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Abstract: The paper investigates the vacuum expectation value of the surface energy–momentum
tensor (SEMT) for a scalar field with general curvature coupling in the geometry of two branes
orthogonal to the boundary of anti-de Sitter (AdS) spacetime. For Robin boundary conditions on
the branes, the SEMT is decomposed into the contributions corresponding to the self-energies of the
branes and the parts induced by the presence of the second brane. The renormalization is required
for the first parts only, and for the corresponding regularization the generalized zeta function method
is employed. The induced SEMT is finite and is free from renormalization ambiguities. For an
observer living on the brane, the corresponding equation of state is of the cosmological constant type.
Depending on the boundary conditions and on the separation between the branes, the surface energy
densities can be either positive or negative. The energy density induced on the brane vanishes in
special cases of Dirichlet and Neumann boundary conditions on that brane. The effect of gravity
on the induced SEMT is essential at separations between the branes of the order or larger than the
curvature radius for AdS spacetime. In the considerably large separation limit, the decay of the SEMT,
as a function of the proper separation, follows a power law for both massless and massive fields. For
parallel plates in Minkowski bulk and for massive fields the fall-off of the corresponding expectation
value is exponential.
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1. Introduction

Among the interesting directions in the development of the Casimir effect theory (for
a general introduction and applications, see, e.g., [1–6]) is the study of the dependence of
expectation values of physical characteristics for quantum fields on the bulk and boundary
geometries, as well as on the spatial topology. The interest is motivated by applications
in gravitational physics, in cosmology, and in condensed matter physics. Exact analytic
expressions for physical characteristics are obtained in geometries with a sufficient degree
of symmetry. In particular, the corresponding background geometries include maximally
symmetric spacetimes sourced by positive and negative cosmological constants. These
geometries, referred as de Sitter (dS) and anti-de Sitter (AdS) spacetimes, respectively, are
among the most popular bulks in quantum field theory on curved backgrounds.

The goal of this paper is to investigate the surface Casimir densities on two parallel
branes for a scalar field in AdS spacetime. Quantum field theoretical effects on a fixed
AdS background have been extensively studied in the literature. These investigations are
important for several reasons. The AdS spacetime is a non-globally hyperbolic manifold
with a timelike boundary at spatial infinity and the early interest in the formulation of quan-
tum field theory in that geometry was related to principal questions of quantization [7–9]
(see also the references in Ref. [10]). The necessity to control the information through
the spatial infinity requires the imposition of boundary conditions on quantum fields
(for a discussion of possible boundary conditions on the AdS boundary, see, e.g., [11,12]).
The different boundary conditions correspond to physically different field theories. The
AdS boundary at spatial infinity plays a central role in models of AdS/conformal field
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theory (AdS/CFT) correspondence [13–16]. The latter establishes duality between con-
formal field theory living on the boundary of AdS spacetime and supergravity or string
theory on AdS bulk. This holographic correspondence between two different theories
provides an efficient computational framework for non-perturbative effects, mapping them
to the perturbative region of the dual theory. Within this approach interesting results have
been obtained in high energy physics, in quantum chromodynamics, and in condensed
matter physics [14,17,18]. The braneworld models [19] with large extra dimensions, both
phenomenological- and string-theory-motivated, present another interesting setup where
the properties of AdS spacetime play a crucial role. They provide a geometrical solution to
the hierarchy problem between the electroweak and gravitational energy scales and serve
as an interesting framework to discuss the problems in high energy physics, gravitation,
and cosmology.

The braneworld models contain two types of field: fields propagating in the bulk and
fields localized on the branes. In simplified models, the interaction between branes and
bulk fields is reduced to boundary conditions on the branes. Those conditions modify
the spectrum of vacuum fluctuations of bulk quantum fields and give rise to the Casimir-
type contributions in the expectation values of physical observables, such as the ground
state energy and the vacuum forces acting on the branes. The Casimir energy and forces
in the geometry of branes parallel to the AdS boundary have been widely studied in
the literature (see [20–35] for early investigations and [36] for a more complete list of
references). The Casimir forces can be used as a possible mechanism for stabilization of
the interbrane distance that is required to escape the variations in physical constants in the
effective theory on the branes. The vacuum fluctuations of the bulk field may also provide
a mechanism for the generation of the cosmological constant on branes. More detailed
information on the properties of the vacuum state is contained in the expectation values
of bilinear combinations of fields, such as the field squared and the energy–momentum
tensor. In braneworld models on AdS bulk, those expectation values are considered in
Refs. [32,37–45] for scalar, fermionic, and electromagnetic fields.

In the references cited above, the branes are parallel to the AdS boundary (Randall–
Sundrum-type models [46,47]). In a number of recent developments in conformal field
theories, additional boundaries are present (see, e.g., [48] and references therein). In the
context of AdS/CFT correspondence, the corresponding dual theory on the AdS bulk
contains boundaries intersecting the AdS boundary (AdS/BCFT correspondence) [49,50].
Another interesting problem on AdS bulk with surfaces crossing its boundary is related
to the evaluation of the entanglement entropy of a quantum system in conformal field
theory with a boundary. In accordance with the procedure suggested in Refs. [51,52], the
entanglement entropy in a bounded region from the CFT side on the AdS boundary is
expressed in terms of the area of the minimal surface in the AdS bulk that asymptotes
the boundary of CFT (see also [53,54] for reviews). Motivated by those developments, the
influence of branes orthogonally intersecting the AdS boundary on the local properties of
the scalar vacuum in a general number of spatial dimensions was studied in Refs. [55,56].
As local characteristics of the vacuum state, the expectation values of the field squared
and of the energy–momentum tensor were considered. By using the corresponding vac-
uum stresses, the Casimir forces acting on the branes were investigated as well. It was
shown that, in addition to the component perpendicular to the brane, those forces have
a nonzero parallel component (shear force). In quantum field theory with boundaries,
the expectation values of physical quantities may contain contributions localized on the
boundary. The expression for the surface energy–momentum tensor of a scalar field with
a general curvature coupling parameter, and for general bulk and boundary geometries,
was derived in Ref. [57] by using the standard variational procedure. The corresponding
vacuum expectation value in the problem with branes parallel to the AdS boundary was
investigated in Refs. [58,59]. The present paper considers the vacuum expectation value of
the surface energy–momentum tensor (SEMT) for a scalar field in the problem with two
parallel branes orthogonal to the AdS boundary.
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The organization of the paper is as follows. Section 2 describes the geometry of
the problem and present the expression for the surface energy–momentum tensor. The
corresponding vacuum expectation value (VEV) is investigated in Section 3 by using the
two-point function from [56]. The surface energy density is decomposed into contributions
corresponding to the self-energy of the brane when the second brane is absent and the part
induced by the second brane. The renormalization is required only for the first contribution.
In the limit of infinite curvature radius, the result for parallel plates in the Minkowski
bulk is recovered. Another special case with conformal relation to the Casimir problem in
Minkowski spacetime corresponds to a conformally coupled massless field. The behavior
of the SEMT in asymptotic regions of the parameters is discussed in Section 4. A numerical
analysis for the induced surface energy density is presented as well. The main results of
the paper are summarized in Section 5. The regularization of the self-energy contribution,
by using the generalized zeta function approach, is considered in Appendix A. The finite
part is separated on the basis of principal part prescription.

