Adiabatically Manipulated Systems Interacting with Spin Baths beyond the Rotating Wave Approximation
Abstract
:1. Introduction
2. Physical Model and Methods
2.1. Hamiltonian Model
2.2. Ideal STIRAP
2.3. Time Evolution and Efficiency
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Adiabatic Approximation
Appendix B. Second Order Term for the Zero-Temperature Bath
References
- Messiah, A. Quantum Mechanics; Dover Publications, Inc.: Mineola, NY, USA, 1999; Available online: https://archive.org/details/quantummechanics0000mess/ (accessed on 2 February 2024).
- Griffiths, D.J.; Schroeter, D.F. Introduction to Quantum Mechanics; Cambridge University Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Mod. Phys. 2018, 90, 015002. [Google Scholar] [CrossRef]
- Santos, A.C.; Sarandy, M.S. Sufficient conditions for adiabaticity in open quantum systems. Phys. Rev. A 2020, 102, 052215. [Google Scholar] [CrossRef]
- Il’in, N.; Aristova, A.; Lychkovskiy, O. Adiabatic theorem for closed quantum systems initialized at finite temperature. Phys. Rev. A 2021, 104, L030202. [Google Scholar] [CrossRef]
- Pyshkin, P.V.; Luo, D.W.; Wu, L.A. Self-protected adiabatic quantum computation. Phys. Rev. A 2022, 106, 012420. [Google Scholar] [CrossRef]
- Coello Pérez, E.A.; Bonitati, J.; Lee, D.; Quaglioni, S.; Wendt, K.A. Quantum state preparation by adiabatic evolution with custom gates. Phys. Rev. A 2022, 105, 032403. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Fleischhauer, M.; Shore, B.W.; Bergmann, K. Coherent manipulation of atoms molecules by sequential laser pulses. Adv. At. Mol. Opt. Phys. 2001, 46, 55–190. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Halfmann, T.; Shore, B.W.; Bergmann, K. Laser-induced population transfer by adiabatic passage. Ann. Rev. Phys. Chem. 2001, 52, 763–809. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, K.; Theuer, H.; Shore, B.W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 1998, 70, 1003–1025. [Google Scholar] [CrossRef]
- Král, P.; Thanopulos, I.; Shapiro, M. Colloquium: Coherently controlled adiabatic passage. Rev. Mod. Phys. 2007, 79, 53–77. [Google Scholar] [CrossRef]
- Bergmann, K.; Nägerl, H.-C.; Panda, C.; Gabrielse, G.; Miloglyadov, E.; Quack, M.; Seyfang, G.; Wichmann, G.; Ospelkaus, S.; Kuhn, A.; et al. Roadmap on STIRAP applications. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 202001. [Google Scholar] [CrossRef]
- Blekos, K.; Stefanatos, D.; Paspalakis, E. Performance of superadiabatic stimulated Raman adiabatic passage in the presence of dissipation and Ornstein-Uhlenbeck dephasing. Phys. Rev. A 2020, 102, 023715. [Google Scholar] [CrossRef]
- Ahmadinouri, F.; Hosseini, M.; Sarreshtedari, F. Stimulated Raman adiabatic passage: Effects of system parameters on population transfer. Chem. Phys. 2020, 539, 110960. [Google Scholar] [CrossRef]
- Cinins, A.; Bruvelis, M.; Bezuglov, N.N. Study of the adiabatic passage in tripod atomic systems in terms of the Riemannian geometry of the Bloch sphere. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 234003. [Google Scholar] [CrossRef]
- Dogra, S.; Paraoanu, G.S. Perfect stimulated Raman adiabatic passage with imperfect finite-time pulses. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 174001. [Google Scholar] [CrossRef]
- Liu, K.; Sugny, D.; Chen, X.; Guérin, S. Optimal pulse design for dissipative-stimulated Raman exact passage. Entropy 2023, 25, 790. [Google Scholar] [CrossRef] [PubMed]
- Genov, G.T.; Rochester, S.; Auzinsh, M.; Jelezko, F.; Budker, D. Robust two-state swap by stimulated Raman adiabatic passage. J. Phys. B At. Mol. Opt. Phys. 2023, 56, 054001. [Google Scholar] [CrossRef]
- Ni, K.-K.; Ospelkaus, S.; de Miranda, M.H.G.; Peér, A.; Neyenhuis, B.; Zirbel, J.J.; Kotochigova, S.; Julienne, P.S.; Jin, D.S.; Ye, J. A high phase-space-density gas of polar molecules. Science 2008, 322, 231–235. [Google Scholar] [CrossRef]
