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Abstract: Here, we review recent advances in precision Casimir force measurements with both
non-magnetic and magnetic materials. In addition, the measurement of the geometric dependence of
the Casimir force, both lateral and normal, using uniformly corrugated surfaces is briefly presented.
Finally, the measurement of the thermal Casimir force in graphene is discussed.
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1. Introduction

Precision measurements of the Casimir force have been ongoing since they were first
published, more than two decades ago [1,2]. The rapid progress in precision measurements
between metallic test bodies over this period [3–6] has revealed a puzzling problem through
disagreement between experiment and theory. In many experiments performed by different
groups, it was found that the predictions of the Lifshitz theory came into conflict with
the measurement data if the much-studied relaxation properties of conduction electrons
at low frequencies were taken into account in computations (detailed in monograph [7])
and reviews [8,9]. In this paper, we briefly review some of the experimental advances in
the University of California(UC)-Riverside group since the publication of the previous re-
views [7,10]. In Section 2, we recap the results from the recent precision measurement of the
Casimir force between smoother Au-coated surfaces of a sphere and plate for much larger
separations from 250 nm to 1300 nm in an ultra-high vacuum, using a more force-sensitive
cantilever in the custom-built dynamic atomic force microscope (AFM)-based setup. Here,
both ultraviolet (UV) light and Ar-ion cleaning of the Au surfaces were carried out to re-
move ambiguities of electrostatic patches. In Section 3, we briefly consider experiments on
the geometric dependence of the Casimir force using sinusoidal corrugated surfaces. Here,
measurements of the lateral Casimir force as well as the normal Casimir force between the
two uniformly corrugated surfaces are reviewed. In Section 4, earlier experiments on the
role of magnetic fluctuations are reviewed. These experiments, in addition to demonstrat-
ing the effect of magnetic permeability, were also able to rule out any prominent role for
electrostatic patches as an explanation for the disagreement between experiment and theory.
Finally, in Section 5, we review our recent experiment measuring the Casimir force from
graphene. Graphene provides many advantages towards understanding the disagreement
between precision measurements of the Casimir force and the Lifshitz theory. The reason is
that the response of graphene to electromagnetic fluctuations can be deduced from the first
principles of quantum electrodynamics, thus eliminating the key uncertainty of the material
properties in theoretical calculations of the Casimir force when metal test bodies are used
where tabulated values of the permittivity [11] and its extrapolation to zero frequency are
needed. Key details in all the experiments mentioned above are (i) independent measure-
ment of the residual electrostatic force between the interacting surfaces; (ii) keeping the
contribution of this residual electrostatic force either negligible or small compared with the
Casimir force, by using clean experimental surfaces in an ultra-high vacuum chamber; and
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(iii) using only surfaces where the residual electrostatic force is independent of distance,
allowing its definitive subtraction. In the precision Casimir force measurements with nor-
mal metals such as Au, the disagreement between the experimental measurement and the
Lifshitz theory, using tabulated values of the permittivity and its extrapolation including
the dissipation of the free conduction electrons, remains an unresolved puzzle to date.
Note that in Refs. [12,13], an agreement was obtained only by subtracting a hypothetical
electrostatic force between a centimeter-size spherical lens and a plate that was ten times
larger than the Casimir force. The measurements reviewed below, acquired using magnetic
metal surfaces [14,15] and difference force measurements using over layers [16], reconfirm
this conclusion to high precision.

2. Recent Precision Casimir Force Measurements to 1.3 µm

The most recent direct precision measurements of the gradient of the Casimir force
between an Au-coated surface of a sphere and a plate for separations to 1.3 µm were
reported in Refs. [17–20]. A large sphere and plate, rather than two plates, were used
to avoid problems with keeping two plates parallel. The schematic of the experiment is
shown in Figure 1a. A custom-built ultra-high vacuum atomic force microscope cantilever
technique was used to measure the Casimir force between an Au-coated sphere and plate.
The resonance frequency shift of this microcantilever is related to the sphere-plate force
gradient, as:

∆ f = − f0

2k

(
∂Fel
∂z

+
∂FCas

∂z

)
, (1)

where ∆f is the frequency shift, f 0 is the cantilever resonant frequency when no force
is applied, k is the cantilever spring constant, Fel and FCas are electrostatic force and
Casimir force, respectively. The electrostatic force Fel is used for calibration. The following
improvements over our previous measurements were achieved [17–20]:

i. Force measurement sensitivity improved by a factor of 10.
ii. An in situ Ar ion beam and UV cleaning procedure for the interacting surfaces were

introduced, eliminating the effects of ambiguous electrostatic forces and achieving
ultra-high vacuum.

iii. The surface roughness of the plate was reduced by a factor of 2 to 1.08 nm through
the use of polished Si wafer substrates and e-beam Au coating, which eliminated
uncertainties in separation distance (reduced to a smaller than 10−4 effect).

iv. Measurements were made to larger separation distances from 250 to 1300 nm (factor
of 2 larger than previously).

The gradient of the Casimir force was measured between the Au-coated hollow glass
sphere of R = 43.446 ± 0.042 µm radius and the Au-coated silicon plate. The hollow glass
spheres were made from liquid phase and had negligible asphericity with the difference
along two perpendicular axes being less than or equal to 0.1%. The spring constant k of
this cantilever was reduced by decreasing its thickness through etching with 60% KOH
(potassium hydroxide) solution. The electron micrograph of the Au-coated hollow glass
spheres attached to the cantilever end is shown in Figure 1b. The use of polished silicon
wafer as the base plate instead of sapphire or fused silica plates used previously [6] and an
e-beam evaporator for making the Au coatings instead of a thermal evaporator allowed
a decrease in the surface roughness by up to a factor of 2. The root-mean square (rms)
roughness on the sphere and the plate was 1.13 nm and 1.08 nm, respectively (compared
with 2.0 nm and 1.8 nm, respectively, in Ref. [6]). The Au-coated plate was mounted
on a piezoelectric tube which helped to precisely control its position, see Figure 1a. The
precise plate position was measured with the 520 nm interferometer shown in Figure 1a.
The cantilever oscillation was monitored with a 1550 nm laser optical interferometer. The
finesse of the cavity was maximized by Au coating the cantilever top end. Care needed to
be taken, as Au coating of the cantilever would reduce the oscillator quality factor, Q.
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Figure 1. (a) Schematic of the experimental setup. “UV” stands for “ultraviolet” and “UHV” stands
for “ultra-high vacuum”. (b) SEM (scanning electron microscope) micrograph of a microcantilever
with attached Au-coated sphere.

