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Abstract: Based on the position and momentum of noncommutative relations with a noncanonical
map, we study the Dirac equation and analyze its parity and time reversal symmetries in a noncom-
mutative phase space. Noncommutative parameters can be endowed with the Planck length and
cosmological constant such that the noncommutative effect can be interpreted as an effective gauge
potential or a (0, 2)-type curvature associated with the Plank constant and cosmological constant. This
provides a natural coupling between dynamics and spacetime geometry. We find that a free Dirac
particle carries an intrinsic velocity and force induced by the noncommutative algebra. These prop-
erties provide a novel insight into the Zitterbewegung oscillation and the physical scenario of dark
energy. Using perturbation theory, we derive the perturbed and nonrelativistic solutions of the Dirac
equation. The asymmetric vacuum gaps of particles and antiparticles reveal the particle–antiparticle
symmetry breaking in the noncommutative phase space, which provides a clue to understanding
the physical mechanisms of particle–antiparticle asymmetry and quantum decoherence through
quantum spacetime fluctuation.

Keywords: Dirac equation; noncommutative phase space; particle–antiparticle asymmetry; quantum
decoherence

1. Introduction

When the physical horizons are extended from the macroscopic scale to microscopic
and cosmological scales, many novel phenomena emerged at different scales, which induce
novel concepts and mathematical structures. Quantum entanglement and quantum fluc-
tuation are rooted in wave–particle duality and noncommutative algebra [1]. Spacetime
geometry can be interpreted as gravity in cosmology [2]. However, these discoveries per-
plex us as to why spacetime plays different roles at different scales, which inspire many
attempts to construct a unified framework for all physical scales [3,4].

The cosmological observations of dark matter and dark energy provide us with
clues to understanding the incompatibility of spacetime on microscopic and cosmologi-
cal scales [5–8]. The discoveries of dark matter and dark energy stimulate more radical
ideas, such as spacetime quantization, noncommutative geometry, quantum cosmology,
and quantum gravity [9–13]. Several schemes have been proposed to quantize spacetime
with noncommutative algebra [9–12], such as the Moyal product techniques [9,10,14–18]
and a noncanonical map [14,17,19–27]. In particular, the two-dimensional (2D) quan-
tum Hall system in canonical quantum mechanics can be mapped to 2D free electronic
systems in a noncommutative phase space [22,23,28–32]. Many interesting phenomena
have been found in noncommutative phase spaces, such as magnetic monopoles, Berry
phase [33,34], the Aharonov–Bohm effect [35–39], and generalized and extended uncer-
tainty relations [40–44].

Interestingly, in a 3D noncommutative phase space, we found an intrinsic quantum
force induced by the noncommutative algebra that breaks the translation and rotation
symmetries [45]. To understand this intrinsic force or quantum fluctuation, we proposed
a parameterization scheme of noncommutative parameters associated with the Planck
constant, Planck length, and cosmological constant [45]. Thus, the noncommutative effects

Physics 2024, 6, 945–963. https://doi.org/10.3390/physics6030058 https://www.mdpi.com/journal/physics

https://doi.org/10.3390/physics6030058
https://doi.org/10.3390/physics6030058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0001-7753-0024
https://doi.org/10.3390/physics6030058
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics6030058?type=check_update&version=3


Physics 2024, 6 946

can be interpreted as an effective magnetic vector potential (or effective “gauge” potential)
associated with the Planck constant and cosmological constant [45].

Recently, we extended noncommutative relations to those in the 4D case and we
generalized the Schrödinger equation to the Klein–Gordon equation in a noncommutative
phase space [46]. Moreover, spin and intrinsic dipole moments emerge in the noncom-
mutative phase space, which are related to the double quantization [47–52], the deformed
special relativity [53,54], the Snyder model [55], and quantum dissipation [56,57]. However,
more importantly, there are still some puzzles in noncommutative quantum mechanics.
What physical mechanisms are hidden in the noncommutative phase space? What are the
fundamental properties of the Dirac particles in the noncommutative phase space?

In this paper, we follow our previous formulation in a 4D noncommutative phase space
with the Klein–Gordon equation [45,46] to study the Dirac equation in the noncommutative
phase space. In Section 2, we briefly review the Heisenberg representation of the 4D
noncommutative relations based on a noncanonical map.

In Section 3, we derive the Dirac equation and continuity equation in the noncom-
mutative phase space including the canonical (Hamiltonian) and Lorentz covariant forms
of the Dirac equation. We find that the noncommutative effects can be interpreted as an
analog with the effective gauge potential. We discuss the spin and helicity of Dirac particles
in the noncommutative phase space. We find that the helicity depends on the effective
gauge potential. Then, we give the probability current densities and the continuity equation
in the noncommutative phase space. Moreover, we discuss the parity and time reversal
symmetries of the Dirac equation in the noncommutative phase space.

In Section 4, using the perturbation theory, we obtain the perturbation solution and its
corresponding probability and current densities. In the nonrelativistic approximation, we
give the Pauli equation in the noncommutative phase space.