2. Geometry of the Problem

AdS spacetime is the maximally symmetric solution of the Einstein equations with a
negative cosmological constant Λ as the only source of the gravitational field. In Poincaré
coordinates (t, x1, x, z), with t denoting the time, x = (x2, . . . , xD−1) the space coordinates
with the spatial dimension D > 1, the corresponding metric tensor, gik, is given by

ds2 = gikdxidxk =
(α

z

)2
[

dt2 −
(

dx1
)2
− dx2 − dz2

]
. (1)

Here, the parameter α =
√

D(1− D)/(2Λ) determines the curvature radius of the
background spacetime, −∞ < xi < +∞ for i, k = 0, 1, 2, . . . , D− 1, and 0 ≤ z < ∞. The
D-dimensional hypersurfaces z = 0 and z = ∞ present the AdS boundary and horizon,
respectively. The proper distance along the z-direction is measured by the coordinate
y = α ln(z/α), −∞ < y < +∞. In the coordinate system (t, x1, x, y) one has g′DD = 1 and
g′ik = gik = e−2y/αηik, with ηik being the metric tensor for Minkowski spacetime.

The aim is to investigate the surface Casimir densities induced by quantum fluctu-
ations of a scalar field ϕ(x) on codimension one parallel branes located at x1 = a1 and
x1 = a2, a1 < a2 (see Figure 1 for the geometry of the problem). Throught the paper, it is
assumed that the field is prepared in the Poincaré vacuum state. For a scalar field with
curvature coupling parameter ξ, the corresponding field equation reads(

�+ ξR + m2
)

ϕ(x) = 0, (2)

where � = gik∇i∇k is the covariant d’Alembertian, m is the mass, and R = 2Λ(D +
1)/(D − 1) is the Ricci scalar for AdS spacetime. On the branes, the field operator is
constrained by Robin boundary conditions,

(Aj + Bjni
(j)∇i)ϕ(x) = 0, x1 = aj, (3)

where ni
(j) is the normal to the brane at x1 = aj pointing into the region under consideration.

The branes divide the background space into three regions: x1 ≤ a1, a1 ≤ x1 ≤ a2, and
x1 ≥ a2. In the first and third regions, one has ni

(1) = −δi
1z/α and ni

(2) = δi
1z/α, respectively,

where δi
k is the Kronecker symbol. For the region a1 ≤ x1 ≤ a2, the normal in Equation (3) is

expressed as ni
(j) = (−1)j−1δi

1z/α. In the discussion below, the region between the branes is

considered. The VEVs for the regions x1 ≤ a1 and x1 ≥ a2 are obtained in the limits a2 → ∞
and a1 → −∞. For the sets of the coefficients (Aj, Bj) = (Aj, 0) and (Aj, Bj) = (0, Bj) the
constraints (3) are reduced to Dirichlet and Neumann boundary conditions, respectively.
For Robin boundary conditions, here the special case Bj/Aj = αβ j/z is assumed, with β j,
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j = 1, 2, being constants. For this choice, the boundary conditions (3), written in terms of
the coordinate x1

(p) = αx1/z, take the form

(1 + β jn1
(j)∂x1

(p)
)ϕ(x) = 0, x1 = aj, (4)

where ∂a ≡ ∂/∂a.

Figure 1. The geometry of two branes orthogonal to the AdS boundary. See text for details.

The latter is the Robin boundary condition with constant coefficient β j. This coefficient
characterizes the properties of the brane and can be used to model the finite penetration
length of quantum fluctuations. Note that the coordinate x1

(p) in Equation (4) measures the
proper distance from the brane for a fixed z.

For the scalar field modes in the region between the branes, the eigenvalues of the
quantum number k1, corresponding to the momentum along the direction x1, are quantized
by the boundary conditions (4). Those eigenvalues are roots of the transcendental equation
(see [56])

(β1 + β2)k1a cos
(

k1a
)
+
[

β1β2(k1)2 − 1
]

sin
(

k1a
)
= 0, (5)

where a = a2 − a1. Depending on the values of the Robin coefficients, this equation, in
addition to an infinite set of roots with real k1, may have purely imaginary roots k1 = iχ
(for the corresponding conditions, see [60]). The energy of the scalar modes, with the
momentum k = (k2, . . . , kD−1), −∞ < ki < +∞, i = 2, . . . , D − 1, in the subspace with
coordinates x, is expressed as E =

√
(k1)2 + k2 + γ2, where 0 ≤ γ < ∞ is the quantum

number corresponding to the z-direction. The dependence of the mode functions on the
coordinate z is expressed in terms of the function zD/2 Jν(γz), with Jν(u) being the Bessel
function and

ν =

√
D2

4
− D(D + 1)ξ + m2α2. (6)