Removing Ambiguity from Electrostatic Patches

A major improvement over all previous experiments is the in situ UV followed by
Ar-ion cleaning of the test bodies and surfaces inside the vacuum chamber. The in situ
cleaning of interacting surfaces in Casimir force measurements is critical for the removal
of any surface contaminants that lead to background electrostatic forces. In particular,
the contaminants lead to inhomogeneous work functions of the Au surface, resulting
in patch potentials [21–24]. Such patch potentials result in electrostatic forces having a
distance dependence (electric multipole effects), complicating their subtraction and leading
to ambiguity in precision measurements of the Casimir force. Traditional vacuum cleaning
by baking to high temperatures is not suitable, as the interferometer alignment is destroyed
by thermal stress. In Figure 2, the sphere–plate residual potential is shown as a function of
separation distance before and after UV plus Ar-ion-beam cleaning. In Ar-ion cleaning, the
ions are focused on the interacting sphere–plate surfaces, as shown in Figure 1a, and the
adsorbed contaminants on the experimental chamber walls are not completely removed.
Thus, over time, the desorption of contaminants from the chamber walls leads to the
redeposition of some of the contaminant molecules on the Au surfaces of the test samples,
resulting in an increase in residual electric potential difference. First, applying UV light
leads to desorption of surface contaminants from the entire chamber, either through direct
ionization or reaction with generated ozone, which is then pumped out. As a result of
the UV light followed by Ar-ion-beam cleaning, the residual potential difference between
sphere and plate, as shown in Figure 2, was lowered by an order of magnitude, leading
to the near elimination of electrostatic forces, as discussed in the literature [18,19]. Its
value is also independent of sphere–plate separation distance, pointing to the absence
of electric multipole effects from any patch effects. In addition, the residual potential
difference between the two surfaces remains near zero for considerably longer, allowing
stable Casimir force measurements.

The measurement results [18,19] for the gradient of the Casimir force obtained are
shown in Figure 3a,b over the separation range from 250 to 950 for 10 nm cantilever
oscillation amplitude.
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zero-point photon-free electron scattering for all separations shown. 

Using larger cantilever oscillation amplitudes of 20 nm, the frequency shift meas-
urement can be improved, allowing Casimir force gradient measurements to 1300 nm. 

Figure 2. The Au sphere–plate residual potential difference as a function of the separation before
(black) and after (red) UV and Ar-ion cleaning [20]. Reproduced under the copyright permission
from World Scientific.
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Figure 3. The Casimir force gradient measured as a function of the sphere–plate separation for
(a,b) 10 nm cantilever oscillations and (c,d) 20 nm cantilever oscillations [18]. The experimental data
(error bars) for the force gradient and separation agree with the no-dissipation theory calculations
(lines) for zero-point photon-free electron scattering for all separations shown.

Using larger cantilever oscillation amplitudes of 20 nm, the frequency shift measure-
ment can be improved, allowing Casimir force gradient measurements to 1300 nm. The
measured gradients are shown as crosses in Figure 3c,d over the separation region from
600 nm to 1.3 µm. The vertical size of the crosses indicates the total error in measuring
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the force gradient at the 67% confidence level. The horizontal size is determined by the
constant error in measuring the absolute separations ∆z = 0.5 nm in Figure 3a,b and 1.1 nm
in Figure 3c,d. For ease of visualization, only every third data point is plotted. In the theory
calculations, the Au metal response is given by the permittivity ε(ω), where the tabulated
values in Ref. [11] were used along with the extrapolation to low frequencies made using

ε(ω) =
ω2

p
ω(ω+iγ) , where ωp = 9.0 eV is the plasma frequency and the relaxation frequency is

γ = 35 meV [11] for the dissipative Drude model and γ = 0 for the dissipationless plasma
model. The theoretical values represented by the solid blue line were calculated with the
tabulated Au permittivity [11] and dissipative Drude extrapolation to zero frequency. The
theoretical values represented by the solid red line were calculated with the tabulated
Au permittivity [11] and dissipationless plasma extrapolation to zero frequency. As is
seen in Figure 3a–d, the theoretical predictions using the dissipationless plasma model
are consistent with the measurement data over the entire range from 250 nm to 1.3 µm.
The predictions of the Lifshitz theory using the dissipative Drude model are excluded at
all separations up to 1.1 µm. Thus, the range of separations where the dissipative Drude
model is excluded has been significantly extended.

3. Geometric Dependence of the Casimir Force with Sinusoidally Corrugated Surfaces
3.1. Demonstration of Asymmetry and Nonadditivity in Lateral Casimir Force

Controlling the length scale of the zero-point photon fluctuations using boundary
geometry, dielectric properties, and temperature leads to profoundly interesting effects.
In particular, uniformly corrugated boundaries are of interest due to the diffraction-type
coherent scattering effects of zero-point photons that have been reported in these sys-
tems [23,25–34]. The zero-point photon wavelengths that matter are those that correspond
to the separation distance. Additional important length scales in the problem are the
corrugation period, λ, separation between the corrugations, z, the thermal wavelength
h̄c/kBT, the temperature, T, and the material reflectivity through the plasma wavelength
2πc/ωp, where ωp is the plasma frequency, h̄ is the reduced Planck constant, c denotes the
speed of light, and kB is the Boltzmann constant. The coupling of scales of different lengths
and the angle between the two corrugations led to rich behavior, making it a promising
probe into these interconnected phenomena [35–40].

