Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez, A.W.; Capasso, F.; Johnson, S.G. The Casimir effect in microstructured geometries. Nat. Photonics 2011, 5, 211–221. [Google Scholar] [CrossRef]
- Capasso, F.; Munday, J.N.; Iannuzzi, D.; Chan, H.B. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE J. Sel. Top. Quant. Electron. 2007, 13, 400–414. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Decca, R.S.; Lόpez, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 2005, 318, 37–80. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 2007, 75, 077101. [Google Scholar] [CrossRef]
- Ashourvan, A.; Miri, M.F.R.; Golestanian, R. Noncontact rack and pinion powered by the lateral Casimir force. Phys. Rev. Lett. 2014, 98, 140801. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.F.; Golestanian, R. A frustrated nanomechanical device powered by the lateral Casimir force. Appl. Phys. Lett. 2011, 92, 113103. [Google Scholar] [CrossRef]
- Ashourvan, A.; Miri, M.F.; Golestanian, R. Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion. Phys. Rev. E 2007, 75, 040103. [Google Scholar] [CrossRef]
- DelRio, F.W.; de Boer, M.P.; Knapp, J.A.; Reedy, E.D.; Clews, P.J.; Dunn, M.L. The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 2005, 4, 629–634. [Google Scholar] [CrossRef]
- Serry, F.M.; Walliserand, D.; Maclay, G.J. The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems. J. Appl. Phys. 1998, 84, 2501–2506. [Google Scholar] [CrossRef]
- Serry, F.M.; Walliser, D.; Maclay, G.J. The anharmonic Casimir oscillator (ACO)—The Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst. 1995, 4, 193–205. [Google Scholar] [CrossRef]
- Palasantzas, G.; DeHosson, J.T.M. Phase maps of microelectromechanical switches in the presence of electrostatic and Casimir forces. Phys. Rev. B 2005, 72, 121409. [Google Scholar] [CrossRef]
- Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press, Inc.: San Diego, CA, USA, 1994. [Google Scholar] [CrossRef]
- Sciama, D.W. The physical significance of the vacuum state of a quantum field. In The Philosophy of Vacuum; Saunders, S., Brown, H.R., Eds.; Clarendon Press/Oxford University Press: Oxford, UK, 1991; pp. 137–158. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the Attraction between Two Perfectly Conducting Plates. Indag. Math. 1948, 10, 261–263. Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 24 October 2023).
- Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. Sov. Phys. JETP 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 24 October 2023).
- Ball, P. Feel the force. Nature 2007, 447, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 2001, 291, 1941–1944. [Google Scholar] [CrossRef]
- Pawlowski, P.; Zielenkiewicz, P. The quantum Casimir effect may be a universal Force organizing the bilayer structure of the cell membrane. J. Membr. Biol. 2013, 246, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Svetovoy, V.B.; Postnikov, A.; Uvarov, I.; Stepanov, F.; Palasantzas, G. Measuring the dispersion forces near the van der Waals–Casimir transition. Phys. Rev. Appl. 2020, 13, 064057. [Google Scholar] [CrossRef]
- Velichko, E.N.; Klimchitskaya, G.L.; Mostepanenko, V.M. Dispersion forces between metal and dielectric plates separated by a magnetic fluid. Techn. Phys. 2019, 64, 1260–1266. [Google Scholar] [CrossRef]
- Sedighi, M.; Svetovoy, V.B.; Broer, W.H.; Palasantzas, G. Casimir forces from conductive silicon carbide surfaces. Phys. Rev. B 2014, 89, 195440. [Google Scholar] [CrossRef]
- Tajik, F.; Sedighi, M.; Khorrami, M.; Masoudi, A.A.; Palasantzas, G. Chaotic behavior in Casimir oscillators: A case study for phase-change materials. Phys. Rev. E 2017, 96, 042215. [Google Scholar] [CrossRef] [PubMed]
- Tajik, F.; Sedighi, M.; Babamahdi, Z.; Masoudi, A.A.; Waalkense, H.; Palasantzas, G. Sensitivity of chaotic behavior to low optical frequencies of a double-beam torsional actuator. Chaos 2019, 29, 093126. [Google Scholar] [CrossRef]
- Tajik, F.; Palasantzas, G. Sensitivity of actuation dynamics of Casimir oscillators on finite temperature with topological insulator materials: Response of repulsive vs attractive interactions. Phys. Lett. A 2023, 481, 129032. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Pulsating Casimir force. J. Phys. A 2007, 40, F841–F847. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Munday, J.N.; Capasso, F. Precision measurement of the Casimir-Lifshitz force in a fluid. Phys. Rev. A 2007, 75, 0601062(R). [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Nepomnyashchaya, E.K.; Velichko, E.N. Effect of agglomeration of magnetic nanoparticles on the Casimir pressure through a ferrofluid. Phys. Rev. B 2019, 99, 045433. [Google Scholar] [CrossRef]
