Joint Analysis of the Iron Emission in the Optical and Near-Infrared Spectrum of I Zw 1
Abstract
:1. Introduction
2. I Zw 1 a Prototypical Feii Emitter
3. Optical and NIR Feii Templates
4. Photoionization Modeling
5. Results
5.1. No Micro-Turbulence
5.2. Applying Micro-Turbulence
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGNs | active galactic nuclei |
BELR | broad-emission line region |
BLR | broad-line region |
CASLEO | Complejo Astronómico el Leoncito |
CaT | Caii triplet |
EV1 | eigenvector 1 |
FWHM | full width at half maximum |
FOS | Faint Object Spectrograph |
HST | Hubble Space Telescope |
IRTF | Infrared Telescope Facility |
NASA | National Aeronautics and Space Administration |
NIR | near-infrared |
NLR | narrow-line region |
NLS1 | narrow-line Seyfert 1 |
PCA | principal component analysis |
SMBHs | supermassive black holes |
SXD | short wavelength cross-dispersed mode |
UV | ultraviolet |
Zw | Zwicky |
Appendix A
References
- Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 365–408. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Collin, S.; Kawaguchi, T.; Peterson, B.M.; Vestergaard, M. Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination. Astron. Astrophys. 2006, 456, 75–90. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. The quasar main sequence explained by the combination of Eddington ratio, metallicity, and orientation. Astrophys. J. 2019, 882, 79. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803–845. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of broad emission lines in active galactic nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Blandford, R.D.; McKee, C.F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. 1982, 255, 419–439. [Google Scholar] [CrossRef]
- Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; et al. Central masses and broad-line region sizes of active galactic nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophys. J. 2004, 613, 682–699. [Google Scholar] [CrossRef]
- Bentz, M.C.; Denney, K.D.; Grier, C.J.; Barth, A.J.; Peterson, B.M.; Vestergaard, M.; Bennert, V.N.; Canalizo, G.; De Rosa, G.; Filippenko, A.V.; et al. The low-luminosity end of the radius–luminosity relationship for active galactic nuclei. Astrophys. J. 2013, 767, 149. [Google Scholar] [CrossRef]
- Du, P. et al. [SEAMBH Collaboration] Supermassive black holes with high accretion rates in active galactic nuclei. IV. Hβ time lags and implications for super-Eddington accretion. Astrophys. J. 2015, 806, 22. [Google Scholar] [CrossRef]
- Grier, C.J.; Pancoast, A.; Barth, A.J.; Fausnaugh, M.M.; Brewer, B.J.; Treu, T.; Peterson, B.M. The structure of the broad-line region in active galactic nuclei. II. Dynamical modeling of data from the AGN10 reverberation mapping campaign. Astrophys. J. 2017, 849, 146. [Google Scholar] [CrossRef]
- Panda, S.; Martínez-Aldama, M.L.; Zajaček, M. Current and future applications of Reverberation-mapped quasars in cosmology. Front. Astron. Space Sci. 2019, 6, 75. [Google Scholar] [CrossRef]
- Shen, Y.; Grier, C.J.; Horne, K.; Stone, Z.; Li, J.I.; Yang, Q.; Homayouni, Y.; Trump, J.R.; Anderson, S.F.; Brandt, W.N.; et al. The Sloan Digital Sky Survey Reverberation Mapping project: Key results. arXiv 2023, arXiv:2305.01014. [Google Scholar]
- Peterson, B.M.; Ali, B.; Horne, K.; Bertram, R.; Lame, N.J.; Pogge, R.W.; Wagner, R.M. The structure of the broad-line region in the Seyfert galaxy Markarian 590. Astrophys. J. 1993, 402, 469–478. [Google Scholar] [CrossRef]
- Peterson, B.M.; Berlind, P.; Bertram, R.; Bochkarev, N.G.; Bond, D.; Brotherton, M.S.; Busler, J.R.; Chuvaev, K.K.; Cohen, R.D.; Dietrich, M.; et al. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. VII. Variability of the optical spectrum of NGC 5548 over 4 years. Astrophys. J. 1994, 425, 622–634. [Google Scholar] [CrossRef]