Of the above, the most intriguing feature is the nonadditive behavior of the Casimir
force and, thus, the complicated dependence on the shape of the boundary surfaces con-
nected with diffraction effects. The nontrivial behavior of the normal Casimir force was
experimentally demonstrated in the configuration of a smooth sphere above a sinusoidally
corrugated plate [25]. For the case of the additive regime, we reported measurement of the
lateral Casimir force between two aligned sinusoidally corrugated surfaces of a sphere and
a plate [26]. In the case of the nonadditive regime, the deviation of both the experimental
data and the exact theory from the prediction of the proximity force approximation (PFA)
was quantified in Refs. [29,30]. PFA approximates curved surfaces as a collection of in-
finitesimal flat surface elements and the local parallel plate contributions are added [27,28].
Thus, PFA neglects the diffraction effects of the zero-point photons. Compared with our
previous lateral force measurement [2,26], this demonstration [29,30] of asymmetry and
nonadditivity required many improvements such as a decrease of more than 50% in the
grating period along with a 71% increase in the amplitude of the aligned imprinted grating.
Here, the experimental chamber with a pressure less than 10 mTorr contained a sinusoidally
corrugated Au-coated grating of size 5 × 5 mm2 vertically mounted on the piezotube of the
AFM. In order to achieve the nonadditive regime, the corrugations had an average period
of 574.7 nm, i.e., less than half of that in Refs. [2,26] and an amplitude of 85.4 ± 0.3 nm, com-
pared with 59 nm in Refs. [2,26]. This flat grating served as the first test body. A 320 µm long
V-shaped silicon nitride cantilever for the AFM was specially prepared first by uniformly
coating it with 40 nm of Al to improve its thermal and electric conductivity and to prevent
deformation due to differential thermal expansion in a vacuum. The lateral Casimir force
results from the interaction between two perfectly aligned uniaxially corrugated surfaces of
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the same period. With the goal to keep the contact region for the imprinting of the grating
and to make the second corrugated surface far away from the silicon nitride cantilever, a
200 ± 4 µm diameter polystyrene sphere was placed at the end of the cantilever, to the
bottom of which a freshly cleaved mica sheet of 400 µm length, 200 µm width, and a few
micrometers thickness was attached. A second polystyrene sphere was then attached to the
bottom free end of the mica sheet. The complete system was uniformly coated with a 10 nm
layer of Cr and then with a 50 nm layer of Au in a thermal evaporator. The corrugations
of the flat grating were imprinted on the Au-coated sphere using a stepper motor and by
applying a voltage to the AFM piezo, as has been described. The lateral Casimir force
between the two aligned sinusoidally corrugated Au-coated surfaces was measured for
separation distances between 121.1 nm and 175.3 nm, much smaller than the 221–257 nm
measured previously. The uncertainty in the measured separation distances was reduced
to 4 nm, compared with 32 nm previously [6].

In addition, an independent electrostatic measurement of the separation distance
was taken [2,26–30]. The measured asymmetric lateral Casimir force was observed from
its nonsinusoidal phase dependence, as shown in Figure 4a. Here, the measurement
data are compared with the exact theory describing the Rayleigh scattering [31] of the
electromagnetic oscillations on the sinusoidally corrugated boundary surfaces of a sphere
and plate with no fitting parameters. In Figure 4a, both the experimental data shown
as dots and the theoretical line shown in red demonstrate that the lateral Casimir force
is asymmetric and that the dependence of the lateral Casimir force as function of the
phase is purely sinusoidal only if the calculation is restricted to the lowest order in the
corrugation amplitudes. The asymmetry of the lateral Casimir force can be clearly observed
even without the red theoretical curve, because the average shift of the maxima from the
midpoint of two adjacent minima is (0.12 ± 0.02)λ. The experimental data of the measured
lateral Casimir force amplitude as a function of separation are shown in Figure 4b as crosses,
along with error bars. These data were found to be in good agreement with the theory,
which takes into account the photon correlation. In Figure 4b, the measured forces are
found to deviate from the PFA, which neglects diffraction effects. This experiment using
large amplitude corrugations with a significatly smaller period allowed demonstration of
the asymmetry of the lateral Casimir force and had the ability to quantify deviations from
the PFA.
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Figure 4. (a) The measured lateral Casimir force for a separation distance of z = 124.7 ± 4.0 nm as
a function of the phase shift between the corrugations (black dots) compared with the theory (red
solid line) given by the Rayleigh scattering approach [29]. Note that the maximum is not at the
midpoint of the minima, demonstrating asymmetry. (b) The amplitude as a function of separation
distance (shown with error bars) compared to the Rayleigh scattering theory, which includes photon
correlation (blue solid line), and to the PFA with no photon correlation (red dashed line) [30].
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3.2. Role of Coherent Scattering in the Normal Casimir Force between Two Uniformly
Corrugated Surfaces

Whereas the lateral Casimir force acts parallel to the two corrugated surfaces, the
normal Casimir force is measured perpendicular to the periodically corrugated surfaces
and provides us with valuable insight into the macroscopic geometric effects of vacuum
fluctuations. As in Section 3.1, these geometry effects are quantified in terms of deviation
from PFA where the Casimir energy is treated as the simple addition of flat infinitesimal
surface elements which represent the curved surface. In addition to neglecting diffraction
effects, the PFA ignores correlations from the interplay of geometry, material properties,
and temperature.

The measurement of the normal Casimir force between two sinusoidally corrugated
diffraction gratings on a gold-coated plate and sphere at various angles between corruga-
tions was previously reported in Refs. [32,41]. The data are shown in Figure 5a where the
measured Casimir force is shown to increase by 15% at 130 nm separation when the orien-
tation angle between corrugations increased from 0 to 2.4. Figure 5b shows the deviation of
the measured force from PFA for an angle between the corrugations of 1.2◦. The measured
forces are seen to deviate from the PFA (deviations measure diffraction-like coherent effects
not included in PFA) and to be in agreement with the gradient approximation theory [42,43]
including correlation effects of geometry and real metal–dielectric properties. The system
is also seen to be highly sensitive to the role of thermal photons and is thus a measurement
of the thermal Casimir effect between corrugated surfaces.
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systematic and random) errors at a 67% confidence level.

The above results experimentally demonstrate the angle dependence of the normal
Casmir force between a corrugated plate and corrugated sphere. The strong angular and
temperature dependences of normal Casimir force for two oriented corrugations make it
a uniquely important system for understanding the nontrivial combined interactions of
geometry, material properties, and temperature.

4. Role of Magnetic Fluctuations in the Casimir Force

More than 40 years after the prediction of potentially repulsive contributions from
magnetic fluctuations [44,45], the first experimental demonstration of the role of magnetic
permeability, µ, was reported [14,15] and the results were compared to a new measurement
with non-magnetic Au surfaces [6]. The use of materials such as Ni with µ > 0 reduces
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the Casimir force by adding a repulsive contribution. The experiments also showed that
the role of electrostatic patch charges on surfaces was negligible in our experimental
scheme. In Ref. [14], we reported the first demonstration of the Casimir force between
two ferromagnetic Ni boundary surfaces. The experimental data, as shown in Figure 6,
were found to be in good agreement with the predictions of the Lifshitz theory for magnetic
boundary surfaces combined with the dissipation-less plasma model approach to describe
the low-frequency permittivity of the metal. Tabulated [11] values of ε and µ were used,
except for the dissipation γ = 0 (plasma) or γ > 0 (Drude model) for the low-frequency
response of Au.
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Figure 6. Measured (shown with error bars) Casimir force gradient between a ferromagnetic Ni-
coated sphere and plate at small (a) and large (b) separation distances [14]. The bars represent total
error at a 67% confidence level. The experimental data are in remarkable agreement with the plasma
model with magnetic properties of Ni included. There are no fitting parameters used.