In Section 5, the parameterization scheme related to the Planck length and cosmo-
logical constant allows us to give the effective gauge field in terms of the Plank constant
and cosmological constant. We find an intrinsic velocity and force induced by the noncom-
mutative effect, which can be understood as a Zitterbewegung oscillation. Moreover, we
derive the equation of motion of a free Dirac particle and give an effective Lorentz-type
force induced by the noncommutative effect. The perturbation solution gives us a hint
to understanding the particle–antiparticle asymmetry and quantum decoherence with an
intrinsic curved spacetime.

Finally, in Section 6, we present the conclusions and future outlook. In the Appen-
dices, we provide the basic commutative relations, the perturbed matrix elements, and
derivation notes.

2. Noncommutative Relations and Their Heisenberg Representation
2.1. From Canonical Commutative Relations to Noncommutative Relations

Let the 4-vector operators of positions, xµ, and momenta, p̂µ, live in the Heisenberg
canonical phase space:

xµ := (ct, x) ≡ (ct, x, y, z), (1)

p̂µ := ( p̂0, p̂) ≡
(

Ê/c, p̂x, p̂y, p̂z

)
, (2)

where t is time, the Greek indices µ take the values, 0, 1, 2 and 3 labeling t (time), x, y, and z
(space coordinates), and c denotes the speed of light. The 4-vector operators of position
and momentum obey the following canonical commutative relations:

[xµ, xν] = 0, (3)[
p̂µ, p̂ν

]
= 0, (4)

[xµ, p̂ν] = ih̄δµ
ν , (5)
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where h̄ is the reduced Planck constant and δµ
ν is the Kronecker delta.

Suppose that the 4-vector operators of positions Xµ and momenta P̂µ live in a noncom-
mutative phase space:

X̂µ :=
(

ct, X̂
)
≡
(

ct, X̂, Ŷ, Ẑ
)

, (6)

P̂µ :=
(

Ê/c, P̂
)
≡
(

Ê/c, P̂x, P̂y, P̂z

)
. (7)

They obey the following noncommutative relations (see Appendix B)[
X̂µ, X̂ν

]
:= iΘµν, (8)[

P̂µ, P̂ν

]
:= iΦµν, (9)[

X̂µ, P̂ν

]
:= iΩµ

ν. (10)

The constant matrices on the right-hand side of Equations (8)–(10) describe the noncom-
mutative features. In Section 5.1, we use a set of physical parameters to characterize the
noncommutative strength.

2.2. Heisenberg Representation of Noncommutative Relations

The position–momentum noncommutative relations (8)–(10) provide the operator
algebra beyond the canonical (or Heisenberg) algebra in canonical quantum mechanics.
In general, there are two ways to implement these algebras, either by directly playing the
noncommutative algebra or constructing a map to transform the noncommutative algebra
to the Heisenberg algebra. The first approach is generally not straightforward to explicitly
reveal the noncommutative effects beyond the canonical algebra. The another approach
is based on the idea of the Seiberg–Witten map, to construct a noncanonical map to make
the noncommutative algebra reduce the Heisenberg algebra [19,20,25–27]. Here, based on
this idea, we propose a noncanonical map to transform the noncommutative algebra into
Heisenberg algebra [33,34,36].

Let us define the position and momentum operators, X̂µ, P̂µ ∈ Ônc in the noncommu-
tative phase space and define x̂µ, p̂µ ∈ ÔH, in the Heisenberg phase space. We construct a
map from the noncommutative phase to the Heisenberg phase space [46] as follows:

X̂µ = x̂µ + λµν p̂ν (11)

P̂µ = p̂µ + πµν x̂ν, (12)

where

[λµν] =


0 −θ/h̄ −θ/h̄ −θ/h̄
0 0 −θ/(2h̄) −θ/(2h̄)
0 θ/(2h̄) 0 −θ/(2h̄)
0 θ/(2h̄) θ/(2h̄) 0

 (13)

and

[
πµν

]
=


0 η/h̄ η/h̄ η/h̄
0 0 η/(2h̄) η/(2h̄)
0 −η/(2h̄) 0 η/(2h̄)
0 −η/(2h̄) −η/(2h̄) 0

, (14)

where θ and η are noncommutative parameters. Note that the position operators x̂µ have
the same form as xµ in the Heisenberg representation. In what follows, the hat on top of xµ

is omitted without loss of generality. The noncommutative parameters θ and η are endowed
with physical meanings in Section 5.1. Using the noncanonical map (11) and (12), we obtain
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the matrices of the noncommutative relations of the operators in Equations (8)–(10) [46]
(see Appendix B):

[Θµν] =


0 θ θ θ
−θ 0 θ θ
−θ −θ 0 θ
−θ −θ −θ 0

, (15)

[
Φµν

]
=


0 η η η
−η 0 η η
−η −η 0 η
−η −η −η 0

, (16)

and

[Ωµ
ν] =


h̄ + 3θη/h̄ θη/h̄ 0 −θη/h̄

ηθ/h̄ h̄ + θη/(2h̄) θη/(4h̄) −θη/(4h̄)
0 θη(4h̄) h̄ + θη/(2h̄) θη/(4h̄)

−ηθ/h̄ −θη/(4h̄) θη/(4h̄) h̄ + θη/(2h̄)

. (17)

Using the map (11) and (12), any operator noncommutative relations in noncommuta-
tive phase space can be transformed to calculate their Heisenberg commutation relations.
However, this map is neither unitary nor canonical.