- Rosenblatt, E.I.; Malkan, M.A.; Sargent, W.L.W.; Readhead, A.C.S. The broad emission line and continuum variations of Seyfert galaxies. II. Broad-line region structure and kinematics. Astrophys. J. Suppl. 1994, 93, 73–124. [Google Scholar] [CrossRef]
- Korista, K.T.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R.D.; Crenshaw, D.M.; Evans, I.N.; Horne, K.; Koratkar, A.P.; Kriss, G.A.; et al. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. VIII. An intensive HST, IUE, and ground-based study of NGC 5548. Astrophys. J. Suppl. 1995, 97, 285–330. [Google Scholar] [CrossRef]
- Veilleux, S.; Sanders, D.B.; Kim, D.-C. A near-infrared search for hidden broad-line regions in ultraluminous infrared galaxies. Astrophys. J. 1997, 484, 92–107. [Google Scholar] [CrossRef]
- Vanden Berk, D.E.; Richards, G.T.; Bauer, A.; Strauss, M.A.; Schneider, D.P.; Heckman, T.M.; York, D.G.; Hall, P.B.; Fan, X.; Knapp, G.R.; et al. Composite quasar spectra from the Sloan Digital Sky Survey. Astron. J. 2001, 122, 549–564. [Google Scholar] [CrossRef]
- Kollatschny, W. Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk 110. Astron. Astrophys. 2003, 407, 461–472. [Google Scholar] [CrossRef]
- Glikman, E.; Helfand, D.J.; White, R.L. A near-infrared spectral template for quasars. Astrophys. J. 2006, 640, 579–591. [Google Scholar] [CrossRef]
- Vestergaard, M.; Peterson, B.M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 2006, 641, 689–709. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Negrete, C.A.; Dultzin, D.; Zamfir, S.; Bachev, R. Broad-line region physical conditions along the quasar eigenvector 1 sequence. Mon. Not. R. Astron. Soc. 2010, 409, 1033–1048. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Barr Domínguez, A.; Kaderhandt, L.; Hackstein, M.; Kollatschny, W.; et al. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427. Astron. Astrophys. 2015, 576, A73. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin, D.; Sulentic, J.W.; Del Olmo, A.; Negrete, C.A.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; Stirpe, G.M. A main sequence for quasars. Front. Astron. Space Sci. 2018, 5, 6. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Green, P.J.; Anderson, S.F.; Bruce, A.; Eracleous, M.; Graham, M.; Homan, D.; Lawrence, A.; LeBleu, A.; Ross, N.P.; et al. Changing-look quasar candidates: First results from follow-up spectroscopy of highly optically variable quasars. Astrophys. J. 2019, 874, 8. [Google Scholar] [CrossRef]
- Wolf, J.; Salvato, M.; Coffey, D.; Merloni, A.; Buchner, J.; Arcodia, R.; Baron, D.; Carrera, F.J.; Comparat, J.; Schneider, D.P.; et al. Exploring the diversity of Type 1 active galactic nuclei identified in SDSS-IV/SPIDERS. Mon. Not. R. Astron. Soc. 2020, 492, 3580–3601. [Google Scholar] [CrossRef]
- Fonseca Alvarez, G.; Trump, J.R.; Homayouni, Y.; Grier, C.J.; Shen, Y.; Horne, K.; Li, J.I.-H.; Brandt, W.N.; Ho, L.C.; Peterson, B.M.; et al. The Sloan Digital Sky Survey Reverberation Mapping project: The Hβ radius–luminosity relation. Astrophys. J. 2020, 899, 73. [Google Scholar] [CrossRef]
- Rakshit, S. Broad line region and black hole mass of PKS 1510-089 from spectroscopic reverberation mapping. Astron. Astrophys. 2020, 642, A59. [Google Scholar] [CrossRef]
- Schindler, J.-T.; Farina, E.P.; Bañados, E.; Eilers, A.-C.; Hennawi, J.F.; Onoue, M.; Venemans, B.P.; Walter, F.; Wang, F.; Davies, F.B.; et al. The X-SHOOTER/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 2020, 905, 51. [Google Scholar] [CrossRef]
- Li, S.-S.; Feng, H.-C.; Liu, H.T.; Bai, J.M.; Li, R.; Lu, K.-X.; Wang, J.-G.; Huang, Y.-K.; Zhang, Z.-X. Velocity-resolved reverberation mapping of changing-look active galactic nucleus NGC 4151 during outburst stage: Evidence for kinematics evolution of broad-line region. Astrophys. J. 2022, 936, 75. [Google Scholar] [CrossRef]