- Goubault, C.; Jop, P.; Fermigier, M.; Baudry, J.; Bertrand, E.; Bibette, J. Flexible magnetic filaments as micromechanical sensors. Phys. Rev. Lett. 2003, 91, 260802. [Google Scholar] [CrossRef]
- Pekas, N.; Porter, M.D.; Tondra, M.; Popple, A.; Jander, A. Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl. Phys. Lett. 2004, 85, 4783–4785. [Google Scholar] [CrossRef]
- Inglis, D.W.; Riehn, R.; Austin, R.H.; Sturm, J.C. Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 2004, 85, 5093–5095. [Google Scholar] [CrossRef]
- Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem. 2021, 336, 129681. [Google Scholar] [CrossRef]
- Philip, J.; Laskar, J.M. Optical properties and applications of ferrofluids. J. Nanofluids 2012, 1, 3–20. [Google Scholar] [CrossRef]
- Mao, L.; Elborai, S.; He, X.; Zahn, M.; Koser, H. Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys. Rev. B 2011, 84, 104431. [Google Scholar] [CrossRef]
- Lin, W.; Miao, Y.; Zhang, H.; Liu, B.; Liu, Y.; Song, B. Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects. Appl. Phys. Lett. 2013, 103, 151101. [Google Scholar] [CrossRef]
- Saga, N.; Nakamura, T. Elucidation of propulsive force of microrobot using magnetic fluid. J. Appl. Phys. 2002, 91, 7003–7005. [Google Scholar] [CrossRef]
- Fannin, P.C.; Marin, C.N.; Malaescu, I.; Stefu, N. Microwave dielectric properties of magnetite colloidal particles in magnetic fluids. J. Phys. Condens. Matter 2007, 19, 036104. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, X.; Jiang, M.; Wang, Q.; Li, D. A method to determine optical properties of kerosene using transmission spectrum. Optik 2016, 127, 8899–8906. [Google Scholar] [CrossRef]
- Svetovoy, V.B.; Van Zwol, P.J.; Palasantzas, G.; De Hosson, J.T.M. Optical properties of gold films and the Casimir force. Phys. Rev. B 2008, 77, 035439. [Google Scholar] [CrossRef]
- Garcıa, R.; Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 2002, 47, 197–301. [Google Scholar] [CrossRef]
- Vinogradova, V.O. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 1995, 11, 2213–2220. [Google Scholar] [CrossRef]
- Vinogradova, O.I.; Yakubov, G.E. Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope. Langmuir 2003, 19, 1227–1234. [Google Scholar] [CrossRef]
- Vinogradova, O.I.; Yakubov, G.E. Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 2006, 73, 045302. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.; Evans, D.R.; Bonaccurso, E.; Butt, H.J.; Craig, V.S.J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys. 2005, 68, 2859–2897. [Google Scholar] [CrossRef]
- Bonaccurso, E.; Butt, H.J.; Craig, V.S.J. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys. Rev. Lett. 2003, 90, 144501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Attard, P.; Neto, C. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements. Langmuir 2011, 27, 6712–6719. [Google Scholar] [CrossRef] [PubMed]
- Granick, S.; Zhu, Y.; Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2003, 2, 221–227. [Google Scholar] [CrossRef]
- Siria, A.; Drezet, A.; Marchi, F.; Comin, F.; Huant, S.; Chevrier, J. Viscous cavity damping of a microlever in a simple fluid. J. Phys. Rev. Lett. 2009, 102, 254503. [Google Scholar] [CrossRef]
- Maali, A.; Bhushan, B. Slip-length measurement of confined air flow using dynamic atomic force microscopy. Phys. Rev. E 2008, 78, 027302. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Bhushan, B.; Maali, A. Slip length measurement of confined air flow on three smooth surfaces. Langmuir 2013, 29, 4298–4302. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajik, F.; Palasantzas, G. Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer. Physics 2023, 5, 1081-1093. https://doi.org/10.3390/physics5040070
Tajik F, Palasantzas G. Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer. Physics. 2023; 5(4):1081-1093. https://doi.org/10.3390/physics5040070
Chicago/Turabian StyleTajik, Fatemeh, and George Palasantzas. 2023. "Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer" Physics 5, no. 4: 1081-1093. https://doi.org/10.3390/physics5040070
APA StyleTajik, F., & Palasantzas, G. (2023). Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer. Physics, 5(4), 1081-1093. https://doi.org/10.3390/physics5040070