In Ref. [15], the measured gradient of the Casimir force between a Ni plate and the non-
magnetic Au sphere was reported. The mean gradient of the Casimir force (see Figure 7)
was compared with theoretical predictions of the Lifshitz theory with no fitting parameters.
The data are in good greement with both the plasma model and Drude model description
of the metal-free electrons as they coincide for these separations.
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Figure 7. Measured (shown with error bars) Casimir force between an Au sphere–ferromagnetic Ni
plate versus small (a) and large (b) surface separation distances [15]. The error bars represent total
error bars at a 67% confidence level. The experimental data are in good agreement with both the
plasma model (γ = 0) and the Drude model for low-frequency metal response with the tabulated ε

and µ of Ni included. The Drude and plasma models overlap for the µ of Ni in this region. No fitting
parameters were used in comparison.
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Conclusion on Role of Electrostatic Patches

To answer the critical question of whether zero-point photons dissipate energy on free
electron scattering, one has to show agreement with either the plasma (no dissipation) or
Drude (dissipative) model. For the Au-coated sphere and plate, using a different tabulated
ε and µ to calculate the theoretical Casimir force makes a negligible difference [14,15] to the
agreement with the dissipationless plasma model. However, for non-magnetic materials,
an agreement can possibly be brought about by using electrostatic forces [21,23] with
specialized charge density and size distributions. Yet, from the results of the experiments
indicated in Figures 3, 6 and 7, one can see that anomalous forces from electrostatic patches
in the experiments (a) have to be negligible and (b) cannot explain the difference from the
Drude model consistently. To bring about an agreement with Drude model, one needs
positive contribution in Figure 6 (two magnetic material surfaces), but a negative one in
Figure 3 (non-magnetic material surfaces). In the experiment in Figure 7 with one magnetic
material and one non-magnetic material, both models overlap and agree with data for this
separation region. As electric patch forces only add to the total force, the only consistent
explanation is that they have to be negligible [46,47]. Following these results, a difference
force measurement [16] showed that the non-dissipative plasma model was in remarkable
agreement and the dissipative Drude model in disagreement with their data by a factor
of 103.

5. Precision Casimir Force Measurements with Graphene

Unlike normal metals, where for comparison between experiment and theory, the
metal properties have to be input from tabulated values with extrapolation to zero fre-
quency, the non-local response function of graphene to electromagnetic fluctuations can
be calculated from the first principles of quantum electrodynamics [48–50]. Another in-
teresting feature is an unusually large thermal correction to the Casimir force between
two parallel graphene sheets spaced at separations of less than 1 µm, first predicted by
Gómez-Santos [51]. Many physical effects in graphene have also been described [52]. In
a more recent measurement [53], the gradient of the Casimir force between an Au-coated
microsphere and a graphene sheet deposited on a silica glass (SiO2) plate obtained in a high
vacuum using a custom dynamic AFM was performed. In the previous experiment [53],
the graphene sheet was deposited on a SiO2 film covering a Si plate. The gradient of the
Casimir force was measured and found to be in good agreement with the theory. However,
the thermal effect could not be identified because of the large uncertainty in the charge
carrier concentration of the Si plate used.

In this Casimir force gradient measurement system, a tipless AFM cantilever was used
whose spring constant was reduced through chemical etching, as described above. As in
previous experiments, a hollow glass microsphere attached to the end of the cantilever
using silver epoxy and coated with Au was used as the second surface. The thickness
of the Au coating and the diameter of the coated sphere were measured to be 120.3 nm
and 120.7 µm, using an AFM and a scanning electron microscope, respectively. The rms
roughness of the Au coating was measured to be δ = 0.9 nm. The resonant frequency
of the complete Au-coated cantilever–sphere system in the vacuum was measured to be
ω0 = 6.1581 × 103 rad/s.

A large area of graphene monolayer originally grown by chemical vapor deposition
on a Cu foil was transferred onto a polished JGS2 grade fused silica double-sided optically
polished substrate of 100 mm diameter and 500 µm thickness through an electro-chemical
delamination procedure. A 1 × 1 cm2 piece of the graphene-coated fused silica wafer
was then cut from the large sample and used. After the force gradient measurements, the
roughness of the graphene on the fused silica substrate was measured to be δ = 1.5 ± 0.1 nm
using an AFM. After the Casimir force gradient measurement, the impurity concentration of
graphene was determined utilizing Raman spectroscopy. The respective zero-temperature
value of the chemical potential for our sample is given by µ = 0.24 ± 0.01 eV. The values of
the energy gap ∆ for graphene on a SiO2 substrate vary between 0.01 eV and 0.2 eV.



Physics 2024, 6 900

The fused silica-supported graphene sample and gold sphere probe were loaded
into the vacuum chamber which was pumped down to a pressure below 9 × 10−9 Torr.
Because of the sensitive nature of the graphene sample, the UV/Ar-ion radiation treatment
described in Section 2 for cleaning the Au surfaces was not implemented, to avoid potential
damage to the single atomic layer of graphene. To ensure the accuracy of the measurement,
the residual potential difference between the gold and graphene surfaces was determined
through the same standard electrostatic calibration procedure as stated in Section 2. The
change in the resonant frequency ∆f in the presence of external force was recorded by the
PLL (phase-locked loop) every 0.14 nm while the graphene plate was moved toward the
grounded sphere, starting at the maximum separation. This was repeated with one of ten
different voltages Vi that varied between 0.083 V and 0.183 V and eleven voltages equal
to the residual potential difference V0 (see below) applied to the graphene using ohmic
contacts while the sphere remained grounded.

