Surface Scattering Expansion of the Casimir–Polder Interaction for Magneto-Dielectric Bodies: Convergence Properties for Insulators, Conductors, and Semiconductors
Abstract
:1. Introduction
2. Casimir–Polder Energy of a Polarizable Particle and a Magneto-Dielectric Body
3. Equivalent Expressions of the SSO
- C1.
- When the two surface positions, and , are close one to another, the SSO has, in general, a singularity. However, a unique choice of the coefficients exists [53], for which the singularity is reduced to a weaker divergence. The coefficient matrices ensuring this remarkable property areThe corresponding surface operator has unique mathematical properties (see Section 6 of Ref. [44]).
- C2.
- A fully asymmetric, material independent choice of coefficient matrices isFor good conductors, one observes relatively fast convergence of the MSE with this choice what is consistent with the observation made in Ref. [42].
4. Results and Discussion
4.1. Materials
4.2. CP Energy for a Sphere
4.3. CP Energy for a Cylinder
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. B 1948, 51, 793–795. Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 6 January 2024).
- Lifshitz, E.M. The theory of molecular attractive force between solids. Sov. Phys. JETP (J. Exp. Theoret. Phys.) 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 6 January 2024).
- Deriaguin, B.V.; Abrikosova, I.I. Direct measurement of the molecular attraction of solid bodies. 1. Statement of the problem and method of measuring forces by using negative feedback. Sov. Phys. JETP (J. Exp. Theoret. Phys.) 1957, 3, 819–829. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/3/6/p819?a=list (accessed on 6 January 2024).
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces. I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder, and van der Waals Forces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Rodriguez, A.W.; Hui, P.C.; Woolf, D.P.; Johnson, S.G.; Loncar, M.; Capasso, F. Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: Designer bonding, antibonding, and Casimir forces. Ann. Phys. 2014, 527, 45. [Google Scholar] [CrossRef]
- Woods, L.M.; Dalvit, D.A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A.W.; Podgornik, R. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 2016, 88, 045003. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M.; Krüger, M. Nonequilibrium fluctuational quantum electrodynamics: Heat radiation, heat transfer, and force. Annu. Rev. Condens. Matter Phys. 2017, 8, 119–143. [Google Scholar] [CrossRef]
- Langbein, D. Theory of van der Waals Attraction; Springer: Berlin, Heidelberg, Germany, 1974. [Google Scholar] [CrossRef]
- Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 μm range force in the 0.6 to 6 μm range. Phys. Rev. Lett. 1997, 78, 5–8. [Google Scholar] [CrossRef]
- Mohideen, U.; Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 1998, 81, 4549–4552. [Google Scholar] [CrossRef]
- Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 2001, 291, 1941–1944. [Google Scholar] [CrossRef]
- Bressi, G.; Carugno, G.; Onofrio, R.; Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 2002, 88, 041804. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Krause, D.E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 2003, 91, 050402. [Google Scholar] [CrossRef]
- Munday, J.N.; Capasso, F.; Parsegian, V.A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 2009, 457, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. Observation of the thermal Casimir force. Nat. Phys. 2011, 7, 230–233. [Google Scholar] [CrossRef]
- Tang, L.; Wang, M.; Ng, C.Y.; Nikolic, M.; Chan, C.T.; Rodriguez, A.W.; Chan, H.B. Measurement of non-monotonic Casimir forces between silicon nanostructures. Nat. Photon. 2017, 11, 97–101. [Google Scholar] [CrossRef]
- Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 2007, 99, 170403. [Google Scholar] [CrossRef] [PubMed]
- Kenneth, O.; Klich, I. Casimir forces in a T-operator approach. Phys. Rev. B 2008, 78, 014103. [Google Scholar] [CrossRef]
- Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D 2009, 80, 085021. [Google Scholar] [CrossRef]
- Genet, C.; Lambrecht, A.; Reynaud, S. Casimir force and the quantum theory of lossy optical cavities. Phys. Rev. A 2003, 67, 043811. [Google Scholar] [CrossRef]
- Lambrecht, A.; Maia Neto, P.A.; Reynaud, S. The Casimir effect within scattering theory. New J. Phys. 2006, 8, 243. [Google Scholar] [CrossRef]
- Maghrebi, M.F.; Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Analytical results on Casimir forces for conductors with edges and tips. Proc. Natl. Acad. Sci. USA 2011, 108, 6867–6871. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T. Exact results for classical Casimir interactions: Dirichlet and Drude model in the sphere-sphere and sphere-plane geometry. Phys. Rev. Lett. 2012, 109, 160403. [Google Scholar] [CrossRef] [PubMed]
- Schoger, T.; Ingold, G.L. Classical Casimir free energy for two Drude spheres of arbitrary radii: A plane-wave approach. SciPost Phys. Core 2021, 4, 011. [Google Scholar] [CrossRef]
- Hartmann, M.; Ingolg, G.L.; Maia Neto, P.A. Plasma versus Drude modeling of the Casimir force: Beyond the proximity force approximation. Phys. Rev. Lett. 2017, 119, 043901. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tang, L.; Ng, C.Y.; Messina, R.; Guizal, B.; Crosse, J.A.; Antezza, M.; Chan, C.T.; Chan, H.B. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nat. Comun. 2021, 12, 600. [Google Scholar] [CrossRef]
- Banishev, A.A.; Wagner, J.; Emig, T.; Zandi, R.; Mohideen, U. Demonstration of angle-dependent Casimir force between corrugations. Phys. Rev. Lett. 2013, 110, 250403. [Google Scholar] [CrossRef]
- Intravaia, F.; Koev, S.; Jung, I.W.; Talin, A.A.; Davids, P.S.; Decca, R.S.; Aksyuk, V.A.; Dalvit, D.A.R.; López, D. Strong Casimir force reduction through metallic surface nanostructuring. Nat. Commun. 2013, 4, 2515. [Google Scholar] [CrossRef]
- Lambrecht, A.; Marachevsky, V.N. Casimir interaction of dielectric gratings. Phys. Rev. Lett. 2008, 101, 160403. [Google Scholar] [CrossRef]
- Bender, H.; Stehle, C.; Zimmermann, C.; Slama, S.; Fiedler, J.; Scheel, S.; Buhmann, S.Y.; Marachevsky, V.N. Probing atom-surface interactions by diffraction of Bose-Einstein condensates. Phys. Rev. X 2014, 4, 011029. [Google Scholar] [CrossRef]
- Antezza, M.; Chan, H.; Guizal, B.; Marachevsky, V.N.; Messina, R.; Wang, M. Giant Casimir torque between rotated gratings and the θ=0 anomaly. Phys. Rev. Lett. 2020, 124, 013903. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Proximity force approximation for the Casimir energy as a derivative expansion. Phys. Rev. D 2011, 84, 105031. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Jaffe, R.L.; Kardar, M. Casimir forces beyond the proximity approximation. Europhys. Lett. (EPL) 2012, 97, 50001. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Material dependence of Casimir forces: Gradient expansion beyond proximity. Appl. Phys. Lett. 2012, 100, 074110. [Google Scholar] [CrossRef]
- Bimonte, G. Going beyond PFA: A precise formula for the sphere-plate Casimir force. Europhys. Lett. 2017, 118, 20002. [Google Scholar] [CrossRef]
- Reid, M.T.H.; White, J.; Johnson, S.G. Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries. Phys. Rev. A 2013, 88, 022514. [Google Scholar] [CrossRef]
- Chew, W.C.; Tong, M.S.; Hu, B. Integral Equations Methods for Electromagnetic and Elastic Waves; Springer Nature Switzerland AG: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Volakis, S.K.; Sertel, K. Integral Equations Methods for Electromagnetics; SciTech Publishing: Raleigh, NC, USA, 2012. [Google Scholar]
