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Abstract: The critical properties of a discrete version of opinion dynamics systems, based on the
Biswas–Chatterjee–Sen model defined on Solomon networks with both nearest and random neighbors,
are investigated through extensive computer simulations. By employing Monte Carlo algorithms
on SNs of different sizes, the magnetic-like variables of the model are computed as a function of the
noise parameter. Using the finite-size scaling hypothesis, it is observed that the model undergoes
a second-order phase transition. The critical transition noise and the respective ratios of the usual
critical exponents are computed in the limit of infinite-size networks. The results strongly indicate
that the discrete Biswas–Chatterjee–Sen model is in a different universality class from the other
lattices and networks, but in the same universality class as the Ising and majority-vote models on the
same Solomon networks.
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1. Introduction

Although a great deal of attention has been given to sociophysics in the last forty years,
it is over the past two decades that the interest in this area has been indeed enhanced, mainly
due to the dynamics properties that are present in social systems or networks (see, e.g.,
Refs. [1–9]). The early models in this new scenario have been proposed by Stauffer [6] and
Galam [9] using local majority rule arguments, which are also called dynamics of opinions.

There are also other models that are useful for simulating the behavior of people in a
community where each person can either be influenced by the neighbors or be a means to
influence these neighbors. Just to cite a few among the great variety of dynamical systems,
which are be of particular interest to the present study, let us mention the Ising model
(IM), originally proposed to treat the thermal properties of magnetic systems [10–12], the
majority-vote model (MVM) [13], and the Biswas, Chatterjee, and Sen (BChS) model [5].

The IM, MVM, and BChS model have been treated by using Monte Carlo simulations
on different lattices and networks. It has been noticed that the existence of a transition–
whether of first or second order–and, in the latter case, the corresponding critical exponents,
strongly depend on the type of the network. Magnetic models of the Ising kind have been
reviewed in Ref. [14] and, more recently, the universality class of the BChS model, in
comparison with the MVM, has been treated in Ref. [15]. In Ref. [15], besides regular lat-
tices, topologies like Apollonian networks, regular and directed Barabási-Albert networks,
regular and directed Erdös-Rènyi random graphs, among others, have been considered. In
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particular, a more recent review on the BChS model [16] has more details of what has been
determined so far in this dynamical system.

From the results collected in the literature, mainly regarding the dynamics of the above
models, it has been noticed that: (i) one cannot say, using just basic arguments, whether a
known dynamical model, on a given network, could or could not undergo a specific phase
transition and (ii) in the case the system does present a second-order phase transition, what
should its universality class be.

Thus, it is worth investigating what kind of dynamic behavior the discrete BChS model
presents when defined on Solomon networks (SNs). In addition, since the BChS model on
SNs, to our best knowledge, has not been treated so far in the literature, it is also beneficial
to compare its new behavior with the previous results obtained using different networks
(and also to compare it with the IM and MVM). Actually, one can further implement Table
3 of Ref. [15]. It should be stressed that the novelty of the SNs over other networks is that
the SNs have a more realistic approach to the behavior of a community of people as soon as
SNs take into account the influence of different types of neighbors one faces, for example,
at home and at work. This is indeed a new ingredient that has not been included in the
lattices, networks, and random graphs studied so far.

Thus, in the present study, the BChS dynamical system on SNs is studied through
the Monte Carlo simulations allied with the finite-size-scaling techniques. The paper is
organized as follows. In Section 2, we briefly present the SNs and the BChS model in its
discrete version, together with the magnetic-like variables considered here, such as the
magnetization, susceptibility and the reduced fourth-order Binder cumulant. Section 2 also
provides with the main ingredients of the Monte Carlo simulations employed to compute
the evolution of the physical variables, which allow understanding the transition type. The
results obtained are presented in Section 3. Section 4 addresses the conclusions and gives
some remarks.

2. Solomon Networks, Biswas–Chatterjee–Sen Model and Monte Carlo
Simulation Details
2.1. Solomon Networks

As mentioned in Section 1, the behavior of people in a community is such that each
person can be influenced by the neighbors and can, at the same time, influence the neighbors.
However, in reality, the neighbors at home differ from the neighbors at the workplace except,
certainly, when everybody works at home. This more general situation can be modeled by
using two different lattices, one representing the home lattice and the other the workplace
lattice. From this general point of view, one can consider linear chains of length L and
N = L sites in one dimension (1D), and square lattices with N = L2 sites in 2D (can be
naturally extended to higher dimensions). If one labels by a site i (1 ≤ i ≤ N) the sites
in the workplace lattice, the home lattice to be labeled P(i), to recognize P(i) is a random
permutation of the order established in the workplace lattice. Thus, each person occupies
two entirely different sites, i and P(i), in the workplace lattice and home lattice, respectively.
A sketch of a part of a Solomon network in two-dimensions is shown in Figure 1. From
Figure 1, one can see that the neighborhood of a site on one lattice is different from the
neighborhood of the corresponding permuted site on the other lattice. The one-dimensional
case can be straightforwardly obtained from Figure 1.