2.3. Effective Gauge Potential in Heisenberg Representation

As an analog of an electrodynamic field with the minimum coupling, the momenta (12)
in the noncommutative phase space is as

P̂µ = p̂µ − Aµ, (18)

where
Aµ := −πµνxν (19)

is the effective “gauge” potential and

p̂µ = ih̄
(

1
c

∂

∂t
,−∇

)
≡ ih̄∂µ (20)

is the 4-vector momentum in the Heisenberg canonical representation. Consequently, the
noncommutative effect of momentum is equivalent to the momentum in the Heisenberg
commutative phase space coupled with an effective gauge potential induced by the non-
commutative algebra. Note that P̂µ = gµν P̂ν, where gµν is the Minkowski metric with a
Lorentz signature of (+ − − −).

3. Dirac Equation
3.1. Canonical form of Dirac Equation

Let us assume that the energy–momentum relation in the noncommutative phase
space still holds and the 4-momentum is given by P̂µ = p̂µ − Aµ in the noncommutative
phase space, the Schrödinger-like form of the Dirac equation is given by

ih̄
∂Ψ
∂t

= ĤΨ, (21)

where Ψ ≡ Ψ(xµ) is a four-component wave function. In what follows, we omit the variable
xµ without loss of generality for convenience unless specifically noticed. The Hamiltonian
Ĥ is given by

Ĥ = cα · (p̂ − A) + βm0c2 + cA0, (22)
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where m0 denotes the mass of the Dirac particle and

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
(23)

with σi the Pauli matrices and I a 2 × 2 unit matrix. The αi and β matrices obey
Clifford algebra: {

αi, αj
}

= 2δij , (24)

{αi, β} = 0, (25)

α2
i = β2 = I, (26)

where {C, D} ≡ CD + DC is the anti-commutator. The effective gauge potential is given by

Aµ = (A0, A), (27)

with

A0 = −η

h̄
(x + y + z), (28)

A =
η

2h̄
[(y + z)i − (x − z)j − (x + y)k]. (29)

One can see that the effective gauge potential is generated by the noncommutative
algebra of momenta in the noncommutative phase space. However, this effective gauge
potential does not involve the gauge transformation in the present paper. This point to be
discussed in future studies.

It should be remarked that (i) the operators, α, β, Aµ, and p̂µ are Hermitian, namely,
α† = α, β† = β, A†

µ = Aµ, and p̂†
µ = p̂µ. Consequently, the Hamiltonian (22) is also

Hermitian. (ii) Strictly speaking, in the noncommutative phase space, the wave function is
expressed as Ψ(X̂µ) = Ψ(xµ + λµν p̂ν). Using the Taylor expansion, one has

Ψ(xµ + λµν p̂ν) ≈ Ψ(xµ) + θh
µSµν p̂νΨ(xµ) +O(θ), (30)

where θh
µ =

√
θ

2h̄ (1, 1, 1, 1) and

Sµν =


0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0

. (31)

Thus, as the first-order approximation, the wave function is given by Ψ(X̂µ) ≈ Ψ(xµ). A
detailed discussion on the higher-order approximations is reserved for the future paper.

3.2. Lorentz-Covariant form of Dirac Equation

Using the 4-vector gauge potential Aµ, the Dirac equation can be rewritten as a
tensorial form: [

γµ
(

p̂µ − Aµ

)
− m0c

]
Ψ = 0, (32)

where γµ =
(
γ0, γi) are the Dirac matrices with γ0 = β and γi = βαi. These operators

obey Clifford algebra:

{γµ, γν} = 2gµν, (33)

γµ2 = gµν, (34)
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and

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
(35)

is the Dirac representation, and

γ0 =

(
0 −I
−I 0

)
, γi =

(
0 σi

−σi 0

)
(36)

is the Weyl representation.
One can verify that Dirac equation (32) is Lorentz-covariant. Interestingly, the effective

gauge potential coupled with the Dirac equation does not contain a coupled constant
(charge). In other words, the coupled constant is dimensionless.

3.3. Spin and Helicity

Let us consider the spin of a Dirac particle, which is defined by

S :=
h̄
2

Σ, (37)

where

Σ :=
(

σ 0
0 σ

)
. (38)

As with the canonical case, the helicity is generalized to

hS := S · p − A
|p − A| =

h̄
2

Σ
p − A
|p − A| , (39)

in a noncommutative phase space. The helicity depends not only on momentum but also
on the effective gauge potential. One can verify[

hS, Ĥ
]
= 0, (40)

which implies that the helicity is still conserved in the noncommutative phase space.