Note that, in contrast to the Minkowski bulk, the energy of the scalar modes with
given momentum does not depend on the mass of the field quanta. The mass enters in the
problem through the parameter ν ≥ 0. Now, one can see that in the presence of imaginary
roots k1 = iχ, for the scalar field modes with k2 + γ2 < χ2, the energy becomes imaginary.
This signals the instability of the vacuum state under consideration. In the discussion
below, the values of the coefficients β1 and β2, for which there are no imaginary roots of
the eigenvalue Equation (5), are assumed. The corresponding conditions read [60]

β1,2 ≤ 0∪ {β1β2 ≤ 0, β1 + β2 > 1/a}. (7)
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For a general (D + 1)-dimensional spacetime with a smooth boundary ∂Ms, the SEMT
T(s)

ik (x) = τikδ(x; Ms), localized on the boundary by the one-sided Dirac delta function
δ(x; Ms), is given by [57]

τik = (1/2− 2ξ)hik ϕnl∇l ϕ + ξKik ϕ2. (8)

Here, hik = gik + nink is the induced metric on the boundary, with ni being the inward-
pointing unit normal vector for Ms, and Kik = hl

ih
m
k ∇lnm is the corresponding extrinsic

curvature tensor. The expression (8) was obtained in Ref. [57] by using the standard
variational procedure for the action of a scalar field with general curvature coupling
parameter and with an appropriate boundary term localized on Ms. Denoting the vacuum
state by |0〉, the VEV of the SEMT is presented as

〈0|T(s)
ik (x)|0〉 = δ(x; Ms)〈0|τik(x)|0〉, (9)

where the VEV 〈τik(x)〉 ≡ 〈0|τik(x)|0〉 is written in terms of the Hadamard function
G(1)(x, x′) = 〈0|ϕ(x)ϕ(x′) + ϕ(x′)ϕ(x)|0〉 by the formula

〈τik(x)〉 = 1
2

lim
x′→x

[
(1/2− 2ξ)hiknl∇l + ξKik

]
G(1)(x, x′). (10)

The limit contains two types of divergences. The first type of the divergences is present
already in the case when the point x does not belong to the boundary. The corresponding
divergent part is the same as that in the problem where the branes are absent and is removed
by the subtraction from the Hadamard function in Equation (10), the corresponding function
in the brane-free geometry. The SEMT is absent in the latter geometry and the brane-
free Hadamard function does not contribute to the VEV of the SEMT. The second type
of divergences originates from the surface divergences in quantum field theory with
boundaries and arises when the point x belongs to the boundary.

3. VEV of the SEMT
3.1. General Expression

In the problem under consideration, and for the region a1 ≤ x1 ≤ a2, the inward-
pointing normal is given by ni = n(j)i = (−1)jδ1

i α/z for the brane at x1 = aj. The
corresponding induced metric reads hik = gik, i, k 6= 1, and h11 = 0. Now, it can be
immediately checked that the extrinsic curvature tensor for the branes vanishes, Kik = 0.
Hence, the VEV of the SEMT is expressed as

〈τik(x)〉 =
(

1
4
− ξ

)
hiknl lim

x′→x
∇lG(1)(x, x′). (11)

The expression for the Hadamard function in the region between the branes is obtained
from the corresponding expression for the Wightman function derived in Ref. [56]. The
Wightman function is presented in the decomposed form

G(1)(x, x′) = G(1)
j (x, x′) +

2(zz′)D/2

(2πα)D−1

∫
dk eik∆x

∫ ∞

0
dγ γJν(γz)Jν(γz′)

×
∫ ∞

w
dλ

cosh(
√

λ2 − w2∆t)√
λ2 − w2

2 cosh
[
λ
(
x1 − x′1

)]
+∑l=±1

[
e|x

1+x′1−2aj |λcj(λ)
]l

c1(λ)c2(λ)e2aλ − 1
, (12)

where ∆x = x− x′, w =
√

γ2 + k2, k = |k|, Jν is the Bessel function, and

cj(λ) =
β jλ− 1
β jλ + 1

. (13)
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In Equation (12),

G(1)
j (x, x′) = G(1)

0 (x, x′) +
(zz′)D/2

(2πα)D−1

∫
dk eik∆x

∫ ∞

0
dγ γJν(γz)Jν(γz′)

×
∫ ∞

0
dλ

e−i
√

λ2+w2∆t
√

λ2 + w2 ∑
l=±1

[
ei|x1+x′1−2aj |λcj(iλ)

]l
, (14)

is the Hadamard function in the problem with a brane at x1 = aj when the second brane
is absent. Again, it is obtained from the corresponding Wightman function given in
Refs. [55,56]. The first term in the right-hand side, G(1)

0 (x, x′), is the Hadamard function
in AdS spacetime without branes. The last term in Equation (12) is interpreted as the
contribution to the Hadamard function in the region a1 ≤ x1 ≤ a2, induced by the brane at
x1 = aj′ when this term is added to the problem with a single brane at x1 = aj. Here, and
below, j′ = 1 for j = 2 and j′ = 2 for j = 1.

Combining (11) and (12), the SEMT on the brane at x1 = aj is decomposed as

〈τik〉j = 〈τik〉
(0)
j + 〈τik〉ind

j . (15)

Here, 〈τik〉
(0)
j is the VEV of the SEMT when the second brane is absent and 〈τik〉ind

j is

induced by the second brane at x1 = aj′ . The VEV 〈τik〉
(0)
j is obtained from Equation (11)

with the Hadamard function (14). By taking into account that in the AdS spacetime without
branes the SEMT is absent, one obtains:

〈τk
i 〉

(0)
j = (4ξ − 1)

δk
i β jzD+1

(2π)D−1αD

∫
dk

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dλ

1√
λ2 + b2

λ2

1 + λ2β2
j
. (16)

The vacuum SEMT induced by the second brane comes from the last term in Equation (12).
It is presented in the form

〈τk
i 〉ind

j = (4ξ − 1)
2δk

i β jzD+1

(2π)D−1αD

∫
dk

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

b
dλ

λ2
√

λ2 − b2

×
β j′λ + 1
β jλ− 1

1
(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)

. (17)

The expression (16) for the self-SEMT is divergent and needs a regularization with a
subsequent renormalization removing the divergences. This type of surface divergence is
well known in quantum field theory with boundaries.

