Critical Temperature and Critical Current Enhancement in Arrays of Josephson Junctions: A Ginzburg–Landau Perspective
Abstract
:1. Introduction
2. Linear Arrays
3. Double-Comb Networks
3.1. Double Comb (Bf)
3.2. Double Comb (bF)
3.3. Double Comb (BF)
4. Josephson Critical Currents Enhancement: Theory versus Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solymar, L. Superconductive Tunneling and Applications; John Wiley & Sons, Inc.: London, UK, 1972; Available online: https://archive.org/details/superconductivet0000soly/ (accessed on 1 March 2024).
- Kulik, I.O.; Yanson, I.K. The Josephson Effect in Superconductive Tunneling Structures; Israel Program for Scientific Translations: Jerusalem, Israel, 1972. [Google Scholar]
- Barone, A.; Paternò, G. Physics and Applications of the Josephson Effect; John Wiley & Sons, Inc.: New York, NY, USA, 1982. [Google Scholar] [CrossRef]
- Likharev, K.K. Dynamics of Josephson Junctions and Circuits; CRC Press/Taylor & Francis Group: London, UK, 1986; Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781315141572/dynamics-josephson-junctions-circuits-konstantin-likharev (accessed on 1 March 2024).
- Tinkham, M. Introduction to Superconductivity; McGraw-Hill, Inc.: New York, NY, USA, 1996; Available online: https://pdfcoffee.com/introduction-to-superconductivity-by-michael-tinkham-2nd-edition-pdf-free.html (accessed on 1 March 2024).
- Van Duzer, T.; Turner, C.W. Principles of Superconducting Devices and Circuits; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Huberman, B.A.; Crutchfield, J.P.; Packard, N.H. Noise phenomena in Josephson junctions. Appl. Phys. Lett. 1980, 37, 750–752. [Google Scholar] [CrossRef]
- Pedersen, N.F.; Davidson, A. Chaos and noise rise in Josephson junctions. Appl. Phys. Lett. 1981, 39, 830–832. [Google Scholar] [CrossRef]
- Kautz, R.L.; Monaco, R. Survey of chaos in the rf-biased Josephson junction. J. Appl. Phys. 1985, 57, 875–889. [Google Scholar] [CrossRef]
- McLaughlin, D.W.; Scott, A.C. Perturbation analysis of fluxon dynamics. Phys. Rev. A 1978, 18, 1652–1680. [Google Scholar] [CrossRef]
- Parmentier, R.D. Fluxons in long Josephson junctions. In Solitons in Action; Lonngren, K., Scott, A., Eds.; Academic Press, Inc.: New York, NY, USA, 1978; pp. 173–199. [Google Scholar] [CrossRef]
- Pedersen, N.F. Solitons in Josephson transmission lines. Mod. Probl. Condens. Matter Sci. 1986, 17, 469–501. [Google Scholar]
- Ustinov, A.V. Solitons in Josephson junctions. Phys. D Nonlin. Phenom. 1998, 123, 315–329. [Google Scholar] [CrossRef]
- Kurkijarvi, J. Intrinsic fluctuations in a superconducting ring closed with a Josephson junction. Phys. Rev. B 1972, 6, 832–835. [Google Scholar] [CrossRef]
- Fulton, T.A.; Dunkleberger, L.N. Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 1974, 9, 4760–4768. [Google Scholar] [CrossRef]
- Büttiker, M.; Harris, E.P.; Landauer, R. Thermal activation in extremely underdamped Josephson-junction circuits. Phys. Rev. B 1983, 28, 1268–1275. [Google Scholar] [CrossRef]
- Silvestrini, P.; Liengme, O.L.; Gray, K. Current distributions of thermal switching in extremely underdamped Josephson junctions. Phys. Rev. B 1988, 37, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, P.; Palmieri, V.G.; Ruggiero, B.; Russo, M. Observation of energy levels quantization in underdamped Josephson junctions above the classical-quantum regime crossover temperature. Phys. Rev. Lett. 1997, 79, 3046–3049. [Google Scholar] [CrossRef]
- Oelsner, G.; Revin, L.S.; Il’ichev, E.; Pankratov, A.L.; Meyer, H.-G.; Grönberg, L.; Hassel, J.; Kuzmin, L.S. Underdamped Josephson junction as a switching current detector. Appl. Phys. Lett. 2013, 103, 142605. [Google Scholar] [CrossRef]