3.4. Probability Current and Continuity Equation

To obtain the probability current and the continuity equation, by following similar
steps in the Dirac equation coupled with an electromagnetic field and calculating the
product of the complex conjugated wave function Ψ∗ on the left-hand side of the Dirac
equation (21) and then subsequently subtracting its complex conjugate, one obtains the
following continuity equation [58]:

∂µ Jµ = 0, (41)

where Jµ = (cρ, j) is the 4-vector probability current density. This tensorial form of the
current continuity equation is Lorentz-invariant. The probability density is given by
ρ = Ψ†Ψ, and the expectation values of the current densities are given, respectively, by

⟨Jµ⟩ = cΨ†γµΨ, (42)

where
⟨j⟩ = cΨ†αΨ. (43)
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3.5. Symmetry

Let us explore the fundamental symmetries of the noncommutative relations and the
Dirac equation in a noncommutative phase space. In a 4D noncommutative phase space,
let us define the parity (P) and time reversal (T ) transformations as follows:

P : X̂µ → −X̂µ, P̂µ → −P̂µ, (44)

T : t → −t, i → i. (45)

PT : X̂µ → −X̂µ, P̂µ → −P̂µ, (46)

t → −t, i → i, (47)

where i is the imaginary unit.
One can verify that the noncommutative relation and the Dirac equation cannot remain

invariants under either a parity or time reversal transformation. However, in the composites
of the parity and time reversal transformations, the fundamental noncommutative relations
of the position and momentum operators are invariants [46].

Note that the effective gauge potential under the parity and time reversal transforma-
tions in Equations (44)–(47) is Aµ → −Aµ, and then PT

(
p̂µ − Aµ

)
T P = −

(
p̂µ − Aµ

)
. The

wave function under the PT transformation is given by PT : Ψ(X̂µ) → Ψ(−X̂µ) ≈ Ψ(−xµ).
Since i → i under the PT transformation, this implies that PT γµT P = γµ. Thus, we have

PT
[
γµ
(

p̂µ − Aµ

)
− m0c

]
PT = −γµ

(
p̂µ − Aµ

)
− m0c (48)

and infer that Dirac equation (32) under thePT transformations in Equations (44)–(47) becomes[
γµ
(

p̂µ − Aµ

)
+ m0c

]
Ψ(−xµ) = 0. (49)

In other words, the quantum states of the particle and antiparticle are inverted, which does
not involve a charge conjugation transformation.

It should be remarked that the sign of the imaginary unit i does not change under the
definition of the time reversal transformations in Equations (44)–(47), which is different
from those in the Schrödinger equation in the canonical phase space, where i → −i .
This property provides some hints for understanding some unsolved puzzles, such as the
particle–antiparticle asymmetry and quantum decoherence discussed in Section 5.

4. Perturbation Solution of Dirac Equation
4.1. Eigen Energies and Wave Functions

To explore the basic properties of the Dirac equation, we solve the Dirac equation
using perturbation theory. Note that the noncommutative parameters, θ and η, are con-
stants with length and momentum square dimensions, respectively. Let us assume that
the noncommutative effects are very small, that means the noncommutative parameters√

θ,
√

η ≪ 1. The Hamiltonian (22) can be separated into two terms:

Ĥ = Ĥ0 + Ĥ′, (50)

where

Ĥ0 = cα · p̂ + βm0c2, (51)

Ĥ′ = −cα · A + cA0, (52)

where Ĥ0 is the conventional part in the canonical Dirac equation, and Ĥ′ is the perturbed
part. The Hamiltonian Ĥ0 can be expressed in a matrix form:

Ĥ0 =

(
m0c2 cσ · p̂
cσ · p̂ −m0c2

)
. (53)
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Let us assume that the ansatz is given by Ψ(x) = ψ(x)e−iEt/h̄, where

ψ(x) =
(

φa
φb

)
eip·x/h̄. (54)

Substituting the wave vectors of Equation (54) into the Schrödinger-like equation,
ih̄∂tΨ = Ĥ0Ψ, one has (

m0c2 cσ · p
cσ · p −m0c2

)(
φa
φb

)
= E

(
φa
φb

)
. (55)

Using the mathematical identity,

(σ · C)(σ · D) = C · DI + iσ · (C × D), (56)

to solve the eigen Equation (55), the eigen energies are obtained [58,59]:

E± = ±c
√

p2 + m2
0c2 ≡ ±Ep = λEp , (57)

where Ep = c
√

p2 + m2
0c2 and λ = +1 and −1 denote particle (positive) and antiparticle

(negative) eigen energies, respectively. The corresponding eigen vectors are given by(
φa
φb

)
=

(
φa

cσ · p/(λEp + m0c2 φa)

)
. (58)

Using (σ · p)(σ · p) = p2 and normalizing the eigen vectors (58), one obtains:

∥φa∥ =

√
λEp + m0c2

2λEp
. (59)

Thus, the normalized wave vector is obtained as follows:

Ψ(0)
λ,τ =

√
λEp + m0c2

2λEp

(
χτ

cσ·p
λEp+m0c2 χτ

)
ei(p·x−λEpt)/h̄, (60)

where “(0)” superscript denotes the zero-order correction, τ = +1 and −1 denotes the
spin-up and spin-down states, respectively, and

χ+ =

(
1
0

)
, χ− =

(
0
1

)
. (61)

Using the perturbation theory, for a given state in the phase space, namely, a pair of 4-vector
position and momentum (xµ, pµ), the first-order corrections of the eigen energies are given
by the diagonal elements of the perturbation Hamiltonian,

E(1)
p,λ,τ =

〈
Ψ(0)

p,λ,τ |H
′|Ψ(0)

p,λ,τ

〉
(62)

and the corresponding first-order corrections of the eigen vectors are expressed as

Ψ(1)
p,λ,τ = ∑

λ′ ,τ

〈
Ψ(0)

p,λ′ ,τ |H
′|Ψ(0)

p,λ,τ

〉
Ep,λ,τ − Ep,λ′ ,τ′

Ψ(0)
p,λ′ ,τ . (63)

By substituting the eigen vectors (60) and the perturbation Hamiltonian (52) into Equation (62),
the first-order corrections of the eigen energies are given
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E(1)
p,λ,τ =

λEp + m0c2

2λEp

[
cA0

(
1 +

c2p2(
λEp + m0c2

)2

)
− 2c2p · A

λEp + m0c2

]
. (64)

Thus, the first-order approximation eigen energies are expressed as

Ep,λ,τ = λEp + E(1)
p,λ,τ . (65)

To calculate the first-order corrections of the eigen vectors, we first calculate the off-diagonal
elements of the perturbation Hamiltonian. We have

H(1)
p,λ,τ;p,λ,−τ = H(1)

p,λ,−τ;p,λ,τ = 0 (66)

and

H(1)
p′ ,∓,±;p,±,± =

c
pEp

[
m0c2p · A ∓ iλEp(p × A)z

]
, (67)

H(1)
p′ ,∓,±;p,±,± = ∓ iλc

p
[
i(p × A)y − (p × A)x

]
. (68)

The detailed forms of the off-diagonal elements of the perturbed Hamiltonian are given
in Appendix C. Thus, by putting the off-diagonal matrix elements (67), (68), (A17), (A18),
(A20) and (A21) into Equation (63), we obtain the first-order approximation wave vectors
of the Dirac equation:

Ψ(1)
p,λ,τ = Ψ(0)

p,λ,τ + cp,λ,τΨ(0)
p,−λ,τ , (69)

where

cp,λ,τ ≡
H(1)

p,λ,τ;p,−λ,τ

Ep,λ,τ − Ep,−λ,τ
. (70)

4.2. Probability and Current Densities

By using the first-order approximation wave vectors, the probability and current
densities (69) are expressed as

ρ
(1)
p,λ,τ = Ψ(1)†

p,λ,τΨ(1)
p,λ,τ , (71)

j(1)p,λ,τ = cΨ(1)†
p,λ,ταΨ(1)

p,λ,τ , (72)

where Ψ(1)
p,λ,τ is given in Equation (69). The probability density is positive definite. This is

different from those of the Klein–Gordon equation, where the probability density is not
positive definite.

4.3. Nonrelativistic Approximation

In the nonrelativistic approximation and using the canonical form of the Dirac equation [58,59],

ih̄
∂Ψ
∂t

=
[
cα · (p̂ − A) + βm0c2 + cA0

]
Ψ, (73)

Let

Ψ =

(
ψu
ψd

)
; ψu =

(
φ1
φ2

)
; ψd =

(
χ1
χ2

)
. (74)

Note that using

α · (p̂ − A)Ψ =

(
0 σ · (p̂ − A)

σ · (p̂ − A) 0

)(
ψu
ψd

)
, (75)
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the Dirac equation (73) can be rewritten as

ih̄
∂ψu

∂t
= cσ · (p̂ − A)ψd + (βm0c2 + cA0)ψu, (76)

ih̄
∂ψd
∂t

= cσ · (p̂ − A)ψu + (βm0c2 + cA0)ψd, . (77)

In the nonrelativistic approximation, |A0| ≪ m0c and |A| ≪ m0c, so that one has(
ih̄

∂

∂t
+ cA0

)
ψ±

u,d = m0c2
(
±1 +O

(
v2

c2

))
ψ±

u,d, (78)

where v is the velocity of the Dirac particle. Inserting Equation (78) into Equations (76) and (77),
one has

m0c2
(

1 +O
(

v2

c2

))
ψ+

u = cσ · (p̂ − A)ψ+
d , (79)

m0c2
(
−1 +O

(
v2

c2

))
ψ−

d = cσ · (p̂ − A)ψ−
u , (80)

which can be rewritten as

ψ+
u =

1
m0c

σ · (p̂ − A)ψ+
d +O

(
v2

c2

)
, (81)

ψ−
d = − 1

m0c
σ · (p̂ − A)ψ−

u +O
(

v2

c2

)
. (82)