Note that for an observer living on the brane x1 = aj, the D-dimensional line element
is obtained from Equation(1), taking dx1 = 0. It describes D-dimensional AdS spacetime
generated by a cosmological constant Λ′ = (1− 2/D)Λ. From the point of view of an
observer on the brane, the energy–momentum tensor 〈τk

i 〉j is a source of gravitation,
with the energy density ε j = 〈τ0

0 〉j and isotropic effective pressure pj = −〈τ2
2 〉j = · · · =

−〈τD
D 〉j. The corresponding equation of state reads pj = −ε j, hence 〈τk

i 〉j is a source of
the cosmological constant type. Certainly, the latter property is a consequence of the
symmetry in the problem under consideration. In accordance with Equation (15), the
surface energy density is decomposed into the self-energy and the contribution induced by
the second brane:

ε j = ε
(0)
j + εind

j , (18)

where εind
j = 〈τ0

0 〉ind
j .

The regularization of the divergent expression on the right-hand side of Equation (16),
based on the generalized zeta function approach, is discussed in Appendix A. The expres-
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sion is decomposed into pole and finite contributions obtained from Equation (A15) in
combination with Equation (A2). In the principal part prescription the finite self-energy, ε

(0)
j

is identified with the finite part of the corresponding Laurent expansion near the physical
point s = 1. In order to remove the divergent part, to note is that the VEV 〈τik〉j is a part
of a theory which contains other contributions localized on the brane and the divergences
in 〈τik〉j are absorbed by renormalizing the parameters in those contributions. The finite

part of the SEMT 〈τik〉
(0)
j is given by Equation (A19). This part contains renormalization

ambiguities, which can be fixed by imposing additional renormalization conditions. Here,
the situation is completely parallel to that for the case of the total Casimir energy discussed,
for example, in Ref. [4]. Similar to Equation (15), the Casimir energy for a system composed
of separate bodies is decomposed into the self-energies and the interaction energy. The
renormalization is required only for the self-energies.

Unlike the self-energy part, ε
(0)
j , the surface energy density, εind

j , and the related SEMT,

〈τk
i 〉ind

j , are finite and uniquely defined. The main concern in the discussion below is
that part of the energy–momentum tensor. Integrating over the angular coordinates of k
and introducing the polar coordinates in the plane (k, u), one integrates over the related
polar angle:

〈τk
i 〉ind

j =
(4ξ − 1)δk

i β jzD+1

2D−2π
D−1

2 Γ(D−1
2 )αD

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dr rD−2 β j′λ + 1

β jλ− 1

× λ

(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)

∣∣∣∣
λ=
√

γ2+r2
. (19)

Next, let us introduce polar coordinates in the plane (γ, r). The angular integral is
evaluated by using the result [61]

∫ 1

0
dxx(1− x2)

D−3
2 J2

ν(ux) =
Γ(D−1

2 )

22ν+1 u2νFν(u), (20)

with the function

Fν(u) =
1F2(ν + 1

2 ; D+1
2 + ν, 1 + 2ν;−u2)

Γ(D+1
2 + ν)Γ(1 + ν)

. (21)

Here, Γ is the gamma function and 1F2(a; b, c; x) is the hypergeometric function.
This gives:

〈τk
i 〉ind

j =
(4ξ − 1)δk

i β jzD+2ν+1

2D+2ν−1π
D−1

2 αD

∫ ∞

0
dλ

β j′λ + 1
β jλ− 1

λD+2ν+1Fν(λz)
(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)

. (22)

From this it follows that the induced SEMT on the brane x1 = aj vanishes for special
cases of Dirichlet and Neumann boundary conditions on that brane. Depending on the
coefficients β j and on the separation between the branes, the induced energy density
εind

j can be either positive or negative (see numerical examples below). Introducing a

new integration variable u = λz, one can see that the product αD〈τk
i 〉ind

j depends on the
quantities z, aj, β j, having dimension of length, in the form of two dimensionless ratios
a/z, β j/z. Those ratios are the proper values of the quantities, measured by an observer
with fixed z, in units of the curvature radius α. This feature is a consequence of the AdS
maximal symmetry.

3.2. Minkowskian Limit and a Conformally Coupled Massless Field

To clarify the features of the SEMT on the branes, let us consider special cases and
asymptotic regions of the parameters. First, let us discuss the Minkowskian limit cor-
responding to α → ∞ for fixed coordinate y. For the coordinate z, in the leading or-
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der, one has z ≈ α and the line element (1) tends to the Minkowskian interval ds2
M =

dt2 −
(
dx1)2 − dx2 − dy2. The geometry of the corresponding problem consists of two par-

allel plates at x1 = a1 and x1 = a2 with the boundary condition (1− (−1)jβ j∂1)ϕ(x) = 0
at x1 = aj in the region a1 ≤ x1 ≤ a2; here, ∂1 ≡ ∂/∂x1 . For relatively large values of α
and for a massive field, the parameter ν is large, ν ≈ mα, and one needs the asymptotic
of the function Fν(λz) when both the argument and the order are considerably large. The
corresponding analysis in Ref. [55] shows that the function Fν(νλ/m) is exponentially
suppressed for ν� 1 and λ < m. For λ > m, the leading behavior is approximated by [55]

Fν

( ν

m
λ
)
≈
(
λ2 −m2)D/2−1

(2m/ν)2ν+1

2
√

πΓ(D
2 )λ

D+2ν−1
. (23)

By using this asymptotic for the part of the integral in Equation (22) over the region
m ≤ λ < ∞, one obtains the SEMT on the plate x1 = aj in Minkowski spacetime, 〈τk

i 〉ind
(M)j =

limα→∞〈τk
i 〉ind

j , given by

〈τk
i 〉ind

(M)j =
(4ξ − 1)δk

i β j

2D−1πD/2Γ(D
2 )

∫ ∞

m
dλ

β j′λ + 1
β jλ− 1

λ2(λ2 −m2)D/2−1

(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)
. (24)

This result for a massive field was obtained in Ref. [58] as a limiting case of the problem
with two branes in AdS spacetime parallel to the AdS boundary. In the case of a massless
field, the expression for 〈τk

i 〉ind
(M)1 + 〈τ

k
i 〉ind

(M)2, obtained from Equation (24), coincides with the
result derived in Ref. [60]. The VEV of the SEMT for a single Robin boundary in background
of (3 + 1)-dimensional Minkowski spacetime has also been considered in Refs. [62,63].