- Danzl, J.G.; Haller, E.; Gustavsson, M.; Mark, M.J.; Hart, R.; Bouloufa, N.; Dulieu, O.; Ritsch, H.; Nägerl, H.-C. Quantum Gas of deeply bound ground state molecules. Science 2008, 321, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Danzl, J.G.; Mark, M.J.; Haller, E.; Gustavsson, M.; Hart, R.; Aldegunde, J.; Hutson, J.M.; Nägerl, H.-C. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 2010, 6, 265–270. [Google Scholar] [CrossRef]
- Klein, J.; Beil, F.; Halfmann, T. Robust Population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5 Crystal. Phys. Rev. Lett. 2007, 99, 113003. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.L.; Lauro, R.; Louchet, A.; Chanelière, T.; Le Gouët, J.L. Stimulated Raman adiabatic passage in Tm3+:YAG. Phys. Rev. B 2008, 78, 144407. [Google Scholar] [CrossRef]
- Golter, D.A.; Wang, H. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett. 2014, 112, 116403. [Google Scholar] [CrossRef]
- Yale, C.G.; Heremans, F.J.; Zhou, B.B.; Auer, A.; Burkard, G.; Awschalom, D.D. Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 2016, 10, 184–189. [Google Scholar] [CrossRef]
- Wolfowicz, G.; Heremans, F.J.; Anderson, C.P.; Kanai, S.; Seo, H.; Gali, A.; Galli, G.; Awschalom, D.D. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 2021, 6, 906925. [Google Scholar] [CrossRef]
- Zhou, B.; Baksic, A.; Ribeiro, H.; Yale, C.G.; Heremans, F.J.; Jerger, P.C.; Auer, A.; Burkard, G.; Clerk, A.A.; Awschalom, D.D. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 2017, 13, 330–334. [Google Scholar] [CrossRef]
- Baksic, A.; Ribeiro, H.; Clerk, A.A. Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 2016, 116, 230503. [Google Scholar] [CrossRef]
- Varguet, H.; Rousseaux, B.; Dzsotjan, D.; Jauslin, H.R.; Guérin, S.; Colas des Francs, G. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle. Opt. Lett. 2016, 41, 4480–4483. [Google Scholar] [CrossRef]
- Castellini, A.; Jauslin, H.R.; Rousseaux, B.; Dzsotjan, D.; Colas des Francs, G.; Messina, A.; Guérin, S. Quantum plasmonics with multi-emitters: Application to stimulated Raman adiabatic passage. Eur. Phys. J. D 2018, 72, 223. [Google Scholar] [CrossRef]
- Kubo, Y. Turn to the dark side. Nat. Phys. 2016, 12, 21–22. [Google Scholar] [CrossRef]
- Xu, H.K.; Song, C.; Liu, W.Y.; Xue, G.M.; Su, F.F.; Deng, H.; Tian, Y.; Zheng, D.N.; Han, S.; Zhong, Y.P.; et al. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits. Nat. Commun. 2016, 7, 11018. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G.S. Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 2016, 7, 10628. [Google Scholar] [CrossRef] [PubMed]
- Soresen, J.L.; Moller, D.; Iversen, T.; Thomsen, J.B.; Jensen, F.; Staanum, P.; Voigt, D.; Drewsen, M. Efficient coherent internal state transfer in trapped ions using stimulated Raman adiabatic passage. New J. Phys. 2006, 8, 261. [Google Scholar] [CrossRef]
- Higgins, G.; Pokorny, F.; Zhang, C.; Bodart, Q.; Hennrich, M. Coherent control of a single trapped Rydberg ion. Phys. Rev. Lett. 2017, 119, 220501. [Google Scholar] [CrossRef]
- Fedoseev, V.; Luna, F.; Hedgepeth, I.; Löffler, W.; Bouwmeester, D. Stimulated Raman adiabatic passage in optomechanics. Phys. Rev. Lett. 2021, 126, 113601. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Vitanov, N.V. High-fidelity multistate stimulated Raman adiabatic passage assisted by shortcut fields. Phys. Rev. A 2020, 102, 023515. [Google Scholar] [CrossRef]
- Evangelakos, V.; Paspalakis, E.; Stefanatos, D. Optimal STIRAP shortcuts using the spin-to-spring mapping. Phys. Rev. A 2023, 107, 052606. [Google Scholar] [CrossRef]
- Stefanatos, D.; Paspalakis, E. Optimal shortcuts of stimulated Raman adiabatic passage in the presence of dissipation. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2022, 380, 20210283. [Google Scholar] [CrossRef] [PubMed]