Such a network composed of two chains or two square lattices has been suggested in
Refs. [17,18]. These types of networks are called Solomon networks [19], mainly because
each person is equally shared by two lattices, just as in the King Solomon’s biblical story.
These SNs are also close to small-world networks [20,21]. In this way, within each lattice
we have the proper type of interaction defined by the corresponding model (e.g., IM, MVM,
BChS and others). As a result, the net interaction of the variables defined at site i is a sum
of the corresponding interactions of the site i with its neighboring sites on the workplace
lattice, added to the interactions with the neighbor sites of P(i) on the home lattice.
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Figure 1. Sketch of a part of Solomon network (SN) in two dimensions. The upper layer represents
the workplace lattice, and the corresponding sites, labeled by i, are given by the full circles. The
bottom layer represents the home lattice, with the corresponding sites labeled by the permutation
P(i) and given by the full squares. The thick (straight) lines represent nearest-neighbor interactions
on each layer. The curved lines specify the resulting random permutation in the home lattice of the
order established in the workplace lattice.

It is worth mentioning here that extensions can be made on the networks as well as
on specific interactions on each lattice. For example, one may introduce some correlation
between residence and workplace lattices, making P(i) not completely random, reflecting
the situation when people select workplaces closer to their homes. More generally, instead
of just representing the workplace and home, the lattices can represent any two types
of groups of people, or even of more than two groups. Different topologies for the two
groups could also be considered. Although all these generalizations indeed warrant further
investigations, in what follows, we consider only random permutations P(i) in order not
to have additional theoretical parameter.

2.2. Biswas–Chatterjee–Sen Model

The BChS model has already been treated on different regular lattices and
networks [5,22–24]. Below, we list just the main ingredients of the model on SNs.

Each site i of SNs (having N sites) has an individual. These individuals have opinion
variables defined by σi(t), at a given simulation time step t, that can take only three different
values, e.g., −1, 0, or +1 . The individual opinions σi(t) are then updated at the following
simulation time t + 1 according to the BChS rules, as follows. (i) First, one initial state is
constructed by randomly choosing one of the three opinion values −1, 0, or +1 for each
site i of the SNs. (ii) Second, a random site i is selected in order to be updated. (iii) Next, a
site j (which has a bond to the previously chosen site i) is selected at random and an affinity,
µij, is ascribed to this ij bond. Note that j, the corresponding site sharing the bond with site
i, can be located either on the workplace lattice or home lattice. This affinity parameter, µij,
is viewed as another discrete variable taking a positive value +1, with a probability q to
be turned negative to −1. In this way, as has been shown in earlier studies [5,22–24], the
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probability q acts, in the end, as an external noise, modeling local discordances. (iv) The
opinion variables are now updated as

σi(t + 1) = σi(t) + µijσj(t) , (1)

σj(t + 1) = σj(t) + µijσi(t) , (2)

where σi(t + 1) and σj(t + 1) are the updated opinion states of the two sites i and j, re-
spectively, at the simulation time t + 1. Note that in these SNs, one sometimes updates
sites that are not necessarily neighbors and can even be far apart. (v) Finally, when the
opinion state σi(t + 1) of any site happens to be out of the interval [−1,+1], this site to
be automatically equal to either +1 or −1 depending on the case of σi(t + 1) > +1 or
σi(t + 1) < −1, respectively.

2.3. Magnetic-like Variables of Interest

Averaging the opinion variables σi(t) over all individuals constitutes an order param-
eter M, given by

M =

∣∣∣∣∣ N

∑
i=1

σi(t)

∣∣∣∣∣/N, (3)

where t is chosen to be large enough for the system having reached the stationary state.
It has been shown that the system undergoes a phase transition, which is driven by
the random configurations, in contrast to the the usual magnetic transitions driven by
temperature. This means that for q < qc, where q denotes the noise probability and qc is
its critical value, M 6= 0 and an ordered phase is present, while for q > qc, M = 0 and the
system is in a disordered phase instead. q = qc indicates a second-order phase transition,
in which both ordered and disordered phases become identical and highly correlated ( For
more details, see [12,13,19,25]).