The gradients of the total and Casimir forces were calculated from the measured
frequency shifts using electrostatic calibration. At each separation, the gradient of the
Casimir force was measured 21 times with the different applied voltages mentioned above.
The random errors of the mean were determined at a 67% confidence level and combined
in quadrature with the systematic errors originating primarily from the errors in measuring
the frequency shifts. The obtained measurement data for the force gradient with their errors
are shown in Figure 8 as crosses corresponding to error bars. For visual clarity, in Figure 8a,
all data points are indicated, whereas in Figure 8b,c, every other data point and in Figure 8d,
only every third are shown. For the comparison with the theory, the relativistic version of
the Lifshitz formula with reflection coefficients expressed via the exact polarization tensor
of graphene in the framework of the Dirac model takes into account the nonzero energy
gap, ∆. and chemical potential, µ [54–57]. The computational results for the boundaries of
allowed theoretical bands are shown in Figure 8 by the two bands, computed at T = 294 K
and T = 0 K. The upper line in each band was computed for µ = 0.25 eV, ∆ = 0 eV, and
the lower line for µ = 0.23 eV, ∆ = 0.2 eV. As shown in Figure 8, the measurement data are
in very good agreement with the theory at T = 294 K. The unusually large thermal effect
in the force gradient equal to the difference between the top and bottom bands is clearly
demonstrated over the region from 250 to 590 nm. For example, at sphere–plate separations
of 250, 300, 400, 500, and 590 nm, the thermal corrections were 4%, 5%, 7%, 8.5%, and 10%
of the total force gradient, respectively.
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6. Conclusions

Precision Casimir force measurements have undergone remarkable progress over the
last two decades. Some of the results of the UC Riverside group are presented above.
The experimental results have, in turn, encouraged a tremendous amount of theoretical
developments, some detailed in Ref. [60]. In addition to improvements in experimen-
tal methodology, considerable rogress has also been achieved with the use of compli-
cated geometries [61,62] other than the sinusoidally corrugated cases discussed above.
Many other exciting geometric dependences [63–66] and material-dependent repulsive
forces [9,67–71] remain to be investigated and exploited in nanomechanical devices [72,73].
Casimir torques [74,75] and their experimental exploitation represent another area of much
promise. An exciting and as yet unresolved issue that remains is the disagreement between
the experiment and the Lifshitz theory [76–79] when the dielectric response of metals is
deduced from the optical data extrapolated down to zero frequency by means of the Drude
model, where the relaxation parameter γ describes the energy losses of conduction electrons
due to phonon scattering. It has been a puzzle that agreement between experiment and
theory is obtained only if one makes γ equal to zero. This might lead to the conclusion that
are no energy losses at low frequencies for zero-point photon interactions with materials,
unlike the case of real photons. However, this hypothesis alone would lead to the violation
of the fluctuation dissipation theorem which is central to all of physics. Much light was
shed from the precision experiments with graphene, discussed above, where the dielectric
response of graphene was calculated from first principles of quantum electrodynamics.
Based on the graphene’s dielectric response, it appears that it is the phenomenological
character of the Drude model at low frequencies that might be in error. In particular, the
Drude model does not capture the complete wave vector dependence of the dielectric
response for evanescent waves, which are electromagnectic fluctuations that are not on the
mass shell. Here again, there have been suggestions [80] for how to bring about a resolution
to this long-standing problem, which are discussed elsewhere in Ref. [60].



Physics 2024, 6 902

Author Contributions: Both authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The work of M.D. and U.M. was partially supported by the National Science Foundation
Grant No. PHY-2012201.

Data Availability Statement: The data are from the references cited.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohideen, U.; Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 mm. Phys. Rev. Lett. 1998, 81, 4549–4552.

[CrossRef]
2. Chen, F.; Mohideen, U.; Klimchitskaya, G.L.; Mostepanenko, V.M. Experimental and theoretical investigation of the lateral

Casimir force between corrugated surfaces. Phys. Rev. A 2002, 66, 032113. [CrossRef]
3. Harris, B.W.; Chen, F.; Mohideen, U. Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 2000, 62, 052109.

[CrossRef]
4. Decca, R.S.; Lopez, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and

new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions.
Ann. Phys. 2005, 318, 37–80. [CrossRef]

5. Decca, R.S.; Lopez, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise
measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 2007, 75, 077101. [CrossRef]

6. Chang, C.-C.; Banishev, A.A.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Gradient of the Casimir
force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique.
Phys. Rev. B 2012, 85, 165443. [CrossRef]

7. Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press:
Oxford, UK, 2015. [CrossRef]

8. Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory.
Rev. Mod. Phys. 2009, 81, 1827–1885. [CrossRef]

9. Woods, L.M.; Dalvit, D.A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A.W.; Podgornik, R. Materials perspective on
Casimir and van der Waals interactions. Rev. Mod. Phys. 2016, 88, 045003. [CrossRef]

10. Bordag, M.; Mohideen, U.; Mostepanenko, V. New developments in the Casimir effect. Phys. Rep. 2001, 353, 1–205. [CrossRef]
11. Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1985. [CrossRef]
12. Garcia-Sanchez, D.; Fong, K.Y.; Bhaskaran, H.; Lamoreaux, S.; Tang, H.X. Casimir force and in situ surface potential measurements

on nanomembranes. Phys. Rev. Lett. 2012, 109, 027202. [CrossRef]
13. Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. Observation of the thermal Casimir force. Nat. Phys. 2011, 7, 230–233.

[CrossRef]
14. Banishev, A.; Klimchitskaya, G.; Mostepanenko, V.; Mohideen, U. Demonstration of the Casimir force between ferromagnetic

surfaces of a Ni-coated sphere and a Ni-coated plate. Phys. Rev. Lett. 2013, 110, 137401. [CrossRef] [PubMed]
15. Banishev, A.A.; Chang, C.-C.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Measurement of the gradient of the

Casimir force between a nonmagnetic gold sphere and a magnetic nickel plate. Phys. Rev. B 2012, 85, 195422. [CrossRef]
16. Bimonte, G.; Lopez, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434.