In the case of a massless field with conformal coupling, one has ξ = ξD = D−1
4D

and ν = 1/2. By taking into account that J1/2(x) =
√

π
2x sin x, from Equation (20) one

obtains [55]:

F1/2(u) =
2√
πu2

 1

Γ
(

D
2

) − J D
2 −1(2u)

u
D
2 −1

. (25)

Substituting this expression into Equation (22) one obtains

εind
j = (z/α)Dεind

(M)j, (26)

with

εind
(M)j = −

21−Dβ j

Dπ
D
2

∫ ∞

0
dλ

β j′λ + 1
β jλ− 1

 1

Γ
(

D
2

) − J D
2 −1(2λz)

(λz)D/2−1


× λD

(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)
. (27)

For a conformally coupled massless scalar field, the problem considered here is con-
formally related to the problem of two Robin plates at x1 = aj, j = 1, 2, in Minkowski

spacetime, described by the interval ds2
M = dt2 −

(
dx1)2 − dx2 − dz2, intersected by a

Dirichlet plate located at z = 0. The presence of the latter is related to the boundary
condition for scalar field modes imposed on the AdS boundary z = 0. The surface energy
density (27) is induced on the plate x1 = aj by the presence of the second plate x1 = aj′ .
The part of εind

(M)j coming from the first term in the square brackets is the corresponding
quantity in the geometry where the plate z = 0 is absent (see Equation (24) for m = 0). The
part with the second term is a consequence of the presence of the plate z = 0. Note that
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εind
(M)j vanishes on that plate: εind

(M)j|z=0 = 0. This is a consequence of Dirichlet boundary
conditions at z = 0.

4. Asymptotics and Numerical Analysis

In this Section, the behavior of the VEV for SEMT in asymptotic regions of the parame-
ters is studied. Let us start with the asymptotics at relatively small and large separations
between the branes. For a given z, the proper separation between the branes is given by
a(p) = αa/z. For quite small proper separations compared to the curvature radius, one
has a/z � 1 and the integral in Equation (22) is dominated by the contribution of the
region with large enough values of the argument of the function Fν(λz). By using the
corresponding asymptotic [55],

Fν(u) ≈
22ν

√
πΓ
(

D
2

)
u2ν+1

, u� 1, (28)

one can see that the relation

〈τk
i 〉ind

j ≈ (z/α)D〈τk
i 〉ind

(M)j|m=0, (29)

takes place, where 〈τk
i 〉ind

(M)j|m=0 is given by Equation (24) with m = 0. In the limit under
consideration, the main contribution to the SEMT comes from the zero-point fluctuations
with wavelengths smaller than the curvature radius and the effect of the gravitational field
is weak. The asymptotic (29) is further simplified if the separation a is smaller than the
length scales determined by the boundary conditions, a/|βl | � 1, l = 1, 2. For Dirichlet
boundary conditions on the brane x1 = aj′ , β j′ = 0, the condition a/|β j| � 1 is assumed.
Under those conditions, λ|βl | � 1 (λ|β j| � 1 in the case β j′ = 0) for the region of λ that
dominates in the integral on the right-hand side of Equation (24) (with m = 0). In the
leading order one obtains:

〈τk
i 〉ind

j ≈ δk
i
(z/α)D(4ξ − 1)

2Dπ
D+1

2 aD−1
ζ(D− 1)Γ

(
D− 1

2

){
1/β j′ , β j′ 6= 0(
22−D − 1

)
/β j, β j′ = 0

, (30)

with ζ(u) being the Riemann zeta function. Note that the asymptotic (29) also describes the
behavior of the SEMT near the AdS horizon. As is seen from Equation (30), in the special
cases of minimally (ξ = 0) and conformally (ξ = ξD) coupled fields and for quite small
separations between the branes, the energy density induced on the brane x1 = aj by the
second brane is positive for β j′ < 0 and negative for β j′ > 0. For the Dirichlet boundary
condition on the second brane (β j′ = 0), the sign of the induced energy density coincides
with the sign of the product (1− 4ξ)β j.

In the opposite limit of considerably large proper separations compared with the
curvature radius, one has a/z� 1 and the main contribution to the integral in Equation (22)
gives the region near the lower limit, corresponding to λz � 1. In the leading order,
replacing the function Fν(λz) by

Fν(0) =
1

Γ(ν + 1)Γ
(

D+1
2 + ν

) , (31)

one obtains

〈τk
i 〉ind

j ≈
8(4ξ − 1)δk

i (z/2)D+2ν+2β j/z

π
D−1

2 Γ(ν + 1)Γ
(

D+1
2 + ν

)
αD

∫ ∞

0
dλ

λβ j′ + 1
λβ j − 1

λD+2ν+1

(λβ1 − 1)(λβ2 − 1)e2λa − (λβ1 + 1)(λβ2 + 1)
. (32)

This expression is further simplified for separations larger than the length scales in
Robin boundary conditions. Assuming a� |βl |, l = 1, 2, one can see that λ|βl | � 1 for the
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region, giving the dominant contribution to the integral in Equation (32). For the case of
Neumann boundary conditions on the brane x1 = aj′ , corresponding to the limit |β j| → ∞,
for separations a� |β j|, one has λ|β j| � 1 in the region with the dominant contribution
to the integral. For the leading order term in the VEV of the SEMT and for non-Neumann
(Aj 6= 0) boundary conditions on the second brane, one finds:

〈τk
i 〉ind

j ≈ δk
i
(1− 4ξ)ζ(D + 2ν + 2)β j/a

π
D
2 Γ(ν + 1)αD(2a/z)D+2ν+1

(D + 2ν + 1)Γ
(

D
2
+ ν + 1

)
. (33)

For Neumann boundary conditions on the second brane, an additional factor (2−D−2ν−1 − 1)
should be added to the right-hand side of Equation (33). One can see that at considerably
large distances between the branes the decay of the SEMT, as a function of the proper sepa-
ration, is a power law for both massive and massless fields. This feature for massive fields
is in contrast with the corresponding behavior for parallel plates in the Minkowski bulk,
where the suppression is exponential, by the factor e−2ma. Let us note that the Formula (32)
also gives the asymptotic of the SEMT near the AdS boundary. As seen, for fixed β j, the
SEMT tends to zero on the AdS boundary, like zD+2ν+1. The asymptotic estimate (33)
shows that for β j < 0, and for non-Neumann boundary conditions on the second brane
(1/β j′ 6= 0), at quite large separations between the branes the induced energy density εind

j
is negative for minimally and conformally coupled fields.

Figure 2 presents the VEV of the energy density, induced on the brane at x1 = a1 by
the brane at x1 = a2 as a function of the proper separation between the branes a/z. The
graphs are plotted for a scalar field in (4 + 1)-dimensional AdS spacetime (D = 4), for the
Robin boundary condition with β1/z = −0.5 and with the mass corresponding to mα = 0.5.
The dependence on the proper separation is displayed for different values of the ratio β2/z
(the numbers near the curves) and for Dirichlet and Neumann boundary conditions on the
second brane. Figure 2, left, and Figure 2, right, correspond to conformally and minimally
coupled fields, respectively. In accordance with the asymptotic analysis given above, for
minimally and conformally coupled fields and at relatively small separations between
the branes, the energy density, induced by the second brane, is positive (negative) for
non-Dirichlet (Dirichlet) boundary conditions on the second brane. At considerably large
separations, the energy density is negative for non-Neumann boundary conditions on the
second brane and is positive for Neumann boundary conditions. The inset in Figure 2, right,
is given to emphasize the change in the sign of the surface energy density as a function of
the separation between the branes.

In Figure 3, for conformally (Figure 3, left) and minimally (Figure 3, right) coupled
scalar fields in D = 4 spatial dimensions, the dependence of the energy density εind

1 on
the Robin coefficient β1/z is plotted for different values of the Robin coefficient β2/z
(the numbers marking the curves) on the second brane and for Dirichlet and Neumann
boundary conditions. The graphs are plotted for mα = 0.5 and a/z = 1.
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Figure 2. The induced surface energy density on the brane for conformally (left) and minimally
(right) coupled fields at x1 = a1, in units of α−D, versus the proper separation between the branes for
D = 4, mα = 0.5, and β1/z = 0.5. The graphs are presented for different values of the ratio β2/z (the
numbers marking the curves) and for Dirichlet (marked ”Dir”) and Neumann (”Neu”) boundary
conditions on the second brane (β2/z = 0 and β2/z = ∞, respectively). See text for details.
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Figure 3. The induced surface energy density on the brane for conformally (left) and minimally
(right) coupled fields at x1 = a1 for D = 4, mα = 0.5, and a/z = 1 versus the Robin coefficient
β1/z for different values of β2/z (the numbers marking the curves), β2/z = 0 and β2/z = −∞ for
Dirichlet (marked ”Dir”) and Neumann (”Neu”) boundary conditions). See text for details.

The dependence of the surface energy density on the mass of the field (in units of
1/α) is displayed in Figure 4 for conformally (Figure 4, left) and minimally (Figure 4, right)
coupled scalar fields in spatial dimensions D = 4. The graphs are plotted for a/z = 1,
β1/z = −0.5, and for different values of the ratio β2/z (the numbers marking the curves).
The graphs corresponding to Robin boundary conditions, −∞ < β2/z < 0, are located
between the graphs corresponding to Neumann and Dirichlet boundary conditions on
the second brane (β2/z = −∞ and β2/z = 0, respectively). As seen, the induced energy
density, in general, is not a monotonic function of the field mass. In addition, for fixed
values of the other parameters it may change the sign as a function of the mass. In particular,
that is the case for a minimally coupled field with the boundary conditions corresponding
to β1/z = −0.5 and β2/z = −0.25 (see Figure 4, right).
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Figure 4. The dependence of the surface energy density on the first brane, induced by the second
brane for conformally (left and minimally right coupled fields versus the field mass for D = 4,
a/z = 1, β1/z = −0.5 and for separate values of β2/z (the numbers marking the curves). The graphs
for Dirichlet (marked “Dir”) and Neumann (”Neu”) boundary conditions on the second brane are
presented as well. See text for details.

5. Conclusions

For a scalar field with general curvature coupling, the VEV of the SEMT induced on
branes in AdS spacetime orthogonal to its boundary has been studied. On the branes,
the field operator is constrained by the boundary conditions (3) or, equivalently, by the
conditions (4). To ensure the stability of the vacuum state, the values of the parameters
in Robin boundary conditions are restricted by (7). For the geometry of the branes under
consideration, the extrinsic curvature tensor is zero and the general formula for the SEMT
is simplified to Equation (11). From the viewpoint of observers living on the branes this
SEMT presents a gravitational source with the equation of state for a cosmological constant.
In order to evaluate the corresponding VEV, the Hadamard function is used, obtained
from the positive frequency Wightman function from Ref. [56]. In the region between the
branes, the Hadamard function is decomposed into single-brane and the second-brane-
induced contributions. This allows the separation of the part generated by the second
brane from the total VEV of the SEMT. The surface divergences are contained in the self-
energy contributions on the branes and the renormalization is required for those parts
only. In order to extract the finite parts in the corresponding VEVs, in Appendix A, the
regularization procedure based on the generalized zeta function approach is employed. The
divergences, appearing in the form of simple poles, are absorbed by the renormalization
of the corresponding parameters in the “classical” action localized on the branes. The
finite part of the SEMT separated in this way contains renormalization ambiguities and
additional conditions are required to obtain a unique result. This is fully similar to the
case of the self-energy in the Casimir effect in the geometry of a single boundary (see, for
example, the corresponding discussion in Ref. [4]).