- Fazio, R.; van der Zant, H. Quantum phase transitions and vortex dynamics in superconducting networks. Phys. Rep. 2001, 355, 235–334. [Google Scholar] [CrossRef]
- S Sakai, S.; Ustinov, A.V.; Kohlstedt, H.; Petraglia, A.; Pedersen, N.F. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures. Phys. Rev. B 1994, 50, 12905–12914. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, J.; Hinken, J.H.; Kautz, R.L. Microwave-induced constant-voltage steps at one volt from a series array of Josephson junctions. Appl. Phys. Lett. 1984, 45, 478–480. [Google Scholar] [CrossRef]
- Pöpel, R.; Niemeyer, J.; Fromknecht, R.; Meier, W.; Grimm, L. 1- and 10-V series array Josephson voltage standards in Nb/Al2O3/Nb technology. J. Appl. Phys. 1990, 68, 4294–4303. [Google Scholar] [CrossRef]
- Lloyd, F.L.; Hamilton, C.A.; Beall, J.A.; Go, D.; Ono, R.H.; Harris, R.E. A Josephson array voltage standard at 10 V. IEEE Electr. Dev. Lett. 1987, 8, 449–450. [Google Scholar] [CrossRef]
- Benz, S.P.; Hamilton, C.A. Application of the Josephson effect to voltage metrology. Proc. IEEE 2004, 92, 1617–1629. [Google Scholar] [CrossRef]
- Schulze, H.; Behr, R.; Müller, F.; Niemeyer, J. Nb/Al/AlOx/AlOx/Al/Nb Josephson junctions for programmable voltage standards. Appl. Phys. Lett. 1998, 73, 996–998. [Google Scholar] [CrossRef]
- Bauer, S.; Behr, R.; Herick, J.; Kieler, O.; Kraus, M.; Tian, H.; Pimsut, Y.; Palafox, L. Josephson voltage standards as toolkit for precision metrological applications at PTB. Meas. Sci. Technol. 2023, 34, 032001. [Google Scholar] [CrossRef]
- Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 1973, 6, 1181–1203. [Google Scholar] [CrossRef]
- Beasley, M.R.; Mooij, J.E.; Orlando, T.P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 1979, 42, 1165–1168. [Google Scholar] [CrossRef]
- Resnick, D.J.; Garland, J.C.; Boyd, J.T.; Shoemaker, S.; Newrock, R.S. Kosterlitz–Thouless transition in proximity-coupled superconducting arrays. Phys. Rev. Lett. 1981, 47, 1542–1545. [Google Scholar] [CrossRef]
- Lobb, C.J.; Abraham, D.W.; Tinkham, M. Theoretical interpretation of resistive transition data from arrays of superconducting weak links. Phys. Rev. B 1983, 27, 150–157. [Google Scholar] [CrossRef]
- Benz, S.O.; Rzchowski, M.S.; Tinkham, M.; Lobb, C.J. Critical currents in frustrated two-dimensional Josephson arrays. Phys. Rev. B 1990, 42, 6165–6171. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Delsing, P.; Haviland, D.B.; Harada, Y.; Claeson, T. Flux flow and vortex tunneling in two-dimensional arrays of small Josephson junctions. Phys. Rev. B 1996, 54, 9449–9457. [Google Scholar] [CrossRef] [PubMed]
- Monaco, R.; Pagano, S.; Costabile, G. Superradiant emission from an array of long Josephson junctions. Phys. Lett. A 1988, 131, 122–124. [Google Scholar] [CrossRef]
- Pagano, S.; Monaco, R.; Costabile, G. Microwave oscillator using arrays of long Josephson junctions. IEEE Trans. Magn. 1989, 25, 1080–1083. [Google Scholar] [CrossRef]
- Monaco, R.; Grønbech-Jensen, N.; Parmentier, R.D. Self-locking of fluxon oscillations in series arrays of niobium Josephson tunnel junctions coupled to a linear resonator. Phys. Lett. A 1990, 151, 195–201. [Google Scholar] [CrossRef]
- Cirillo, M.; Modena, I.; Santucci, F.; Carelli, P.; Leoni, R. Coherence of Josephson soliton oscillators in the millimeter wave range. Phys. Lett. A 1992, 167, 175–178. [Google Scholar] [CrossRef]
- Ottaviani, I.; Cirillo, M.; Lucci, M.; Merlo, V.; Salvato, M.; Castellano, M.G.; Torrioli, G.; Mueller, F.; Weimann, T. Collective cavity mode excitations in arrays of Josephson junctions. Phys. Rev. B 2009, 80, 174518. [Google Scholar] [CrossRef]