For the positive and negative eigen energies, the wave vectors read

Ψu =

(
1

O
(

v2

c2

) )ψu and Ψd =

(
O
(

v2

c2

)
1

)
ψd, (83)

respectively. Thus, Dirac equations (76)–(77) can be rewritten as

ih̄
∂ψu

∂t
=

{
1

2m0
[σ · (p̂ − A)]2 + m0c2 + cA0 +O

(
v2

c2

)}
ψu, (84)

ih̄
∂ψd
∂t

=

{
1

2m0
[σ · (p̂ − A)]2 + m0c2 + cA0 +O

(
v2

c2

)}
ψd. (85)

Using mathematical identity (56), note that

(p̂ − A)× (p̂ − A) = ih̄B, (86)

where B = ∇× A is the effective magnetic field. The Dirac equation can be expressed as

ih̄
∂Ψ
∂t

= β

[
(p̂ − A)2 +

ih̄
2m0

Σ · B + cA0 + m0c2
]

Ψ. (87)

This can be regarded as the Pauli equation in the noncommutative phase space. Thus, in the
nonrelatativistic approximation, the Dirac equation (87) is decoupled to two-component
2 × 2 differential equations, which can be interpreted as particle and antiparticle.

5. What Physics Happens in Noncommutative Phase Space
5.1. Physics of Parameterization Scheme

In the canonical quantum mechanics, the Planck constant, as a noncommutative
parameter, quantizes phase space, which implies the existence of a minimum volume in
the phase space. The minimum volume of the phase space yields quantum fluctuations



Physics 2024, 6 955

called uncertainty relations. In the noncommutative phase space, the noncommutative
parameters θ and η extend the minimum volume of the phase space. What are the physical
meanings of these noncommutative relations of the operators? Cosmological observations
give us some hints. These cosmological observations indicate the existence of intrinsic
spacetime singularities. In particular, the interaction between a photon and gravity implies
the existence of a minimum length of spacetime at the Planck scale. The dark energy in
cosmology can be interpreted as an intrinsic minimum curvature of spacetime, which can
be equivalent phenomenologically to the cosmological constant. Consequently, we propose
a parameterization scheme for the noncommutative parameters associated with a set of
physical constants [46]:

θ = ℓ2
P; η = h̄2Λ, (88)

where ℓP =
√

h̄G/c3 is the Planck length with G the gravitational constant, and
Λ ≃ 10−56cm−2 is the cosmological constant. Based on these parameter settings, the
matrices of the noncommutative relations in Equations (15)–(17) can be expressed as:

[
Θµν

]
=


0 ℓ2

P ℓ2
P ℓ2

P
−ℓ2

P 0 ℓ2
P ℓ2

P
−ℓ2

P −ℓ2
P 0 ℓ2

P
−ℓ2

P −ℓ2
P −ℓ2

P 0

, (89)

[
Φµν

]
= h̄


0 h̄Λ h̄Λ h̄Λ

−h̄Λ 0 h̄Λ h̄Λ
−h̄Λ −h̄Λ 0 h̄Λ
−h̄Λ −h̄Λ −h̄Λ 0

, (90)

and

[
Ωµν

]
=


h̄ + 3h̄Λℓ2

P h̄Λℓ2
P 0 −h̄Λℓ2

P
h̄Λℓ2

P h̄ + h̄ℓ2
PΛ/2 h̄ℓ2

PΛ/4 −h̄ℓ2
PΛ/4

0 h̄ℓ2
rmPΛ/4 h̄ + h̄ℓ2

PΛ/2 h̄ℓ2
PΛ/4

−h̄Λℓ2
P −h̄ℓ2

PΛ/4 h̄ℓ2
PΛ/4 h̄ + h̄ℓ2

PΛ/2

. (91)

In general, the parameterization scheme depends on the problem to solve. The param-
eterization (88) is based on physics at the Planck and cosmological scales. Actually, one
can adopt other schemes for physics at microscopic or macroscopic scales, such as the de
Broglie wave length or energy-dependent noncommutative parameters [34].

5.2. Noncommutative Algebra, Curvature, and Cosmological Constant

The noncommutative effects can be interpreted as an effective gauge potential. We can
define its corresponding gauge field using F = dA, which was given by [46]:

Fµν = ∂µ Aν − ∂ν Aµ. (92)

From a mathematical viewpoint, the effective gauge field can be interpreted as a (0, 2)-type
curvature in the noncommutative phase space, namely, Rµν ≡ Fµν. Using the parameteriza-
tion scheme (88), we obtain

Rµν =


0 h̄Λ h̄Λ h̄Λ

−h̄Λ 0 h̄Λ h̄Λ
−h̄Λ −h̄Λ 0 h̄Λ
−h̄Λ −h̄Λ −h̄Λ 0

. (93)

Interestingly, this paramaterization scheme provides the geometric feature of the noncom-
mutative relations, namely, [

P̂µ, P̂ν

]
= h̄Rµν. (94)
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The noncommutative effect can be interpreted as the two physical scenarios, namely,
on one hand, an effective gauge field or (0, 2)-type curvature. This curvature depends on
the Planck constant and cosmological constant, which implies that the noncommutative
algebra modifies the dynamical behavior through an effective gauge field or spacetime
curvature associated with the cosmological constant. On other hand, This feature provides
a physical scenario of dark energy or a natural coupling between quantum mechanics
and gravity.