- Pandey, S.; Rakshit, S.; Woo, J.-H.; Stalin, C.S. Spectroscopic reverberation mapping of quasar PKS 0736 + 017: Broad-line region and black-hole mass. Mon. Not. R. Astron. Soc. 2022, 516, 2671–2682. [Google Scholar] [CrossRef]
- Lu, K.-X.; Bai, J.-M.; Wang, J.M.; Hu, C.; Li, Y.-R.; Du, P.; Xiao, M.; Feng, H.C.; Li, S.-S.; Wang, J.-G.; et al. Supermassive black hole and broad-line region in NGC 5548: Results from five-season reverberation mapping. Astrophys. J. Suppl. Ser. 2022, 263, 10. [Google Scholar] [CrossRef]
- Bentz, M.C.; Onken, C.A.; Street, R.; Valluri, M. Reverberation mapping of IC 4329A. Astrophys. J. 2023, 944, 29. [Google Scholar] [CrossRef]
- Donnan, F.R.; Hernández Santisteban, J.V.; Horne, K.; Hu, C.; Du, P.; Li, Y.-R.; Xiao, M.; Ho, L.C.; Aceituno, J.; Wang, J.-M.; et al. Testing super-eddington accretion on to a supermassive black hole: Reverberation mapping of PG 1119+120. Mon. Not. R. Astron. Soc. 2023, 523, 545–567. [Google Scholar] [CrossRef]
- Wills, B.J.; Netzer, H.; Wills, D. Broad emission features in QSOs and active galactic nuclei. II. New observations and theory of Fe ii and H i emission. Astrophys. J. 1985, 288, 94–116. [Google Scholar] [CrossRef]
- Verner, E.M.; Verner, D.A.; Korista, K.T.; Ferguson, J.W.; Hamann, F.; Ferland, G.J. Numerical simulations of Fe ii emission spectra. Astrophys. J. Suppl. Ser. 1999, 120, 101–112. [Google Scholar] [CrossRef]
- Marinello, M.; Rodríguez-Ardila, A.; Marziani, P.; Sigut, A.; Pradhan, A. Panchromatic properties of the extreme Fe ii emitter PHL 1092. Mon. Not. R. Astron. Soc. 2020, 494, 4187–4202. [Google Scholar] [CrossRef]
- Phillips, M.M. Observations of Fe ii emission in Seyfert galaxies and QSOs. Astrophys. J. 1977, 215, 746–754. [Google Scholar] [CrossRef]
- Sigut, T.A.A.; Pradhan, A.K. Predicted Fe ii emission-line strengths from active galactic nuclei. Astrophys. J. Suppl. Ser. 2003, 145, 15–37. [Google Scholar] [CrossRef]
- Sigut, T.A.A.; Pradhan, A.K.; Nahar, S.N. Theoretical Fe i-iii emission-line strengths from active galactic nuclei with broad-line regions. Astrophys. J. 2004, 611, 81–92. [Google Scholar] [CrossRef]
- Hamann, F.; Ferland, G. The age and chemical evolution of high-redshift QSOs. Astrophys. J. 1992, 391, L53–L57. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Ferland, G.J.; Korista, K.T.; Hamann, F.; LaCluyzé, A. The origin of Fe ii emission in active galactic nuclei. Astrophys. J. 2004, 615, 610–624. [Google Scholar] [CrossRef]
- Martínez-Aldama, M.L.; Panda, S.; Czerny, B.; Marinello, M.; Marziani, P.; Dultzin, D. The CaFe project: Optical Fe ii and near-infrared Ca ii triplet emission in active galaxies. II. The driver(s) of the Ca ii and Fe ii and its potential use as a chemical clock. Astrophys. J. 2021, 918, 29. [Google Scholar] [CrossRef]
- Sarkar, A.; Ferland, G.J.; Chatzikos, M.; Guzmán, F.; van Hoof, P.A.M.; Smyth, R.T.; Ramsbottom, C.A.; Keenan, F.P.; Ballance, C.P. Improved Fe ii emission-line models for AGNs using new atomic data sets. Astrophys. J. 2021, 907, 12. [Google Scholar] [CrossRef]
- Boroson, T.A.; Green, R.F. The emission-line properties of low-redshift quasi-stellar objects. Astrophys. J. Suppl. Ser. 1992, 80, 109–135. [Google Scholar] [CrossRef]
- Phillips, M.M. The optical spectrum of I Zwicky 1. Astrophys. J. 1976, 208, 37–41. [Google Scholar] [CrossRef]
- Oke, J.B.; Lauer, T.R. An analysis of the spectra of the Seyfert galaxies Markarian 79 and I Zw 1. Astrophys. J. 1979, 230, 360–372. [Google Scholar] [CrossRef]
- Joly, M. The Feii spectrum of Seyfert 1 galaxies and quasars. Astron. Astrophys. 1981, 102, 321–330. Available online: https://ui.adsabs.harvard.edu/abs/1981A%26A...102..321J%2F/ (accessed on 3 January 2024).