- Benz, S.P.; Booi, P.A.A. High-frequency oscillators using phase-locked arrays of Josephson unctions. IEEE Trans. Ulrason. Ferroelectr. Freq. Control 1995, 42, 964–966. [Google Scholar] [CrossRef]
- Jain, A.K.; Likharev, K.K.; Lukens, J.E.; Sauvageau, J.E. Mutual phase-locking in Josephson junction arrays. Phys. Rep. 1984, 109, 309–426. [Google Scholar] [CrossRef]
- Barbara, P.; Cawthorne, A.B.; Shitov, S.V.; Lobb, C.J. Stimulated emission and amplification in Josephson junction arrays. Phys. Rev. Lett. 1999, 82, 1963–1966. [Google Scholar] [CrossRef]
- Hott, R.; Kleiner, R.; Wolf, T.; Zwicknagl, G. Superconducting materials—A topical overview. In Frontiers in Superconducting Materials; Narlikar, A.V., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–69. [Google Scholar] [CrossRef]
- Ozyuzer, L.; Koshelev, A.E.; Kurter, C.; Gopalsami, N.; Li, Q.; Tachiki, M.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; et al. Emission of coherent THz radiation from superconductors. Science 2007, 318, 1291–1293. [Google Scholar] [CrossRef]
- Cassinese, A.; Barra, M.; Ciccognani, W.; Cirillo, M.; De Dominicis, M.; Limiti, E.; Prigiobbo, A.; Russo, R.; Vaglio, R. Miniaturized superconducting filter realized by using dual-mode and stepped resonators. IEEE Transact. Microw. Theory Tech. 2004, 52, 97–104. [Google Scholar] [CrossRef]
- Brunelli, I.; Giusiano, G.; Mancini, F.P.; Sodano, P.; Trombettoni, A. Topology-induced spatial Bose-Einstein condensation for bosons on star-shaped optical networks. J. Phys. B At. Mol. Opt. 2004, 37, S275–S286. [Google Scholar] [CrossRef]
- Burioni, R.; Cassi, D.; Meccoli, I.; Rasetti, M.; Regina, S.; Sodano, P.; Vezzani, A. Bose-Einstein condensation in inhomogeneous Josephson arrays. Europhys. Lett. (EPL) 2000, 52, 251–256. [Google Scholar] [CrossRef]
- Buonsante, P.; Burioni, R.; Cassi, D.; Penna, V.; Vezzani, A. Topology-induced confined superfluidity in inhomogeneous arrays. Phys. Rev. B 2004, 70, 224510. [Google Scholar] [CrossRef]
- Fidaleo, F.; Guido, D.; Isola, T. Bose-Einstein condensation on inhomogeneous amenable graphs. Infin. Dimens. Anal. Quant. Probab. Relat. Top. 2011, 14, 149–197. [Google Scholar] [CrossRef]
- Fidaleo, F. Harmonic analysis on inhomogeneous amenable networks and the Bose-Einstein condensation. J. Stat. Phys. 2015, 160, 715–759. [Google Scholar] [CrossRef]
- Matsui, T. BEC of free bosons on networks. Infin. Dimens. Anal. Quant. Probab. Relat. Top. 2006, 9, 1–26. [Google Scholar] [CrossRef]
- Adami, R.; Serra, E.; Tilli, P. Negative energy ground states for the L2-critical NLSE on metric graphs. Commun. Math. Phys. 2017, 352, 387–406. [Google Scholar] [CrossRef]
- Lyra, M.L.; de Moura, F.A.B.F.; de Oliveira, I.N.; Serva, M. Bose-Einstein condensation in diamond hierarchical lattices. Phys. Rev. E 2014, 89, 052133. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, M.; Merlo, V.; Russo, R.; Castellano, M.G.; Cosmelli, C.; Trombettoni, A.; Sodano, P. Spatial Bose-Einstein condensation in Josephson junctions arrays. In Quantum Computation in Solid State Systems; Ruggiero, B., Delsing, P., Granata, C., Pashkin, Y., Silvestrini, P., Eds.; Springer: New York, NY, USA, 2006; pp. 147–153. [Google Scholar] [CrossRef]
- Silvestrini, P.; Russo, R.; Corato, V.; Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M.; Cirillo, M.; Trombettoni, A.; Sodano, P. Topology-induced critical current enhancement in Josephson networks. Phys. Lett. A 2007, 370, 499–503. [Google Scholar] [CrossRef]
- Ottaviani, I.; Lucci, M.; Menditto, R.; Merlo, V.; Salvato, M.; Cirillo, M.; Müller, F.; Weimann, T.; Castellano, M.G.; Chiarello, F.; et al. Characterization of anomalous pair currents in Josephson junction networks. J. Phys. Condens. Matter 2014, 26, 215701. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, M.; Lucci, M.; Merlo, V.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Torrioli, G. On Bose-Einstein condensation in star shaped Josephson arrays. Phys. Lett. A 2014, 378, 655–658. [Google Scholar] [CrossRef]