- Messikh, C.; Messikh, A. Robust stimulated Raman shortcuts to adiabatic passage with deep learning. EPL (Europhys. Lett.) 2022, 140, 48003. [Google Scholar] [CrossRef]
- Stefanatos, D.; Blekos, K.; Paspalakis, E. Robustness of STIRAP shortcuts under Ornstein-Uhlenbeck noise in the energy levels. Appl. Sci. 2020, 10, 1580. [Google Scholar] [CrossRef]
- Genov, G.T.; Vitanov, N.V. Dynamical suppression of unwanted transitions in multistate quantum systems. Phys. Rev. Lett. 2013, 110, 133002. [Google Scholar] [CrossRef] [PubMed]
- Yatsenko, L.P.; Shore, B.W.; Bergmann, K. Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage. Phys. Rev. A 2014, 89, 013831. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Stenholm, S. Population transfer via a decaying state. Phys. Rev. A 1997, 56, 1463–1471. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar] [CrossRef]
- Gardiner, C.W.; Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Ivanov, P.A.; Vitanov, N.V.; Bergmann, K. Spontaneous emission in stimulated Raman adiabatic passage. Phys. Rev. A 2005, 72, 053412. [Google Scholar] [CrossRef]
- Akram, M.J.; Saif, F. Adiabatic population transfer based on a double stimulated Raman adiabatic passage. J. Russ. Laser Res. 2014, 35, 547–554. [Google Scholar] [CrossRef]
- Sukharev, M.; Malinovskaya, S.A. Stimulated Raman adiabatic passage as a route to achieving optical control in plasmonics. Phys. Rev. A 2012, 86, 043406. [Google Scholar] [CrossRef]
- Mathisen, T.; Larson, J. Liouvillian of the open STIRAP problem. Entropy 2018, 20, 20. [Google Scholar] [CrossRef]
- Davies, E.B.; Spohn, H. Open quantum systems with time-dependent Hamiltonians and their linear response. J. Stat. Phys. 1978, 19, 511–523. [Google Scholar] [CrossRef]
- Scala, M.; Militello, B.; Messina, A.; Vitanov, N.V. Stimulated Raman adiabatic passage in an open quantum system: Master equation approach. Phys. Rev. A 2010, 81, 053847. [Google Scholar] [CrossRef]
- Scala, M.; Militello, B.; Messina, A.; Vitanov, N.V. Stimulated Raman adiabatic passage in a Λ system in the presence of quantum noise. Phys. Rev. A 2011, 83, 012101. [Google Scholar] [CrossRef]
- Onizhuk, M.; Miao, K.C.; Blanton, J.P.; Ma, H.; Anderson, C.P.; Bourassa, A.; Awschalom, D.D.; Galli, G. Probing the Coherence of Solid-State Qubits at Avoided Crossings. Phys. Rev. X Quantum 2021, 2, 010311. [Google Scholar] [CrossRef]
- Militello, B.; Napoli, A. Adiabatic manipulation of a system interacting with a spin bath. Entropy 2023, 15, 2028. [Google Scholar] [CrossRef]
- Fischer, J.; Breuer, H.-P. Correlated projection operator approach to non-Markovian dynamics in spin baths. Phys. Rev. A 2007, 76, 052119. [Google Scholar] [CrossRef]
- Ferraro, E.; Breuer, H.-P.; Napoli, A.; Jivulescu, M.A.; Messina, A. Non-Markovian dynamics of a single electron spin coupled to a nuclear spin bath. Phys. Rev. B 2008, 78, 064309. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Misra, A.; Mukhopadhyay, C.; Pati, A.K. Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate. Phys. Rev. A 2017, 95, 012122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Militello, B.; Napoli, A. Adiabatically Manipulated Systems Interacting with Spin Baths beyond the Rotating Wave Approximation. Physics 2024, 6, 483-495. https://doi.org/10.3390/physics6020032
Militello B, Napoli A. Adiabatically Manipulated Systems Interacting with Spin Baths beyond the Rotating Wave Approximation. Physics. 2024; 6(2):483-495. https://doi.org/10.3390/physics6020032
Chicago/Turabian StyleMilitello, Benedetto, and Anna Napoli. 2024. "Adiabatically Manipulated Systems Interacting with Spin Baths beyond the Rotating Wave Approximation" Physics 6, no. 2: 483-495. https://doi.org/10.3390/physics6020032
APA StyleMilitello, B., & Napoli, A. (2024). Adiabatically Manipulated Systems Interacting with Spin Baths beyond the Rotating Wave Approximation. Physics, 6(2), 483-495. https://doi.org/10.3390/physics6020032