[CrossRef]
17. Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Reducing detrimental electrostatic effects in Casimir-force

measurements and Casimir-force-based microdevices. Phys. Rev. A 2018, 97, 032501. [CrossRef]
18. Liu, M.Y.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Precision measurement of the gradient of the Casimir

force between ultraclean metallic surfaces at larger separations. Phys. Rev. A 2019, 100, 052511. [CrossRef]
19. Liu, M.Y.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Examining the Casimir puzzle with an upgraded

AFM-based technique and advanced surface cleaning. Phys. Rev. B 2019, 100, 081406. [CrossRef]
20. Liu, M.Y.; Schafer, R.; Xu, J.; Mohideen, U. Elimination of electrostatic forces in precision Casimir force measurements using UV

and Ar ion radiation. Mod. Phys. Lett. A 2020, 35, 2040001. [CrossRef]
21. Behunin, R.; Intravaia, F.; Dalvit, D.; Neto, P.M.; Reynaud, S. Modeling electrostatic patch effects in Casimir force measurements.

Phys. Rev. A 2012, 85, 012504. [CrossRef]
22. Behunin, R.O.; Dalvit, D.A.R.; Decca, R.S.; Genet, C.; Jung, I.W.; Lambrecht, A.; Liscio, A.; Lopez, D.; Reynaud, S.; Schnoering,

G.; et al. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements. Phys. Rev. A 2014, 90, 062115.
[CrossRef]

23. Behunin, R.O.; Zeng, Y.; Dalvit, D.A.R.; Reynaud, S. Electrostatic patch effects in Casimir-force experiments performed in the
sphere-plane geometry. Phys. Rev. A 2012, 86, 052509. [CrossRef]

24. Naji, A.; Dean, D.S.; Sarabadani, J.; Horgan, R.R.; Podgornik, R. Fluctuation-induced interaction between randomly charged
dielectrics. Phys. Rev. Lett. 2010, 104, 060601. [CrossRef] [PubMed]

https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevA.66.032113
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1016/j.aop.2005.03.007
https://doi.org/10.1103/PhysRevD.75.077101
https://doi.org/10.1103/PhysRevB.85.165443
https://doi.org/10.1093/acprof:oso/9780199238743.001.0001
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1016/S0370-1573(01)00015-1
https://doi.org/10.1016/C2009-0-20920-2
https://doi.org/10.1103/PhysRevLett.109.027202
https://doi.org/10.1038/nphys1909
https://doi.org/10.1103/PhysRevLett.110.137401
https://www.ncbi.nlm.nih.gov/pubmed/23581368
https://doi.org/10.1103/PhysRevB.85.195422
https://doi.org/10.1103/PhysRevB.93.184434
https://doi.org/10.1103/PhysRevA.97.032501
https://doi.org/10.1103/PhysRevA.100.052511
https://doi.org/10.1103/PhysRevB.100.081406
https://doi.org/10.1142/S0217732320400015
https://doi.org/10.1103/PhysRevA.85.012504
https://doi.org/10.1103/PhysRevA.90.062115
https://doi.org/10.1103/PhysRevA.86.052509
https://doi.org/10.1103/PhysRevLett.104.060601
https://www.ncbi.nlm.nih.gov/pubmed/20366809


Physics 2024, 6 903

25. Roy, A.; Mohideen, U. Demonstration of the nontrivial boundary dependence of the Casimir force. Phys. Rev. Lett. 1999, 82,
4380–4383. [CrossRef]

26. Chen, F.; Mohideen, U.; Klimchitskaya, G.L.; Mostepanenko, V.M. Demonstration of the lateral Casimir force. Phys. Rev. Lett.
2002, 88, 101801. [CrossRef] [PubMed]

27. Derjaguin, B. Untersuchungen über die Reibung und Adhäsion, IV. Theorie des Anhaftens kleiner Teilcher. Kolloid-Zeitschrift
1934, 69, 155–164. [CrossRef]

28. Blocki, J.; Randrup, J.; Swiatecki, W.J.; Tsang, C.F. Proximity forces. Ann. Phys. 1977, 105, 427–462. [CrossRef]
29. Chiu, H.C.; Klimchitskaya, G.L.; Marachevsky, V.N.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the asymmetric lateral

Casimir force between corrugated surfaces in the nonadditive regime. Phys. Rev. B 2009, 80, 121402. [CrossRef]
30. Chiu, H.C.; Klimchitskaya, G.L.; Marachevsky, V.N.; Mostepanenko, V.M.; Mohideen, U. Lateral Casimir force between sinu-

soidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with
exact theory. Phys. Rev. B 2010, 81, 115417. [CrossRef]

31. Lord Rayleigh, Strutt, J.W. On the dynamical theory of gratings. Proc. R. Soc. Lond. A 1907, 79, 399–416. [CrossRef]
32. Banishev, A.; Wagner, J.; Emig, T.; Zandi, R.; Mohideen, U. Demonstration of angle-dependent Casimir force between corrugations.

Phys. Rev. Lett. 2013, 110, 250403. [CrossRef]
33. Chan, H.B.; Bao, Y.; Zou, J.; Cirelli, R.; Klemens, F.; Mansfield, W.; Pai, C. Measurement of the Casimir force between a gold sphere

and a silicon surface with nanoscale trench array. Phys. Rev. Lett. 2008, 101, 030401. [CrossRef] [PubMed]
34. Bao, Y.; Gue’rout, R.; Lussange, J.; Lambrecht, A.; Cirelli, R.A.; Klemens, F.; Mansfield, W.M.; Pai, C.S.; Chan, H.B. Casimir force

on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects. Phys. Rev. Lett. 2010, 105, 250402.
[CrossRef]

35. Golestanian, R.; Kardar, M. Mechanical Response of Vacuum. Phys. Rev. Lett. 1997, 78, 3421–3425. [CrossRef]
36. Rodrigues, R.B.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Lateral Casimir force beyond the proximity-force approximation.

Phys. Rev. Lett. 2006, 96, 100402. [CrossRef]
37. Canaguier-Durand, A.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Thermal Casimir effect for Drude metals in the plane-sphere

geometry. Phys. Rev. A 2010, 82, 012511. [CrossRef]
38. Zandi, R.; Emig, T.; Mohideen, U. Quantum and thermal Casimir interaction between a sphere and a plate: Comparison of Drude

and plasma models. Phys. Rev. B 2010, 81, 195423. [CrossRef]
39. Rosa, F.S.S.; Dalvit, D.A.R.; Milonni, P.W. Casimir-Lifshitz theory and metamaterials. Phys. Rev. Lett. 2008, 100, 183602. [CrossRef]

[PubMed]
40. Rodrigues, R.B.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Vacuum-induced torque between corrugated metallic plates.