- Halpern, J.P.; Oke, J.B. Narrow-line Seyfert galaxies with permitted Fe ii emission: Markarian 507, 5C 3.100, and I Zwicky 1. Astrophys. J. 1987, 312, 91–100. [Google Scholar] [CrossRef]
- Laor, A.; Jannuzi, B.T.; Green, R.F.; Boroson, T.A. The ultraviolet properties of the narrow-line quasar I Zw 1. Astrophys. J. 1997, 489, 656–671. [Google Scholar] [CrossRef]
- Negrete, C.A.; Dultzin, D.; Marziani, P.; Sulentic, J.W. Broad-line region physical conditions in extreme population A quasars: A method to estimate central black hole mass at high redshift. Astrophys. J. 2012, 757, 62. [Google Scholar] [CrossRef]
- Park, D.; Barth, A.J.; Ho, L.C.; Laor, A. A new iron emission template for active galactic nuclei. I. Optical template for the Hβ region. Astrophys. J. Suppl. 2022, 258, 38. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Zwitter, T.; Marziani, P.; Dultzin-Hacyan, D. Eigenvector 1: An optimal correlation space for active galactic nuclei. Astrophys. J. Lett. 2000, 536, L5–L9. [Google Scholar] [CrossRef]
- Shen, Y.; Ho, L.C. The diversity of quasars unified by accretion and orientation. Nature 2014, 513, 210–213. [Google Scholar] [CrossRef]
- Deconto-Machado, A.; del Olmo Orozco, A.; Marziani, P.; Perea, J.; Stirpe, G.M. High-redshift quasars along the main sequence. Astron. Astrophys. 2023, 669, A83. [Google Scholar] [CrossRef]
- Mengistue, S.T.; Del Olmo, A.; Marziani, P.; Pović, M.; Martínez-Carballo, M.A.; Perea, J.; Márquez, I. Optical and near-UV spectroscopic properties of low-redshift jetted quasars in the main sequence context. Mon. Not. R. Astron. Soc. 2023, 525, 4474–4496. [Google Scholar] [CrossRef]
- Vestergaard, M.; Wilkes, B.J. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Suppl. Ser. 2001, 134, 1–33. [Google Scholar] [CrossRef]
- Tsuzuki, Y.; Kawara, K.; Yoshii, Y.; Oyabu, S.; Tanabé, T.; Matsuoka, Y. Fe ii emission in 14 low-redshift quasars. I. Observations. Astrophys. J. 2006, 650, 57–79. [Google Scholar] [CrossRef]
- Kovačević-Dojčinović, J.; Popović, L.Č. The connections between the UV and optical Fe ii emission lines in type 1 AGNs. Astrophys. J. Suppl. Ser. 2015, 221, 35. [Google Scholar] [CrossRef]
- Dong, X.-B.; Ho, L.C.; Wang, J.-G.; Wang, T.-G.; Wang, H.; Fan, X.; Zhou, H. The prevalence of narrow optical Fe ii emission lines in type 1 active galactic nuclei. Astrophys. J. Lett. 2010, 721, L143–L147. [Google Scholar] [CrossRef]
- Dong, X.-B.; Wang, J.-G.; Ho, L.C.; Wang, T.-G.; Fan, X.; Wang, H.; Zhou, H.; Yuan, W. What controls the Fe ii strength in active galactic nuclei? Astrophys. J. 2011, 736, 86. [Google Scholar] [CrossRef]
- Kovačević, J.; Popović, L.Č.; Dimitrijević, M.S. Analysis of optical Fe ii emission in a sample of active galactic nucleus spectra. Astrophys. J. Suppl. Ser. 2010, 189, 15–36. [Google Scholar] [CrossRef]
