Phase Transition in the Galam’s Majority-Rule Model with Information-Mediated Independence
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
- an individual with opinion A can change to opinion B through two mechanisms:
- -
- with probability q, the individuals act independently of their group. In that case, the individuals change their opinion with probability ;
- -
- otherwise, if the individuals do not act on their own, then there is a probability that they change their opinion according to a local majority-rule, .
- on the other hand, an individual with opinion B can flip to opinion A through two mechanisms:
- -
- with probability q, the individuals decide to whether act independently of their group or not. In that case, the agent will change their opinion with probability ;
- -
- otherwise, if the the individuals do not act on their own, then there is a probability that those individuals change their opinion according to a local majority-rule, .
2.2. Simulation Details
3. Results and Discussion
3.1. Analytical Results
3.2. Probabilistic Approach
3.3. Monte Carlo Simulation and Finite-Size Scaling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galam, S. Sociophysics: A review of Galam models. Int. J. Mod. Phys. C 2008, 19, 409–440. [Google Scholar] [CrossRef]
- Sen, P.; Chakrabarti, B.K. Sociophysics: An Introduction; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef]
- da Luz, M.G.; Anteneodo, C.; Crokidakis, N.; Perc, M. Sociophysics: Social collective behavior from the physics point of view. Chaos Solit. Fract. 2023, 170, 113379. [Google Scholar] [CrossRef]
- Dinkelberg, A.; O’Sullivan, D.J.; Quayle, M.; Maccarron, P. Detecting opinion-based groups and polarization in survey-based attitude networks and estimating question relevance. Adv. Complex Syst. 2021, 24, 2150006. [Google Scholar] [CrossRef]
- Sobkowicz, P. Whither now, opinion modelers? Front. Phys. 2020, 8, 587009. [Google Scholar] [CrossRef]
- Martins, A.C. Discrete opinion dynamics with M choices. Eur. Phys. J. B 2020, 93, 1. [Google Scholar] [CrossRef]
- Baumann, F.; Lorenz-Spreen, P.; Sokolov, I.M.; Starnini, M. Modeling echo chambers and polarization dynamics in social networks. Phys. Rev. Lett. 2020, 124, 048301. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, A.; Becchetti, L.; Cruciani, E.; Pasquale, F.; Rizzo, S. Biased opinion dynamics: When the devil is in the details. Inf. Sci. 2022, 593, 49–63. [Google Scholar] [CrossRef]
- Zubillaga, B.J.; Vilela, A.L.M.; Wang, M.; Du, R.; Dong, G.; Stanley, H.E. Three-state majority-vote model on small-world networks. Sci. Rep. 2022, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Oestereich, A.L.; Pires, M.A.; Crokidakis, N. Three-state opinion dynamics in modular networks. Phys. Rev. E 2019, 100, 032312. [Google Scholar] [CrossRef]
- Oestereich, A.L.; Pires, M.A.; Queirós, S.D.; Crokidakis, N. Hysteresis and disorder-induced order in continuous kinetic-like opinion dynamics in complex networks. Chaos Solit. Fract. 2020, 137, 109893. [Google Scholar] [CrossRef]
- Vazquez, F.; Saintier, N.; Pinasco, J.P. Role of voting intention in public opinion polarization. Phys. Rev. E 2020, 101, 012101. [Google Scholar] [CrossRef] [PubMed]
- Oestereich, A.L.; Crokidakis, N.; Cajueiro, D.O. Impact of memory and bias in kinetic exchange opinion models on random networks. Phys. A Stat. Mech. Its Appl. 2022, 607, 128199. [Google Scholar] [CrossRef]
- Imai, K. Quantitative Social Science. An Introduction; Princetion University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Zha, Q.; Kou, G.; Zhang, H.; Liang, H.; Chen, X.; Li, C.C.; Dong, Y. Opinion dynamics in finance and business: A literature review and research opportunities. Financ. Innov. 2020, 6, 44. [Google Scholar] [CrossRef]
- Fang, F.; Ma, J.; Li, Y. The coevolution of the spread of a disease and competing opinions in multiplex networks. Chaos Solit. Fract. 2023, 170, 113376. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.A.; Oestereich, A.L.; Crokidakis, N. Sudden transitions in coupled opinion and epidemic dynamics with vaccination. J. Stat. Mech. Theory Exp. 2018, 2018, 053407. [Google Scholar] [CrossRef]
- Pires, M.A.; Oestereich, A.L.; Crokidakis, N.; Queirós, S.M.D. Antivax movement and epidemic spreading in the era of social networks: Nonmonotonic effects, bistability, and network segregation. Phys. Rev. E 2021, 104, 034302. [Google Scholar] [CrossRef]