5.3. Intrinsic Velocity, Force, and Zitterbewegung Oscillation

To examine the basic behaviors of the relativistic particle in the noncommutative
phase space, let us study a free particle model and its mechanical properties. As with the
canonical case, the velocity of a particle is defined by v̂ = dX̂/dt in the noncommutative
phase space. Using the Heisenberg equation (or the called as Heisenberg picture), the
velocity of a particle is given by

v̂ =
1
ih̄

[
X̂, Ĥ

]
. (95)

The Hamiltonian of a free particle in the noncommutative phase space is given by

Ĥ = cα ·
(

P̂ + βm0c2
)

, (96)

where cA0 is ignored without loss of generality, and P̂ = p̂ − A in the Heisenberg represen-
tation. A is the 3D effective gauge potential. Using the noncommutative relations (89)–(91),
we have [

X̂, α · P̂
]
= ih̄

(
καα + κβα̃

)
, (97)

where

κα = h̄

(
1 +

ℓ2
PΛ
2

)
, κβ =

h̄ℓ2
PΛ
4

. (98)

and
α̃ = (αy − αz)i + (αx + αz)j + (−αx + αy)k. (99)

Thus, the velocity is expressed as

v̂ = c
(

καα + κβα̃
)

. (100)

Similarly, the acceleration is defined by

dv̂
dt

=
1
ih̄

[
v̂, Ĥ

]
. (101)

Note that

αĤ + Ĥα = 2cP̂, (102)

α̃Ĥ + Ĥα̃ = 2ĉ̃P, (103)

where ̂̃P = (P̂y − P̂z)i + (P̂x + P̂z)j + (−P̂x + P̂y)k. (104)

Consequently, Equation (101) can be rewritten as

dv̂
dt

=
2c2

ih̄

(
καP̂ + κβ ̂̃P)− 2

ih̄
Ĥv̂. (105)

Solving the differential equation on v̂, we obtain
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v̂(t) =

v̂(0)−
c2
(

καP̂ + κβ ̂̃P)
Ĥ

 exp

(
2iĤt

h̄

)
+

c2
(

καP̂ + κβ ̂̃P)
Ĥ

. (106)

In substituting Equation (106) into Equation (100) and integrating over t, the position vector
reads a function of t:

X̂(t) = X̂(0) +
c2
(

καP̂ + κβ ̂̃P)t

Ĥ
− ih̄

2Ĥ

v(0)−
c2
(

καP̂ + κβ ̂̃P)
Ĥ

 exp

(
2iĤt

h̄

)
, (107)

where 0 denotes the initial time. Note that the classical (cl) position part is given in
Refs. [58,59]:

xcl(t) = xcl(0) +
c2p̂
Ep

t. (108)

The equation of motion in the noncommutative phase space is rewritten as a sum of the
two terms:

X̂(t) = X̂cl(t) + X̂Z(t), (109)

where

X̂cl(t) = X̂(0) +
c2
(

καP̂ + κβ ̂̃P)t

Ĥ
(110)

is the classical part and

X̂Z(t) = − ih̄
2Ĥ

v(0)−
c2
(

καP̂ + κβ ̂̃P)
Ĥ

 exp

(
2iĤt

h̄

)
(111)

represents the Zitterbewegung oscillation.

5.4. Equation of Motion

As with the equation of motion on velocity (95), in the Heisenberg picture, the equation
of motion is given by

dP̂
dt

=
1
ih̄

[
P̂, Ĥ

]
. (112)

By calculating the commutation relation (see Appendix D), we obtain[
P̂µ, cα · P̂

]
= ih̄vνFµν. (113)

where vν = cαν is the velocity, and Fµν is the effective gauge field in Equation (92). Thus,
we obtain the equation of motion

dP̂µ

dt
= vνFµν, (114)

where the right-hand side of Equation (114) is the Lorentz-type force induced by the
noncommutative algebra. Interestingly, a free particle carries an intrinsic velocity and
Lorentz-type force in the noncommutative phase space.

5.5. Particle–Antiparticle Symmetric Breaking and Quantum Decoherence

Let us recall the Dirac equation of the static states in the canonical phase space:(
cα · p̂ + βm0c2

)
Ψλ = EλΨλ. (115)
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By solving the eigen Equation (115), the eigen energies Eλ are given in Equation (57). The
corresponding eigen vectors are given by

Ψ(0)
λ,τ =

√
λEp + m0c2

2λEp

(
χτ

cσ·p
λEp+m0c2 χτ

)
eip·x/h̄, (116)

with τ = ±1 as defined in Section 4.1 and χ± are defined in Equation (61). Assuming the
vacuum energy is at zero between the Eλ eigen energies, E+ and E−, the gap asymmetry of
the particle and antiparticle is given by ∆Eg = E+ + E− = 0. In other words, the energy
gaps of the particle and antiparticle are symmetric for free Dirac particles in canonical
quantum mechanics.