The part of the SEMT induced on the brane by the presence of the second brane
is finite and uniquely defined. The induced SEMT on the brane x1 = aj is given by
the expression (22). It vanishes for special cases of Dirichlet and Neumann boundary
conditions on that brane. As a consequence of the maximal symmetry of AdS spacetime,
for the general case of Robin boundary conditions, the dimensionless quantity αD〈τk

i 〉ind
j is

completely determined by the dimensionless ratios a/z and β j/z, j = 1, 2. The first one is
the proper separation between the branes, measured by an observer with fixed z in units of
the curvature radius α. The VEV of the SEMT for Robin parallel plates in the Minkowski
bulk is obtained from Equation (22) in the limit α→ ∞ and is expressed as Equation (24).
The latter includes special cases previously discussed in the literature and coincides with
the result obtained in Ref. [58] as a limit α → ∞ of the SEMT in the geometry of branes
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parallel to the AdS boundary. For a conformally coupled massless field, the problem in
the AdS bulk is conformally related to the problem in Minkowski spacetime consisting of
two parallel Robin plates perpendicularly intersected by a Dirichlet plate, the latter being
the image of the AdS boundary. The VEV in the Minkowski counterpart is given by the
Formula (27), where the contribution of the Dirichlet plate comes from the term in the
square brackets with the Bessel function.

At quite small separations between the branes, compared to the curvature radius and
length scales determined by the Robin coefficients, the influence of the gravitational field on
the SEMT is small enough and the leading term in the corresponding expansion is expressed
by Equation (30). In this limit, and for non-Dirichlet (Dirichlet) boundary conditions on the
brane x1 = aj′ , the sign of the surface energy density induced on the brane x1 = aj coincides
with the sign of the product (4ξ − 1)β j′ ((1− 4ξ)β j). The effects of the gravitational field are
essential at proper separations between the branes of the order or larger than the curvature
scale of the background geometry. Additionally, assuming that the separation is larger than
the length scales fixed by the boundary conditions, the leading behavior of the induced
SEMT is described by Equation (33) for non-Neumann boundary conditions on the second
brane. The sign of the energy density coincides with the sign of (1− 4ξ)β j. For Neumann
conditions on the second brane, an additional factor (2−D−2ν−1 − 1) needs to be added on
the right-hand side of Equation (33) and the energy density at quite large distances has
an opposite sign. An important feature of the large-distance behavior of the SEMT is the
power law decay as a function of the proper separation. For parallel plates in Minkowski
spacetime, the corresponding decay for massive fields is exponential. The induced surface
energy density vanishes on the AdS boundary like zD+2ν+1 and behaves as (z/α)D near
the AdS horizon.

The investigations of the brane-induced effects on the properties of the scalar vacuum
in AdS spacetime have discussed the branes parallel or perpendicular to the AdS boundary.
An interesting generalization, that includes these special cases, would be the geometry of
branes crossing the AdS boundary at an arbitrary angle. In this case, the dependence of the
scalar mode functions on the coordinates parallel and perpendicular to the AdS boundary
are not separable and the problem is more complicated. It is expected that for a general
crossing angle, in addition the normal and shear Casimir forces, a rotational momentum to
appear generated by the vacuum fluctuations.

The study of the boundary-induced effects on the fermionic and electromagnetic vacua
for branes perpendicular to the AdS boundary is another direction for further research. The
dependence of the mode functions on the coordinate z is expressed in terms of the functions
Jmα±1/2(γz) for the fermionic field (with m being the mass of the field) and in terms of
the function JD/2−1(γz) for the vector potential of the electromagnetic field. Similar to the
case of a scalar field, it is expected that the equation determining the eigenvalues of the
quantum number corresponding to the direction normal to the branes to be the same as
that in the Minkowski bulk, with the same boundary conditions on planar boundaries.
The summation over those eigenvalues in the corresponding mode sum for the VEV of
the energy–momentum tensor can be achieved using the generalized Abel–Plana formula.
This allows the explicit extraction of the brane-induced contribution. Note that previous
investigations of the vacuum energy–momentum tensor for fermionic and electromagnetic
fields have considered branes parallel to the AdS boundary (see [41–45]). The bag boundary
condition has been imposed for the fermionic field, and for the electromagnetic field, the
perfect conductor and confining boundary conditions have been discussed.
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Appendix A. Surface Densities for a Single Brane

It was shown above that the VEV of the SEMT for a single brane at x1 = aj is presented
in the form (16). The corresponding expression is divergent and can be regularized by
using the generalized zeta function approach (for a general introduction and applications
in the theory of the Casimir effect, see, e.g., [64–66]). Let us consider the function

F(s, z) =
µs−1β jzD+1

(2π)D−1

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dλ λ2

∫
dk

(
λ2 + γ2 + k2)− s

2

1 + λ2β2
j

, (A1)

with, in general, complex argument s. As seen below, the expression on the right-hand side
is finite for Re s > D. The scale parameter µ, having dimension of inverse length, is intro-
duced to keep the function F(s, z) dimensionless. Following the principal part prescription,
considered previously in the literature for the total Casimir energy in ultrastatic manifolds
with boundaries (see [64,65,67]), the SEMT in the geometry of a single brane is obtained as

〈τk
i 〉

(0)
j = δk

i
4ξ − 1

αD PP[F(s, z)]s=1, (A2)

where PP[F(s, z)]s=1 corresponds to the finite part of the Laurent expansion of the function
F(s, z) near s = 1. The evaluation of that part is reduced to the extraction of the pole term.