- Oestereich, A.; Pires, M.; Crokidakis, N.; Cajueiro, D. Optimal rewiring in coupled opinion and epidemic dynamics with vaccination. arXiv 2023, arXiv:2305.02488. [Google Scholar] [CrossRef]
- Franceschi, J.; Pareschi, L.; Bellodi, E.; Gavanelli, M.; Bresadola, M. Modeling opinion polarization on social media: Application to Covid-19 vaccination hesitancy in Italy. arXiv 2023, arXiv:2302.01028. [Google Scholar] [CrossRef]
- Harari, G.S.; Monteiro, L.H.A. An epidemic model with pro and anti-vaccine groups. Acta Biotheor. 2022, 70, 20. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Chen, W.; Yu, F.; He, J. Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks. Phys. A Stat. Mech. Its Appl. 2021, 583, 126281. [Google Scholar] [CrossRef]
- Clifford, P.; Sudbury, A. A model for spatial conflict. Biometrika 1973, 60, 581–588. [Google Scholar] [CrossRef]
- Holley, R.A.; Liggett, T.M. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 1975, 3, 643–663. Available online: https://www.jstor.org/stable/2959329 (accessed on 20 July 2023). [CrossRef]
- Sznajd-Weron, K.; Sznajd, J.; Weron, T. A review on the Sznajd model—20 years after. Phys. A Stat. Mech. Its Appl. 2021, 565, 125537. [Google Scholar] [CrossRef]
- Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing beliefs among interacting agents. Adv. Complex Syst. 2000, 3, 87–98. [Google Scholar] [CrossRef]
- Biswas, S.; Chatterjee, A.; Sen, P.; Mukherjee, S.; Chakrabarti, B.K. Social dynamics through kinetic exchange: The BChS model. Front. Phys. 2023, 11, 1196745. [Google Scholar] [CrossRef]
- Galam, S. Application of statistical physics to politics. Phys. A Stat. Mech. Its Appl. 1999, 274, 132–139. [Google Scholar] [CrossRef]
- Galam, S. Minority opinion spreading in random geometry. Eur. Phys. J. B-Condens. Matter Complex Syst. 2002, 25, 403–406. [Google Scholar] [CrossRef]
- Krapivsky, P.L.; Redner, S. Dynamics of Majority Rule in Two-State Interacting Spin Systems. Phys. Rev. Lett. 2003, 90, 238701. [Google Scholar] [CrossRef]
- Crokidakis, N.; de Oliveira, P.M.C. Inflexibility and independence: Phase transitions in the majority-rule model. Phys. Rev. E 2015, 92, 062122. [Google Scholar] [CrossRef]
- Crokidakis, N.; de Oliveira, P.M.C. The first shall be last: Selection-driven minority becomes majority. Phys. A Stat. Mech. Its Appl. 2014, 409, 48–52. [Google Scholar] [CrossRef]
- Abilhoa, W.D.; de Oliveira, P.P.B. Density classification based on agents under majority rule: Connectivity influence on performance. In Distributed Computing and Artificial Intelligence, Proceedings of the 16th International Conference, Ávila, Spain, 26–28 June 2019; Herrera, F., Matsui, K., Rodríguez-González, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 163–170. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics. A Physicist’s Modeling of Psycho-Political Phenomena; Springer Science+Business Media, LLC: New York, NY, USA, 2012; Ch. 7. [Google Scholar] [CrossRef]
- Gimenez, M.C.; Reinaudi, L.; Paz-García, A.P.; Centres, P.M.; Ramirez-Pastor, A.J. Opinion evolution in the presence of constant propaganda: Homogeneous and localized cases. Eur. Phys. J. B 2021, 94, 35. [Google Scholar] [CrossRef]
- Krapivsky, P.; Redner, S. Divergence and consensus in majority rule. Phys. Rev. E 2021, 103, L060301. [Google Scholar] [CrossRef]
- Muslim, R.; Anugraha, R.; Sholihun, S.; Rosyid, M.F. Phase transition and universality of the three-one spin interaction based on the majority-rule model. Int. J. Mod. Phys. C 2021, 32, 2150115. [Google Scholar] [CrossRef]
- Azhari; Muslim, R. The external field effect on the opinion formation based on the majority rule and the q-voter models on the complete graph. Int. J. Mod. Phys. C 2023, 34, 2350088. [Google Scholar] [CrossRef]
- Pires, M.A.; Crokidakis, N. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement. Phys. A Stat. Mech. Its Appl. 2017, 467, 167–179. [Google Scholar] [CrossRef]
- Galam, S. The Trump phenomenon: An explanation from sociophysics. Int. J. Mod. Phys. B 2017, 31, 1742015. [Google Scholar] [CrossRef]
- Galam, S. Unavowed abstention can overturn poll predictions. Front. Phys. 2018, 6, 24. [Google Scholar] [CrossRef]