To fully characterize this phase transition, besides the above order parameter, one
can also analyse its magnetic-like quantities, such as the order parameter fluctuation or
susceptibility, χ(q), and the reduced fourth-order Binder cumulant, U4(q), which are given,
respectively, by

M(q) =

[
〈M〉t

]
c
, (4)

χ(q) = N
[
〈M2〉t − 〈M〉2t

]
c
, (5)

U4(q) = 1−
[
〈M4〉t

3〈M2〉2t

]
c
. (6)

The expressions (4), (5) and (6), where the brackets 〈· · · 〉t stand for time averages
computed after the system has reached the stationary state, and [· · · ]c represents averages
over different initial configurations, to be used in Monte Carlo simulations.

2.4. Monte Carlo Simulation Details

The quantities (4)–(6) were computed as a function of q by using extensive Monte
Carlo simulations on SNs of finite sizes ranging from N = 1000, 5000, 10,000, 30,000,
50,000, 70,000, up to 100,000 for linear chains (1D) and L = 16, 32, 64, 128, 256, up to
512 for square lattices (2D) where in the latter case N = L2. The initial 105 Monte Carlo
steps (MCSs) were discarded where, as described above in this Section, one MCS consists
of randomly choosing N sites of the workplace network. The number of MCSs was found
to be large enough for the systems to reach their stationary state. Next, the following
2× 105 MCSs were taken to compute the corresponding time averages. On the other hand,
the configurational averages have been obtained by considering 103 (for the larger lattices)
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to 104 (for the smaller lattices), different initial configurations for each set of network size
N and parameter q.

Close to the critical region, where q ∼ qc, and for large networks size N, one can
assume the following finite-size scaling (FSS) relations for the quantities defined in (4)–(6)
(see Ref. [25]),

M(q) = N−β/ν fM(N1/ν(q− qc)), (7)

χ(q) = Nγ/ν fχ(N1/ν(q− qc)), (8)

U4(q) = fU4(N1/ν(q− qc)), (9)

qc(N) = qc + bN−1/ν, (10)

where β, ν, and γ are the critical exponents of the order parameter, the fluctuation of the
order parameter (susceptibility, χ)) and the correlation length, respectively. The functions,
fk(x), with x = N1/ν(q− qc) and k = {M, χ, U4}, are the corresponding scaling functions,
and b is a non-universal constant. The value qc is the corresponding critical noise for an
infinite-size network. Equation (10) is the scaling behavior of the pseudo-critical noise
parameter as a function of the network size N, and qc(N) is estimated here as the q-value
at the peak of the susceptibility.

In Section 3, the scaling laws (7)–(10) are used based on the computed values of the
proper variables from the Monte Carlo simulations in order to obtain a description of the
critical behavior of the model. It should be stressed here that, while for 1D networks, N is
just the number of sites, for 2D networks, N is convenient to replaced with the linear size L.

The scaling equations (7)–(10) are obtained assuming a second-order phase transition,
while, however, stay the same in the case of the first-order phase transition, but with the
lattice dimension replacing the exponents ratios.

3. Results and Discussion

The dependence of the reduced Binder cumulant, U4, on the noise parameter, q, for
several finite size lattices, is shown in Figure 2a, for the (1D) case and in Figure 2b, for the
(2D) case. From Figure 2, one can see that the system indeed undergoes the second-order
phase transition as soon as Equation (9) does not depend on the size of the network and U4
functions cross at the same point for different values of N apart from some finite-size effects,
resulting in qc = 0.215(2) for (1D) and qc = 0.216(2) for 2D. Interestingly, the critical noise,
is almost the same, within the error bars, for both types of lattices. This observation is in
contrast with what one obtains by studying the IM and the MVM on the same networks.
For the IM, one finds: Tc = 2.995(3) on (1D) [26] and Tc = 6.985(4) on 2D [27], where Tc is
the usual critical temperature (here, the number in the parentheses is the statistical error
to the last digit). For the MVM, one finds: Tc = 1.165(4) on (1D) [26] and Tc = 1.915(5)
on 2D [27], where Tc is now the critical social temperature [27]. The above results are also
shown in Table 1.