- Balian, R.; Duplantier, B. Electromagnetic waves near perfect conductors. I. Multiple scattering expansions. Distribution of modes. Ann. Phys. 1977, 104, 300–335. [Google Scholar] [CrossRef]
- Balian, R.; Duplantier, B. Electromagnetic waves near perfect conductors. II. Casimir effect. Ann. Phys. 1978, 112, 165–208. [Google Scholar] [CrossRef]
- Emig, T.; Bimonte, G. Multiple scattering expansion for dielectric Media: Casimir effect. Phys. Rev. Lett. 2023, 130, 200401. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T. Casimir and Casimir-Polder interactions for magneto-dielectric materials: Surface scattering expansion. Phys. Rev. A 2023, 108, 052807. [Google Scholar] [CrossRef]
- Marachevsky, V.N. Casimir effect and quantum field theory in dielectrics. Theor. Math. Phys. 2002, 131, 468–482. [Google Scholar] [CrossRef]
- Buhmann, S.Y.; Dung, H.T.; Welsch, D.G. The van der Waals energy of atomic systems near absorbing and dispersing bodies. J. Opt. B Quantum Semiclass. Opt. 2004, 6, S127–S135. [Google Scholar] [CrossRef]
- Milton, K.A.; Parashar, P.; Pourtolami, N. Casimir-Polder repulsion: Polarizable atoms, cylinders, spheres and ellipsoids. Phys. Rev. D 2012, 85, 025008. [Google Scholar] [CrossRef]
- Noruzifar, E.; Emig, T.; Mohideen, U.; Zandi, R. Collective charge fluctuations and Casimir interactions for quasi-one-dimensional metals. Phys. Rev. B 2012, 86, 115449. [Google Scholar] [CrossRef]
- Contreras-Reyes, A.M.; Guérout, R.; Neto, P.A.M.; Dalvit, D.A.R.; Lambrecht, A.; Reynaud, S. Casimir-Polder interaction between an atom and a dielectric grating. Phys. Rev. A 2010, 82, 052517. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder interaction for gently curved surfaces. Phys. Rev. D 2014, 90, 081702. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces. Phys. Rev. D 2015, 92, 025028. [Google Scholar] [CrossRef]
- Kristensen, P.T.; Beverungen, B.; Intravaia, F.; Busch, K. High-accuracy Casimir-Polder force calculations using the discontinuous Galerkin time-domain method. Phys. Rev. B 2023, 108, 205424. [Google Scholar] [CrossRef]
- Müller, C. Foundations of the Mathematical Theory of Electromagnetic Waves; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar] [CrossRef]
- Decca, R.S.; Lopez, D.; Fischbach, E.; Klimchitskaya, G.K.; Krause, D.E.; Mostepanenko, V.M. Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect. Eur. Phys. J. C 2007, 51, 963–975. [Google Scholar] [CrossRef]
j | (eV/) | () | (eV/) |
---|---|---|---|
1 | 3.05 | 7.091 | 0.75 |
2 | 4.15 | 41.46 | 1.85 |
3 | 5.4 | 2.7 | 1.0 |
4 | 8.5 | 154.7 | 7.0 |
5 | 13.5 | 44.55 | 6.0 |
6 | 21.5 | 309.6 | 9.0 |
j | (eV/) | () | (eV/) |
---|---|---|---|
1 | 6.35 | 14.6 | 0.65 |
2 | 14.0 | 96.9 | 5.0 |
3 | 11.0 | 44.4 | 3.5 |
4 | 20.1 | 136.9 | 11.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bimonte, G.; Emig, T. Surface Scattering Expansion of the Casimir–Polder Interaction for Magneto-Dielectric Bodies: Convergence Properties for Insulators, Conductors, and Semiconductors. Physics 2024, 6, 194-205. https://doi.org/10.3390/physics6010014
Bimonte G, Emig T. Surface Scattering Expansion of the Casimir–Polder Interaction for Magneto-Dielectric Bodies: Convergence Properties for Insulators, Conductors, and Semiconductors. Physics. 2024; 6(1):194-205. https://doi.org/10.3390/physics6010014
Chicago/Turabian StyleBimonte, Giuseppe, and Thorsten Emig. 2024. "Surface Scattering Expansion of the Casimir–Polder Interaction for Magneto-Dielectric Bodies: Convergence Properties for Insulators, Conductors, and Semiconductors" Physics 6, no. 1: 194-205. https://doi.org/10.3390/physics6010014
APA StyleBimonte, G., & Emig, T. (2024). Surface Scattering Expansion of the Casimir–Polder Interaction for Magneto-Dielectric Bodies: Convergence Properties for Insulators, Conductors, and Semiconductors. Physics, 6(1), 194-205. https://doi.org/10.3390/physics6010014