- Lucci, M.; Cassi, D.; Merlo, V.; Russo, R.; Salina, G.; Cirillo, M. Conditioning of superconductive properties in graph-shaped reticles. Sci. Rep. 2020, 10, 10222. [Google Scholar] [CrossRef] [PubMed]
- Lucci, M.; Cassi, D.; Merlo, V.; Russo, R.; Salina, G.; Cirillo, M. Josephson currents and gap enhancement in graph arrays of superconductive islands. Entropy 2021, 23, 811. [Google Scholar] [CrossRef] [PubMed]
- Romeo, F. Order parameter focalization and critical temperature enhancement in synthetic networks of superconducting islands. J. Phys. Condens. Matter 2020, 33, 04540. [Google Scholar] [CrossRef] [PubMed]
- De Gennes, P.G. Superconductivity of Metals and Alloys; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Tilley, D.R.; Tilley, J. Superfluidity and Superconductivity; IOP Publishing Ltd.: Bristol, UK, 1990. [Google Scholar] [CrossRef]
- Berger, J.; Rubinstein, J. Connectivity and Superconductivity; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Lucci, M.; Campanari, V.; Cassi, D.; Merlo, V.; Romeo, F.; Salina, G.; Cirillo, M. Quantum coherence in loopless superconductive networks. Entropy 2022, 24, 1690. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, R.; Campanari, V.; Cassi, D.; Merlo, V.; Romeo, F.; Salina, G.; Cirillo, M. Evidence of long range coherence in superconducting networks. IEEE Transact. Appl. Supercond. 2023, 33, 1800106. [Google Scholar] [CrossRef]
- Gurvitch, M.; Washington, M.A.; Huggins, H.A. High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 1983, 42, 472–474. [Google Scholar] [CrossRef]
- Inoue, A.; Kotani, S.; Imamura, T.; Hasuo, S. Niobium based Josephson circuit technology. Appl. Supercond. 1993, 1, 1863–1877. [Google Scholar] [CrossRef]
- Yohannes, D.; Kirichenko, A.; Sarwana, S.; Tolpygo, S.K. Parametric testing of HYPRES superconducting integrated circuit fabrication processes. IEEE Transact. Appl. Supercond. 2007, 17, 181–186. [Google Scholar] [CrossRef]
- SEEQC. Chip Fabrication. Available online: https://seeqc.com/chip-foundry-services/chip-fabrication (accessed on 1 March 2024).
- Romeo, F.; De Luca, R. Cooper pairs localization in tree-like networks of superconducting islands. Eur. Phys. J. Plus. 2022, 137, 726. [Google Scholar] [CrossRef]
- Romeo, F. On the Bardeen–Cooper–Schrieffer interaction in quantum graphs. Eur. Phys. J. Plus 2023, 138, 463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomei, E.; Bizzi, R.; Merlo, V.; Romeo, F.; Salina, G.; Cirillo, M. Critical Temperature and Critical Current Enhancement in Arrays of Josephson Junctions: A Ginzburg–Landau Perspective. Physics 2024, 6, 599-612. https://doi.org/10.3390/physics6020039
Tomei E, Bizzi R, Merlo V, Romeo F, Salina G, Cirillo M. Critical Temperature and Critical Current Enhancement in Arrays of Josephson Junctions: A Ginzburg–Landau Perspective. Physics. 2024; 6(2):599-612. https://doi.org/10.3390/physics6020039
Chicago/Turabian StyleTomei, Elena, Riccardo Bizzi, Vittorio Merlo, Francesco Romeo, Gaetano Salina, and Matteo Cirillo. 2024. "Critical Temperature and Critical Current Enhancement in Arrays of Josephson Junctions: A Ginzburg–Landau Perspective" Physics 6, no. 2: 599-612. https://doi.org/10.3390/physics6020039
APA StyleTomei, E., Bizzi, R., Merlo, V., Romeo, F., Salina, G., & Cirillo, M. (2024). Critical Temperature and Critical Current Enhancement in Arrays of Josephson Junctions: A Ginzburg–Landau Perspective. Physics, 6(2), 599-612. https://doi.org/10.3390/physics6020039