Equations (7), (8), and (10) can now be exploited to compute the ratios of the critical
exponents using the critical noise, qc, obtained. By computing M(qc), χ(qc), and the
difference, qc(N)− qc, at qc for different values of N, while plotting the values in log scales
as a function of N, a straight line is expected. What distinguishes a second-order phase
transition from a first-order phase transition is the value of the exponents being different
from the dimension of a lattice. The pseudo-transition noise, qc(N), is obtained from the
maximum value of the susceptibility and is discussed in more details just below. The
desired critical exponents ratios are thus straigtforwardly given by the slope obtained from
a linear fit to the data. Typical plots of the above quantities are shown in Figure 3 as a
function of the sizes N in (1D) (Figure 3a–c) and L in 2D (Figure 3d,e) on SNs. From the
alignment of the data in Figure 3, one obtains an additional evidence that corroborates the
transition as indeed to be in the second order case. The critical exponent ratios obtained are
indicated in Figure 3 and listed in Table 2.
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Figure 2. Reduced Binder cumulant, U4, plotted as function of the noise probability, q, for one
dimension (1D) (a), and 2D (b) for different values of the sizes, N (1D) and L (2D), as indicated. The
crossings occur at qc = 0.215(2) (1D) and 0.216(5) (2D), where the numbers in the parentheses show
the statistical errors in the last digit..

Table 1. Critical points (critical value, qc, of the noise probability, q) of the IM (thermodynamical
critical temperature), MVM (critical social temperature) and (BChS) model (critical noise) in (1D) and
2D SNs. The number in the parentheses shows the statistical error in the last digit.

IM MVM BChS

1D 2D 1D 2D 1D 2D

2.995(3) 6.985(4) 1.165(4) 1.915(5) 0.215(2) 0.216(2)

Table 2. Critical exponents ratios, 1/ν, β/ν, γ/ν of the BChS model on SNs. The results obtained
for the IM and the MVM on the same networks from Refs. [26,27] are included for comparison.
The exponents ratio, γ/ν(qmax

c ), represents the results from the maximum of the susceptibility (see
Figure 4d,e). See text for details. The number in the parentheses shows the statistical error in the
last digit.

Model 1/ν β/ν γ/ν(qc) γ/ν(qmax
c )

Linear Chain (1D)

IM [26] 0.52(3) 0.237(4) 0.512(4) 0.515(2)
MVM [26] 0.55(5) 0.223(8) 0.534(3) 0.512(3)
BChS 0.52(5) 0.238(7) 0.511(5) 0.524(6)

Square Lattice (2D)

IM [27] 0.91(3) 0.52(3) 0.97(4) 0.99(3)
MVM [27] 0.91(2) 0.50(2) 1.00(2) 0.99(2)
BChS 0.92(4) 0.53(4) 1.02(4) 1.06(7)
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β/ν = 0.238(7)
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β/ν = 0.53(4) γ/ν = 1.02(4) 1/ν = 0.92(4)

Figure 3. Log-log plot of the order parameter, M(qc) (a,d), the susceptibility, χ(qc) (b,e), and the
magnitude of the displacement, qc(N)− qc (c,f), as a function of N (1D) and L (2D), on SNs. All
quantities are computed at the extrapolated critical noise parameter, qc, for the corresponding
dimension. The ratios of the critical exponents, β, γ and ν, are shown being obtained from the slopes
of the linear fits (red lines) to the data.

So far, Equations (7)–(9) have been used only to obtain the critical noise and the critical
exponents. However, the equatons can be further exploited to obtain the corresponding
universal scaling functions, fk(x), by analyzing the Monte Carlo data in a still wide-
enough range of q. This means that when the scaled-order parameter, MNβ/ν, the scaled
susceptibility, χN−γ/ν, and the reduced Binder cumulant, U4, are plotted as a function of the
scaled noise probability displacement, (q− qc)N1/ν, the data collapse to a corresponding
universal scaling function each. Figure 4 shows that indeed the collapse is observed for the
listed scaling quantities in (1D), see Figure 4a–c, and in 2D, see Figure 4d,e, (recall that for
the 2D case, N is replaced by L). The collapse shown in Figure 4 indicates the transition is
indeed of a second order. Moreover, the computed critical exponents seem to be accurate,
based on the present simulations.

Interestingly, the susceptibility, χ(q), presents a pronounced peak for q close to the
noise transition value qc, as is depicted in Figure 4b for (1D) and Figure 4e for 2D. This
means that one has, at qmax

c , a peak with value χ(qmax
c ) for any of the network sizes, N or

L. Thus, qmax
c is assumed to be the pseudo-critical noise used in Figure 3c,f, and χ(qmax

c )
can also be used in Equation (8) to obtain another estimate of the critical exponents ratio,
γ/ν. Comparing the results in the fourth and fifth columns of Table 2, one can see that
the collapse estimate of γ/ν is well comparable with the critical exponents finding (fourth
column in Table 2).