Europhys. Lett. 2006, 76, 822. [CrossRef]
41. Banishev, A.A.; Wagner, J.; Emig, T.; Zandi, R.; Mohideen, U. Experimental and theoretical investigation of the angular dependence

of the Casimir force between sinusoidally corrugated surfaces. Phys. Rev. B 2014, 89, 235436. [CrossRef]
42. Bimonte, G.; Emig, T.; Jaffe, R.L.; Kardar, M. Casimir forces beyond the proximity approximation. Europhys. Lett. 2012, 97, 50001.

[CrossRef]
43. Bimonte, G.; Emig, T.; Kardar, M. Material dependence of Casimir forces: Gradient expansion beyond proximity. Appl. Phys. Lett.

2012, 100, 074110. [CrossRef]
44. Barash, Y.S.; Ginzburg, V.L. Electromagnetic fluctuations in matter and molecular (Van-der-Waals) forces between them.

Sov. Phys. Usp. 1975, 18, 305–322. [CrossRef]
45. Kenneth, O.; Klich, I.; Mann, A.; Revzen, M. Repulsive Casimir forces. Phys. Rev. Lett. 2002, 89, 033001. [CrossRef] [PubMed]
46. Bezerra, V.B.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M.; Romero, C. Impact of surface imperfections on the Casimir

force for lenses of centimeter-size curvature radii. Phys. Rev. B 2011, 83, 075417. [CrossRef]
47. Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Lopez, D.; Mohideen, U.; Mostepanenko, V.M. Capacitance

measurements and electrostatic calibrations in experiments measuring the Casimir force. Int. J. Mod. Phys. A 2011, 26, 3930–3943.
[CrossRef]

48. Drosdoff, D.; Woods, L.M. Quantum and thermal dispersion forces: Application to graphene nanoribbons. Phys. Rev. Lett. 2014,
112, 025501. [CrossRef]

49. Rodriguez-Lopez, P.; Kort-Kamp, W.J.M.; Dalvit, D.A.R.; Woods, L.M. Casimir force phase transitions in the graphene family.
Nat. Commun. 2017, 8, 14699. [CrossRef]

50. Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Theory of the Casimir interaction from graphene-coated substrates
using the polarization tensor and comparison with experiment. Phys. Rev. B 2014, 89, 115419. [CrossRef]

51. Gomez-Santos, G. Thermal van der Waals interaction between graphene layers. Phys. Rev. B 2009, 80, 245424. [CrossRef]
52. Sarabadani, J.; Naji, A.; Asgari, R.; Podgornik, R. Many-body effects in the van der Waals–Casimir interaction between grphene

layers. Phys. Rev. B 2011, 84, 155407. [CrossRef]
53. Banishev, A.A.; Wen, H.; Xu, J.; Kawakami, R.K.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Measuring the Casimir

force gradient from graphene on a SiO2 substrate. Phys. Rev. B 2013, 87, 205433. [CrossRef]
54. Bordag, M.; Klimchitskaya, L.; Mostepanenko, M.; Petrov, M. Quantum field theoretical description for the reflectivity of graphene.

Phys. Rev. D 2016, 93, 089907. [CrossRef]

https://doi.org/10.1103/PhysRevLett.82.4380
https://doi.org/10.1103/PhysRevLett.88.101801
https://www.ncbi.nlm.nih.gov/pubmed/11909341
https://doi.org/10.1007/BF01433225
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1103/PhysRevB.80.121402
https://doi.org/10.1103/PhysRevB.81.115417
https://doi.org/10.1098/rspa.1907.0051
https://doi.org/10.1103/PhysRevLett.110.250403
https://doi.org/10.1103/PhysRevLett.101.030401
https://www.ncbi.nlm.nih.gov/pubmed/18764238
https://doi.org/10.1103/PhysRevLett.105.250402
https://doi.org/10.1103/PhysRevLett.78.3421
https://doi.org/10.1103/PhysRevLett.96.100402
https://doi.org/10.1103/PhysRevA.82.012511
https://doi.org/10.1103/PhysRevB.81.195423
https://doi.org/10.1103/PhysRevLett.100.183602
https://www.ncbi.nlm.nih.gov/pubmed/18518371
https://doi.org/10.1209/epl/i2006-10340-1
https://doi.org/10.1103/PhysRevB.89.235436
https://doi.org/10.1209/0295-5075/97/50001
https://doi.org/10.1063/1.3686903
https://doi.org/10.1070/PU1975v018n05ABEH001958
https://doi.org/10.1103/PhysRevLett.89.033001
https://www.ncbi.nlm.nih.gov/pubmed/12144387
https://doi.org/10.1103/PhysRevB.83.075417
https://doi.org/10.1142/S0217751X11054383
https://doi.org/10.1103/PhysRevLett.112.025501
https://doi.org/10.1038/ncomms14699
https://doi.org/10.1103/PhysRevB.89.115419
https://doi.org/10.1103/PhysRevB.80.245424
https://doi.org/10.1103/PhysRevB.84.155407
https://doi.org/10.1103/PhysRevB.87.205433
https://doi.org/10.1103/PhysRevD.93.089907


Physics 2024, 6 904

55. Bimonte, G.; Klimchitskaya, G.L.; Mostepanenko, V.M. Thermal effect in the Casimir force for graphene and graphene-coated
substrates: Impact of nonzero mass gap and chemical potential. Phys. Rev. B 2017, 96, 115430. [CrossRef]

56. Sernelius, B.E. Retarded interactions in graphene systems. Phys. Rev. B 2014, 89, 079901. [CrossRef]
57. Klimchitskaya, G.L.; Mostepanenko, V.M.; Sernelius, B.E. Two approaches for describing the Casimir interaction in graphene:

Density-density correlation function versus polarization tensor. Phys. Rev. B 2014, 89, 125407. [CrossRef]
58. Liu, M.; Zhang, Y.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of an unusual thermal effect in the

casimir force from graphene. Phys. Rev. Lett. 2021, 126, 206802. [CrossRef] [PubMed]
59. Liu, M.; Zhang, Y.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Experimental and theoretical investigation of the

thermal effect in the Casimir interaction from graphene. Phys. Rev. B 2021, 104, 085436. [CrossRef]
60. Klimchitskaya, G.L.; Mostepanenko, V.M. (Eds.) Special Issue: 75 Years of the Casimir Effect: Advances and Prospects; Physics, in print.

