: New York, NY, USA, 1990. [Google Scholar]
- Yukalov, V.I. Phase transitions and heterophase fluctuations. Phys. Rep. 1991, 208, 395–492. [Google Scholar] [CrossRef]
- Yukalov, V.I. Mesoscopic phase fluctuations: General phenomenon in condensed matter. Int. J. Mod. Phys. B 2003, 17, 2333–2358. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Sornette, D.; Yukalova, E.P. Nonlinear dynamical model of regime switching between conventions and business cycles. J. Econ. Behav. Org. 2009, 70, 206–230. [Google Scholar] [CrossRef] [Green Version]
- Horsthemke, W.; Lefever, R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Bails, D.G.; Peppers, L.C. Business Fluctuations: Forecasting and Applications; Prentice-Hall, Inc.: Englewood Cliff, NJ, USA, 1982. [Google Scholar]
- Granger, C.W.J.; Newbold, P. Forecasting Economic Time Series; Academic Press, Inc.: San Diego, CA, USA, 1986. [Google Scholar] [CrossRef]
- Yukalov, V.I. Self-similar approach to market analysis. Eur. Phys. J. B 2001, 20, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I. Interplay between approximation theory and renormalization group. Phys. Part. Nucl. 2019, 50, 141–209. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Yukalova, E.P. From asymptotic series to self-similar approximants. Physics 2021, 3, 829–878. [Google Scholar] [CrossRef]
- Yukalov, V.I. Particle fluctuations in mesoscopic Bose systems. Symmetry 2019, 11, 603. [Google Scholar] [CrossRef] [Green Version]
- Phelps, E.S. Structural Slumps. The Modern Equilibrium Theory of Unemployment, Interest, and Assets; Harvard University Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Andersen, E.S. Evolutionary Economics: Post-Schumpeterian Contributions; Pinter: London, UK, 1994. [Google Scholar]
- Hayek, F.A. Individualism and Economic Order; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Rothbard, M.N. America’s Great Depression; Ludwig von Mises Institute: Auburn, AL, USA, 2000; Available online: https://mises.org/library/americas-great-depression (accessed on 28 May 2023).
- Lorentz, G.G. Approximation of Functions; Holt, Rinehart and Wilson, Inc.: New York, NY, USA, 1966; Available online: https://archive.org/details/approximationoff00lore (accessed on 28 May 2023).
- Pindyck, R.S.; Rubinfeld, D.L. Econometric Models and Economic Forecasts; McGraw-Hill Company, Imc.: New York, NY, USA, 1991. [Google Scholar]
- Yukalov, V.I.; Gluzman, S. Weighted fixed points in self-similar analysis of time series. Int. J. Mod. Phys. B 1999, 13, 1463–1476. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Yukalova, E.P. Self-similar structures and fractal transforms in approximation theory. Chaos Solit. Fract. 2002, 14, 839–841. [Google Scholar] [CrossRef] [Green Version]
- Gluzman, S.; Yukalov, V.I. Resummation methods for analyzing time series. Mod. Phys. Lett. B 1998, 12, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Gluzman, S.; Yukalov, V.I. Renormalization group analysis of October market crashes. Mod. Phys. Lett. B 1998, 12, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Gluzman, S.; Yukalov, V.I. Booms and crashes in self-similar markets. Mod. Phys. Lett. B 1998, 12, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Rosser, J.B., Jr. From Catastrophe to Chaos: A General Theory of Economic Discontinuities; Kluwer Academic Publishers: Boston, MA, USA, 2000. [Google Scholar]
- Zhang, W.B. Synergetic Economics: Time and Change in Nonlinear Economics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Turner, R.H.; Killian, L.M. Collective Behaviour; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1972. [Google Scholar]
- Woods, S.E. Trough the Money Labyrinth; John Wiley & Sons, Inc.: Toronto, ON, Canada, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yukalov, V.I. Selected Topics of Social Physics: Nonequilibrium Systems. Physics 2023, 5, 704-751. https://doi.org/10.3390/physics5030047
Yukalov VI. Selected Topics of Social Physics: Nonequilibrium Systems. Physics. 2023; 5(3):704-751. https://doi.org/10.3390/physics5030047
Chicago/Turabian StyleYukalov, Vyacheslav I. 2023. "Selected Topics of Social Physics: Nonequilibrium Systems" Physics 5, no. 3: 704-751. https://doi.org/10.3390/physics5030047
APA StyleYukalov, V. I. (2023). Selected Topics of Social Physics: Nonequilibrium Systems. Physics, 5(3), 704-751. https://doi.org/10.3390/physics5030047