- Sigut, T.A.A.; Pradhan, A.K. Lyα fluorescent excitation of Fe ii in active galactic nuclei. Astrophys. J. 1998, 499, L139–L142. [Google Scholar] [CrossRef]
- Rodriguez-Ardila, A.; Viegas, S.M.; Pastoriza, M.G.; Prato, L. Infrared Fe ii emission in narrow-line Seyfert 1 galaxies. Astrophys. J. 2002, 565, 140. [Google Scholar] [CrossRef]
- Garcia-Rissmann, A.; Rodríguez-Ardila, A.; Sigut, T.A.A.; Pradhan, A.K. A near-infrared template derived from I Zw 1 for the Fe ii emission in active galaxies. Astrophys. J. 2012, 751, 7. [Google Scholar] [CrossRef]
- Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T.A.A.; Pradhan, A.K. The Fe ii emission in active galactic nuclei: Excitation mechanisms and location of the emitting region. Astrophys. J. 2016, 820, 116. [Google Scholar] [CrossRef]
- Rudy, R.J.; Mazuk, S.; Puetter, R.C.; Hamann, F. The 1 micron Fe ii lines of the seyfert galaxy I Zw 1. Astrophys. J. 2000, 539, 166–171. [Google Scholar] [CrossRef]
- Riffel, R.; Rodriguez-Ardila, A.; Pastoriza, M.G. A 0.8–2.4 μm spectral atlas of active galactic nuclei. Astron. Astrophys. 2006, 457, 61–70. [Google Scholar] [CrossRef]
- Martínez-Aldama, M.L.; Dultzin, D.; Marziani, P.; Sulentic, J.W.; Bressan, A.; Chen, Y.; Stirpe, G.M. Oi and Ca ii observations in intermediate redshift quasars. Astrophys. J. Suppl. Ser. 2015, 217, 3. [Google Scholar] [CrossRef]
- Panda, S.; Martínez-Aldama, M.L.; Marinello, M.; Czerny, B.; Marziani, P.; Dultzin, D. The CaFe project: Optical Fe ii and near-infrared Ca ii triplet emission in active galaxies. I. Photoionization modeling. Astrophys. J. 2020, 902, 76. [Google Scholar] [CrossRef]
- Panda, S. The CaFe project: Optical Fe ii and near-infrared Ca ii triplet emission in active galaxies: Simulated EWs and the co-dependence of cloud size and metal content. Astron. Astrophys. 2021, 650, A154. [Google Scholar] [CrossRef]
- Bruhweiler, F.; Verner, E. Modeling Fe ii emission and revised Fe ii (UV) empirical templates for the Seyfert 1 galaxy I Zw 1. Astrophys. J. 2008, 675, 83–95. [Google Scholar] [CrossRef]
- Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the quasar main sequence in the optical plane. Astrophys. J. 2018, 866, 115. [Google Scholar] [CrossRef]
- Dias dos Santos, D.; Panda, S.; Rodríguez-Ardila, A.; Marinello, M. Modelling the strong Fe ii emission. Bol. Soc. Astron. Bras. 2023, 34, 295–299. Available online: https://sab-astro.org.br/sab/publicacoes/boletim-da-sab-vol-34/ (accessed on 3 January 2024).
- Panda, S.; Czerny, B.; Done, C.; Kubota, A. cloudy view of the warm corona. Astrophys. J. 2019, 875, 133. [Google Scholar] [CrossRef]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 release of Cloudy. Rev. Mex. Astron. Astrofís. 2017, 53, 385–438. Available online: http://www.astroscu.unam.mx/rmaa/RMxAA..53-2/ (accessed on 3 January 2024).