Available online: https://www.mdpi.com/journal/physics/special_issues/75yearsCasimir (accessed on 17 March 2024).
61. Intravaia, F.; Koev, S.; Jung, I.W.; Talin, A.A.; Davids, P.S.; Decca, R.S.; Aksyuk, V.A.; Dalvit, D.A.R.; López, D. Strong Casimir

force reduction through metallic surface nanostructuring. Nat. Commun. 2013, 4, 2515. [CrossRef]
62. Tang, L.; Wang, M.; Ng, C.Y.; Nikolic, M.; Chan, C.T.; Rodriguez, A.W.; Chan, H.B. Measurement of non-monotonic Casimir forces

between silicon nanostructures. Nat. Photon. 2017, 11, 97–101. [CrossRef]
63. Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D

2009, 80, 085021. [CrossRef]
64. Lambrecht, A.; Neto, P.A.; Reynaud, S. The Casimir effect within scattering theory. New J. Phys. 2006, 8, 243. [CrossRef]
65. Maghrebi, M.F.; Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardara, M. Analytical results on Casimir forces for conductors with

edges and tips. Proc. Natl. Acad. Sci. USA 2011, 108, 6867–6871. [CrossRef]
66. Milton, K.A.; Wagner, J. Multiple scattering methods in Casimir calculations. J. Phys. A Math. Theor. 2008, 41, 155402. [CrossRef]
67. Grushin, A.G.; Cortijo, A. Tunable Casimir repulsion with three-dimensional topological insulators. Phys. Rev. Lett. 2011,

106, 020403. [CrossRef]
68. Jiang, Q.; Wilczek, F. Chiral Casimir forces: Repulsive, enhanced, tunable. Phys. Rev. B 2019, 99, 125403. [CrossRef]
69. Somers, D.A.; Munday, J.N. Conditions for repulsive Casimir forces between identical birefringent materials. Phys. Rev. A 2017,

95, 022509. [CrossRef]
70. Tajik, F.; Palasantzas, G. Sensitivity of actuation dynamics of Casimir oscillators on finite temperature with topological insulator

materials: Response of repulsive vs attractive interactions. Phys. Lett. A 2023, 481, 129032. [CrossRef]
71. Gelbwaser-Klimovsky, D.; Graham, N.; Kardar, M.; Krüger, M. Equilibrium forces on nonreciprocal materials. Phys. Rev. B 2022,

106, 115106. [CrossRef]
72. Rodriguez, A.W.; Capasso, F.; Johnson, S.G. The Casimir effect in microstructured geometries. Nat. Photon. 2011, 5, 211–221.

[CrossRef]
73. Javor, J.; Yao, Z.; Imboden, M.; Campbell, D.K.; Bishop, D.J. Analysis of a Casimir-driven parametric amplifier with resilience to

Casimir pull-in for MEMS single-point magnetic gradiometry. Microsyst. Nanoeng. 2021, 7, 73. [CrossRef] [PubMed]
74. Munday, J.N.; Iannuzzi, D.; Barash, Y.; Capasso, F. Torque on birefringent plates induced by quantum fluctuations. Phys. Rev. A

2005, 71, 042102. [CrossRef]
75. Broer, W.; Lu, B.; Podgornik, R. Qualitative chirality effects on the Casimir-Lifshitz torque with liquid crystals. Phys. Rev. Res.

2021, 3, 033238. [CrossRef]
76. Boström, M.; Sernelius, B.E. Thermal effects on the Casimir force in the 0.1–5 µm range. Phys. Rev. Lett. 2000, 84, 4757–4760.

[CrossRef] [PubMed]
77. Genet, C.; Lambrecht, A.; Reynaud, S. Temperature dependence of the Casimir effect between metallic mirrors. Phys. Rev. A 2000,

62, 012110. [CrossRef]
78. Bordag, M.; Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir force at both nonzero temperature and finite conductivity.

Phys. Rev. Lett. 2000, 85, 503–506. [CrossRef] [PubMed]
79. Milton, K.A. The Casimir effect: Recent controversies and progress. J. Phys. A Math. Gen. 2004, 37, R209–R277. [CrossRef]
80. Klimchitskaya, G.L.; Mostepanenko, V.M.; Svetovoy, V.B. Probing the response of metals to low-frequency s-polarized evanescent

fields. EPL (Europhys. Lett.) 2022, 139, 66001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1103/PhysRevB.96.115430
https://doi.org/10.1103/PhysRevB.89.079901
https://doi.org/10.1103/PhysRevB.89.125407
https://doi.org/10.1103/PhysRevLett.126.206802
https://www.ncbi.nlm.nih.gov/pubmed/34110190
https://doi.org/10.1103/PhysRevB.104.085436
https://www.mdpi.com/journal/physics/special_issues/75yearsCasimir
https://doi.org/10.1038/ncomms3515
https://doi.org/10.1038/nphoton.2016.254
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1088/1367-2630/8/10/243
https://doi.org/10.1073/pnas.1018079108
https://doi.org/10.1088/1751-8113/41/15/155402
https://doi.org/10.1103/PhysRevLett.106.020403
https://doi.org/10.1103/PhysRevB.99.125403
https://doi.org/10.1103/PhysRevA.95.022509
https://doi.org/10.1016/j.physleta.2023.129032
https://doi.org/10.1103/PhysRevB.106.115106
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1038/s41378-021-00289-4
https://www.ncbi.nlm.nih.gov/pubmed/34567785
https://doi.org/10.1103/PhysRevA.71.042102
https://doi.org/10.1103/PhysRevResearch.3.033238
https://doi.org/10.1103/PhysRevLett.84.4757
https://www.ncbi.nlm.nih.gov/pubmed/10990789
https://doi.org/10.1103/PhysRevA.62.012110
https://doi.org/10.1103/PhysRevLett.85.503
https://www.ncbi.nlm.nih.gov/pubmed/10991326
https://doi.org/10.1088/0305-4470/37/38/R01
https://doi.org/10.1209/0295-5075/ac8c69

	Introduction 
	Recent Precision Casimir Force Measurements to 1.3 m 
	Geometric Dependence of the Casimir Force with Sinusoidally Corrugated Surfaces 
	Demonstration of Asymmetry and Nonadditivity in Lateral Casimir Force 
	Role of Coherent Scattering in the Normal Casimir Force between Two Uniformly Corrugated Surfaces 

	Role of Magnetic Fluctuations in the Casimir Force 
	Precision Casimir Force Measurements with Graphene 
	Conclusions 
	References