- Galam, S. Identifying a would-be terrorist: An ineradicable error in the data processing? Chaos Solit. Fract. 2023, 168, 113119. [Google Scholar] [CrossRef]
- Sznajd-Weron, K.; Tabiszewski, M.; Timpanaro, A.M. Phase transition in the Sznajd model with independence. Europhys. Lett. 2011, 96, 48002. [Google Scholar] [CrossRef]
- Nyczka, P.; Sznajd-Weron, K. Anticonformity or independence?—Insights from statistical physics. J. Stat. Phys. 2013, 151, 174–202. [Google Scholar] [CrossRef]
- Nyczka, P.; Sznajd-Weron, K.; Cisło, J. Phase transitions in the q-voter model with two types of stochastic driving. Phys. Rev. E 2012, 86, 011105. [Google Scholar] [CrossRef] [PubMed]
- Muslim, R.; Kholili, M.J.; Nugraha, A.R. Opinion dynamics involving contrarian and independence behaviors based on the Sznajd model with two-two and three-one agent interactions. Phys. D Nonlinear Phenom. 2022, 439, 133379. [Google Scholar] [CrossRef]
- Vieira, A.R.; Crokidakis, N. Phase transitions in the majority-vote model with two types of noises. Phys. A Stat. Mech. Its Appl. 2016, 450, 30–36. [Google Scholar] [CrossRef]
- Muslim, R.; Anugraha, R.; Sholihun, S.; Rosyid, M.F. Phase transition of the Sznajd model with anticonformity for two different agent configurations. Int. J. Mod. Phys. C 2020, 31, 2050052. [Google Scholar] [CrossRef]
- Crokidakis, N. Phase transition in kinetic exchange opinion models with independence. Phys. Lett. A 2014, 378, 1683–1686. [Google Scholar] [CrossRef]
- Abramiuk, A.; Sznajd-Weron, K. Generalized independence in the q-voter model: How do parameters influence the phase transition? Entropy 2020, 22, 120. [Google Scholar] [CrossRef]
- Vieira, A.R.; Anteneodo, C.; Crokidakis, N. Consequences of nonconformist behaviors in a continuous opinion model. J. Stat. Mech. Theory Exp. 2016, 2016, 023204. [Google Scholar] [CrossRef]
- Mutz, D.C. Impersonal influence: Effects of representations of public opinion on political attitudes. Political Behav. 1992, 14, 89–122. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Conte, R.; Gilbert, N.; Bonelli, G.; Cioffi-Revilla, C.; Deffuant, G.; Kertesz, J.; Loreto, V.; Moat, S.; Nadal, J.P.; Sanchez, A.; et al. Manifesto of computational social science. Eur. Phys. J. Spec. Top. 2012, 214, 325–346. [Google Scholar] [CrossRef]
- van Kampen, N.G. Stochastic Processes in Physics and Chemistry; North Holland: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Behrens, T.E.J.; Hunt, L.T.; Woolrich, M.W.; Rushworth, M.F.S. Associative learning of social value. Nature 2008, 456, 245–249. [Google Scholar] [CrossRef]
- Queirós, S.M.D. On non-Gaussianity and dependence in financial time series: A nonextensive approach. Quant. Financ. 2005, 5, 475–487. [Google Scholar] [CrossRef]
- Binder, K. Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B. 1981, 43, 119–140. [Google Scholar] [CrossRef]
- Calvelli, M.; Crokidakis, N.; Penna, T.J. Phase transitions and universality in the Sznajd model with anticonformity. Phys. A Stat. Mech. Its Appl. 2019, 513, 518–523. [Google Scholar] [CrossRef]
Three-Agent Interaction | Transition Probability |
---|---|
Each agent with opinion A can flip to opinion B through two mechanisms: | |
1. | |
2. | |
Each agent with opinion B can flip to opinion A through two mechanisms: | |
1. | |
2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oestereich, A.L.; Pires, M.A.; Duarte Queirós, S.M.; Crokidakis, N. Phase Transition in the Galam’s Majority-Rule Model with Information-Mediated Independence. Physics 2023, 5, 911-922. https://doi.org/10.3390/physics5030059
Oestereich AL, Pires MA, Duarte Queirós SM, Crokidakis N. Phase Transition in the Galam’s Majority-Rule Model with Information-Mediated Independence. Physics. 2023; 5(3):911-922. https://doi.org/10.3390/physics5030059
Chicago/Turabian StyleOestereich, André L., Marcelo A. Pires, Silvio M. Duarte Queirós, and Nuno Crokidakis. 2023. "Phase Transition in the Galam’s Majority-Rule Model with Information-Mediated Independence" Physics 5, no. 3: 911-922. https://doi.org/10.3390/physics5030059
APA StyleOestereich, A. L., Pires, M. A., Duarte Queirós, S. M., & Crokidakis, N. (2023). Phase Transition in the Galam’s Majority-Rule Model with Information-Mediated Independence. Physics, 5(3), 911-922. https://doi.org/10.3390/physics5030059