- Véron-Cetty, M.-P.; Joly, M.; Véron, P. The unusual emission line spectrum of I Zw 1. Astron. Astrophys. 2004, 417, 515–525. [Google Scholar] [CrossRef]
- Huang, Y.-K.; Hu, C.; Zhao, Y.-L.; Zhang, Z.-X.; Lu, K.-X.; Wang, K.; Zhang, Y.; Du, P.; Li, Y.-R.; Bai, J.-M.; et al. Reverberation mapping of the narrow-line Seyfert 1 galaxy I Zwicky 1: Black hole mass. Astrophys. J. 2019, 876, 102. [Google Scholar] [CrossRef]
- Osterbrock, D.E.; Pogge, R.W. The spectra of narrow-line Seyfert 1 galaxies. Astrophys. J. 1985, 297, 166–176. [Google Scholar] [CrossRef]
- Marziani, P.; del Olmo, A.; Negrete, C.A.; Dultzin, D.; Piconcelli, E.; Vietri, G.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; et al. The intermediate-ionization lines as virial broadening estimators for Population A quasars. Astrophys. J. Suppl. Ser. 2022, 261, 30. [Google Scholar] [CrossRef]
- Kaspi, S.; Smith, P.S.; Netzer, H.; Maoz, D.; Jannuzi, B.T.; Giveon, U. Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 2000, 533, 631–649. [Google Scholar] [CrossRef]
- Panda, S. Physical conditions in the low-ionization broad-line region in active galaxies. Publ. Astronom. Observat. Belgr. 2021, 100, 333–338. Available online: https://ui.adsabs.harvard.edu/abs/2021POBeo.100..333P/ (accessed on 3 January 2024).
- Grevesse, N.; Asplund, M.; Sauval, A.J.; Scott, P. The chemical composition of the sun. Can. J. Phys. 2011, 89, 327–331. [Google Scholar] [CrossRef]
- Bottorff, M.C.; Ferland, G.J. Magnetic confinement, magnetohydrodynamic waves and smooth line profiles in active galactic nuclei. Mon. Not. R. Astron. Soc. 2000, 316, 103–106. [Google Scholar] [CrossRef]
- Rees, M.J. Magnetic confinement of broad-line clouds in active galactic nuclei. Mon. Not. R. Astron. Soc. 1987, 228, 47P–50P. [Google Scholar] [CrossRef]
- Kollatschny, W.; Zetzl, M. The shape of broad-line profiles in active galactic nuclei. Astron. Astrophys. 2013, 549, A100. [Google Scholar] [CrossRef]
- Marziani, P.; Berton, M.; Panda, S.; Bon, E. Optical singly-ionized iron emission in radio-quiet and relativistically jetted active galactic nuclei. Universe 2021, 7, 484. [Google Scholar] [CrossRef]
- Ferland, G.J.; Persson, S.E. Implications of Ca ii emission for physical conditions in the broad-line region of active galactic nuclei. Astrophys. J. 1989, 347, 656–673. [Google Scholar] [CrossRef]
Feii10502 | Feii9998 | Feii10863 | Feii11127 | Pa | H | Feii4570 | ||
---|---|---|---|---|---|---|---|---|
2.70 ± 1.38 | 4.13 ± 1.06 | 0.150 ± 0.17 | 2.32 ± 1.29 | 5.96 ± 0.83 | 0.46 ± 0.47 to 1.48 ± 0.15 | 10.30 ± 1.84 | 16.70 ± 2.80 | 1.62 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias dos Santos, D.; Panda, S.; Rodríguez-Ardila, A.; Marinello, M. Joint Analysis of the Iron Emission in the Optical and Near-Infrared Spectrum of I Zw 1. Physics 2024, 6, 177-193. https://doi.org/10.3390/physics6010013
Dias dos Santos D, Panda S, Rodríguez-Ardila A, Marinello M. Joint Analysis of the Iron Emission in the Optical and Near-Infrared Spectrum of I Zw 1. Physics. 2024; 6(1):177-193. https://doi.org/10.3390/physics6010013
Chicago/Turabian StyleDias dos Santos, Denimara, Swayamtrupta Panda, Alberto Rodríguez-Ardila, and Murilo Marinello. 2024. "Joint Analysis of the Iron Emission in the Optical and Near-Infrared Spectrum of I Zw 1" Physics 6, no. 1: 177-193. https://doi.org/10.3390/physics6010013
APA StyleDias dos Santos, D., Panda, S., Rodríguez-Ardila, A., & Marinello, M. (2024). Joint Analysis of the Iron Emission in the Optical and Near-Infrared Spectrum of I Zw 1. Physics, 6(1), 177-193. https://doi.org/10.3390/physics6010013