Physics 2023, 5 880

-2 -1 0 1 2

(q-q
c
)N

1/ν

0

1

2

3

4

5

6

O
N

β
/ν

N=30,000

N=50,000

N=70,000

N=100,000

-2 -1 0 1 2

(q-q
c
)N

1/ν

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
fN

−
γ/

ν

N=30,000

N=50,000

N=70,000

N=100,000

-2 -1 0 1 2

(q-q
c
)N

1/ν

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
4

N=30,000

N=50,000

N=70,000

N=100,000

-1.0 -0.5 0.0 0.5 1.0

(q-q
c
)L

1/ν

0

1

2

3

4

5

6

O
L

β
/ν

L=64

L=128

L=256

L=512

-1.0 -0.5 0.0 0.5 1.0

(q-q
c
)L

1/ν

0.0

0.1

0.2

0.3

0.4

0.5

O
fL

−
γ/

ν

L=64

L=128

L=256

L=512

-1.0 -0.5 0.0 0.5 1.0

(q-q
c
)L

1/ν

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
4

L=64

L=128

L=256

L=512

(a) (b) (c)

(d) (e) (f)

Figure 4. Collapse of the data for the BChS model on SNs of the scaled-order parameter, MNβ/ν

(a,d), the scaled susceptibility, χN−γ/ν (b,e), and the scaled reduced Binder cumulant, U4 (c,f) as
functions of the scaled displacements, (q− qc)N1/ν, in (1D) (a–c) and (q− qc)L1/ν in 2D (d–f) for
different values of the network sizes, N and L, as indicated.

4. Concluding Remarks

In this paper, the discrete version of the BChS model, defined on one- and two-
dimensional SNs, has been studied through extensive Monte Carlo simulations. The
variables of the model, coming from the order parameter, have been computed for several
values of the local consensus controlling parameter and different network sizes in both
dimensions. The finite-size-scaling approach indicates that the system undergoes a second-
order phase transition, as soon as the critical exponents and critical ratios certainly differ
from the dimension of the network (which would imply a first-order transition instead).
However, contrary to the findings in IM and MVM on the same networks, the critical noise
values are found to be the same, within the statistical error, for both dimensions.

The independence of the critical point on spatial dimension is quite striking. Certainly,
longer simulations would allow to positively detect the obtained equality with smaller
statistical errors. Let us note that the critical noise in 2D is slightly larger than in (1D). We
consider the simulations in 3D Solomon lattices to better clarify on this intriguing finding.

The BChS model in regular 1D lattices, like the IM, does not have a finite critical
point. This is an expected result in classical models with short-range interactions. However,
in SNs, these models can sustain an order for finite noise or finite temperatures. This
transition could be associated with the fact that despite being in one dimension, due to
the permutation of the sites in one of the lattices, the interactions turn out to be longer
ranged, in a way that can induce a finite noise or finite temperature phase transition (recall
that the 1D IM, where all spins interact with each other, has a phase transition with mean-
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field critical exponents). From Figure 1, one can realize that the SNs present the effective
dimensionality which is higher than the corresponding embedding dimensionality.

The computed critical exponents of the BChS model on SNs are different from those
obtained on regular 2D and 3D lattices [28], and are also different from those on other
networks and random graphs [15]. As discussed in Section 1, this looks a general trend in
these topologies, because even the existence of a phase transition is not straight enough to
predict using just physical grounds. Nevertheless, the results conveyed in Table 2 strongly
suggest that the BChS model, the IM and MVM fall all in the same universality class when
defined on the SNs. The longer-ranged interactions may be a reason that all three models
belong the same universality class. Recall that the mean-field approximation is obtained
when long-range interactions are present and the exponents are independent of the model
type. In addition, this may be the universality class of other similar systems in sociophysics.
For completeness, we extend Table 3 of Ref. [15] by including the new universality class of
the BChS model on SNs; see Table 3.

Table 3. Extension of Table 3 of Ref. [15] by including the universality class of the BChS model, IM
and MVM on SNs, as obtained in the present study. The “proper class” indicates that the exponents
are different from any known model. z represents the connectivity of the network or random graph.

Discrete Biswas–Chatterjee–Sen Model

Lattice or Network Universality Class Ref.

Fully connected Mean field [5]
Regular dimension-D d-Dimensional IM [28]

Apollonian proper class [22]

Barabási-Albert Proper class [15]z-dependent exponents

Directed Barabási-Albert MVM [23]z-dependent exponents

Erdös-Rènyi Proper class [24]z-dependent exponents

Directed Erdös-Rènyi Proper class [24]z-dependent exponents

Small world z→ ∞ either of [24]Erdös-Rènyi graphs

Solomon Proper class This paperincluding IM and MVM

Continuum Biswas–Chatterjee–Sen model

Fully connected Mean field [5]
Regular dimension-D d-Dimensional IM [28]
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