The integral over k in Equation (A1) is expressed in terms of the gamma function and
one obtains

F(s, z) =
µs−1β jzD+1

2D−1πD/2

Γ(1− D−s
2 )

Γ( s
2 )

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dλ λ2

(
λ2 + γ2) D−s

2 −1

1 + λ2β2
j

. (A3)

For the further transformation of the expression on the right-hand side of Equation (A3)
the integral representation

(
λ2 + γ2

) D−s
2 −1

=
1

Γ
(

1− D−s
2

) ∫ ∞

0
dx x

s−D
2 e−(λ2+γ2)x (A4)

is used.
With this representation, the integral over γ is evaluated by the formula [61]

∫ ∞

0
dγ γJ2

ν(γz)e−γ2x =
1

2x
exp

(
− z2

2x

)
Iν

(
z2

2x

)
, (A5)

with Iν(u) being the modified Bessel function. Passing to a new integration variable
u = z2/(2x), one finds

F(s, z) =
µs−1β jzs+1

2
D+s

2 πD/2Γ( s
2 )

∫ ∞

0
du u

D−s
2 −1e−u Iν(u)

∫ ∞

0
dλ

λ2e−λ2 z2
2y

1 + λ2β2
j

. (A6)

The λ-integral is evaluated in terms of the complementary incomplete gamma function
Γ(−1/2, x). As a result, the function F(s, z) is presented as

F(s, z) =
(µz)s−1β jz2

2
D+s

2 +2π
D−1

2 Γ( s
2 )|β j|3

∫ ∞

0
du u

D−s
2 −1S

(
2β2

j /z2, u
)

, (A7)

where the function

S(b, u) = e−u Iν(u)e
1

bu Γ
(
−1

2
,

1
bu

)
(A8)

is used.
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In the limit u→ ∞, the function (A8) tends to the limiting value
√

2b/π and limu→0 S(b, u) =
0. This shows that the representation (A7) is valid in the region Re s > D of the complex
plane s.

The divergence of the integral in Equation (A8) at s = 1 comes from the divergence
in the upper limit of the integral. By using the expansions of the functions e−u Iν(u) and
e

1
bu Γ
(
− 1

2 , 1
bu

)
(see, e.g., [68]) for quite large values of u, the following expansion is obtained:

S(b, u) =

√
2b
π

∞

∑
n=0

[
An(b)

un −
√

π
Bn(b)

un+ 1
2

]
. (A9)

For the coefficients, one has:

A0 = 1, A1 =
2
b
− 1

2

(
ν2 − 1

4

)
,

A2 =
4

3b2 +

(
ν2 − 1

4

)[
1
8

(
ν2 − 9

4

)
− 1

b

]
, (A10)

and

B0 =
1√
b

, B1 =
1

b
3
2
− 1

2
√

b

(
ν2 − 1

4

)
,

B2 =
1

2
√

b

[
1
b2 +

(
ν2 − 1

4

)(
1
4

(
ν2 − 9

4

)
− 1

b

)]
. (A11)

In order to separate the pole term in Equation (A7), let us rewrite the function F(s, z)
in the form

F(s, z) =
(µz)s−1β jz2

2
D+s

2 +2π
D−1

2 Γ( s
2 )|β j|3

{∫ 1

0
du u

D−s
2 −1S

(
bj, u

)
+
∫ ∞

1
du u

D−s
2 −1[S(bj, u

)
− SN

(
bj, u

)]
+
∫ ∞

1
du u

D−s
2 −1SN

(
bj, u

)}
, (A12)

where bj = 2β2
j /z2 and

SN(b, u) =

√
2b
π

N

∑
n=0

[
An(b)

un −
√

π
Bn(b)

un+ 1
2

]
. (A13)

For N > (D− 3)/2, the first two integrals in the curly brackets in Equation (A12) are
convergent for s = 1. By using Equation (A13) in the last integral in Equation (A12), the
corresponding contribution to the function F(s, z) is presented as

F̄(s, z) = −

(
µz/
√

2
)s−1

z

2
D+1

2 π
D
2 Γ( s

2 )β j

N

∑
n=0

[
An(bj)

s + 2n− D
−

√
πBn(bj)

s + 1 + 2n− D

]
. (A14)

The function F̄(s, z) has a simple pole at s = 1. The pole comes from the term with
n = (D− 1)/2 for odd D and from the term with n = D/2− 1 for even D.

Expanding the function (A14) near the physical point s = 1, the function F(s, z) is
decomposed as

F(s, z) =
F(p)(s, z)

s− 1
+ F(f)(z) + · · · , (A15)



Physics 2023, 5 1160

where the unshown terms represent the part vanishing in the limit s → 1. Here, the
coefficient in the pole term reads

F(p)(s, z) = −
zCD(bj)

(2π)
D+1

2 β j

, (A16)

and the finite term reads

F(f)(z) =
β jz2

2
D+1

2 +2π
D
2 |β j|3

{∫ 1

0
du u

D−3
2 S
(
bj, u

)
+
∫ ∞

1
du u

D−3
2
[
S
(
bj, u

)
− SN

(
bj, u

)]}

+
z

(2π)
D+1

2 β j

{
CD(bj)

[
ln
(

µz√
2

)
+

1
2

ψ(1/2)
]
−

N′
∑
n=0

[
An(bj)

1 + 2n− D
−
√

πBn(bj)

2 + 2n− D

]}
, (A17)

where the prime in the sum indicates that the term n = (D− 1)/2 for odd D and the term
n = D/2− 1 for even D to be omitted. In Equation (A17), ψ(x) is the digamma function
with ψ(1/2) ≈ −1.964 and

CD(b) =

{
A D−1

2
(b) for odd D ,

−
√

πB D
2 −1(b) for even D .

(A18)

In the principal part prescription, the physical value extracted from the divergent
expectation value of the SEMT 〈τk

i 〉
(0)
j is identified with

〈τk
i 〉

(0)
j = δk

i
4ξ − 1

αD F(f)(z). (A19)

Note that this result contains a scale ambiguity. Under scale change it transforms to

〈τk
i 〉

(0)
j (µ′) = 〈τk

i 〉
(0)
j (µ) + δk

i (4ξ − 1)
ln(µ′/µ)CD(bj)z

(2π)
D+1

2 αDβ j

. (A20)

The logarithmic dependence on the scale µ is a distinctive feature of the regularization
procedure.
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