In the noncommutative phase space, the noncommutative effect can be included in
the Dirac equation as an effective gauge field. The Dirac equation becomes[

cα · (p̂ − A) + βm0c2
]
Ψp,λ,τ = Ep,λ,τΨp,λ,τ . (117)

For a given state in the phase space, (xµ, pµ), the eigen energies in the first-order approxi-
mation can be expressed as

Ep,λ,τ = λEp + E(1)
p,λ,τ , (118)

where E(1)
p,λ,τ is given by Equation (64). The energy gap asymmetry in the first-order

approximation is given by

∆Ep,λ,τ = E(1)
p,λ,τ + E(1)

p,−λ,τ

= −2c2

Ep
A · p. (119)

In the parameterization scheme (88), the energy gap asymmetry can be rewritten as

∆Ep,λ,τ = h̄Λ
c2

Ep
(Lx − Ly + Lz), (120)

where Li = εij
kxj pk with εij

k the Levi-Civita symbol is the 3D angular momentum.
In general, ∆Ep,λτ ̸= 0. In other words, the energy gap symmetry of the particle and
antiparticle is broken by the effective gauge potential in the noncommutative phase space,
which is related to the cosmological constant and Planck constant. This implies that curved
spacetime or gravity breaks the particle–antiparticle symmetry such that particles are
observed in a considerably larger number than antiparticles.

On the other hand, the energy gap shift leads to quantum decoherence. Roughly, let
us consider the size of a quantum object to be L. The average of the energy gap shift for a
quantum object is, ∆Ep,λ,τ ≈ 1

L
∫ L

0 ∆Ep,λ,τdx ∝ h̄Λ, L. Thus, the quantum decoherence time
can be given by

τd =
h̄

∆Ep,λ,τ
. (121)

In other words, the particle–antiparticle symmetry breaking induces quantum decoherence.
The quantum decoherence time depends on the cosmological constant and the object
size, which implies that quantum decoherence is induced intrinsically by a gravity or
spacetime background [60]. The decoherence time τd becomes quite long for objects
with relatively small sizes and quite short for those with relatively large sizes. This is
consistent with what one expects. Consequently, the noncommutative phase space provides
a natural background or scenario for understanding particle–antiparticle asymmetry and
quantum decoherence.
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Quantum decoherence is a core issue for understanding why quantum coherence
is fragile in the macroscopic world [61,62]. It is still a puzzle even when there are many
theoretical models for understanding the physical mechanism of quantum decoherence,
such as quantum measurement-induced decoherence and environment-induced superse-
lection [60,62]. Here, we present a quantum decoherence model based on noncommutative
quantum mechanics.

6. Conclusions and Outlook

The incompatibility of the spacetime background in quantum mechanics and general
relativity is still a challenging problem in theoretical physics. In particular, the intrinsic
spacetime singularities imply that all physics collapse at the Planck scale. There may be a
minimum length in the Planck scale to avoid singularity emergence. The observation of the
universe acceleration expansion hints at the existence of a minimum curvature of spacetime
associated with the cosmological constant. Understanding these unexpected phenomena
has stimulated many attempts to quantize the spacetime background and deform canonical
quantum mechanics.

By using a noncanonical map, noncommutative relations are mapped to the Heisen-
berg canonical commutation relations. We presented the Dirac equation and its corre-
sponding current continuity equation in the noncommutative phase space. We propose
a parameterization scheme associated with the Planck length and cosmological constant
such that the noncommutative effect can be interpreted as an effective gauge potential or
(0, 2)-type curvature associated with the cosmological constant. This reveals an intrinsic
interlay between the dynamics of gravity and spacetime. Moreover, we found that a free
particle carries an intrinsic velocity and acceleration induced by the noncommutative alge-
bra. These novel properties of free Dirac particles provide a deep physical scenario of the
Zitterbewegung oscillation and dark energy.

We analyzed the PT symmetries of the Dirac equation in the noncommutative phase
space. We found that the particle and antiparticle states are inverted under PT transfor-
mations if i is invariant. Using the perturbation approach, we obtained the perturbed and
nonrelativistic solutions of the Dirac equation. We found that there exists an asymmetric
vacuum gap of particles and antiparticles induced by the noncommutative effect. This
symmetric breaking reveals deep physical mechanisms for understanding the particle–
antiparticle asymmetry and quantum decoherence induced by gravity or quantum space-
time background fluctuation.

These formulations not only open a novel framework of relativistic quantum mechanics
in the noncommutative phase space but also inspire some interesting mathematical structures.
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Appendix A. The Basic Commutative Relations

Let us present some basic commutative relations in the noncommutative phase space
for convenience, [

X̂, P̂2
]

= 2i
[
κα P̂x + κβ

(
P̂y − P̂z

)]
, (A1)[

Ŷ, P̂2
]

= 2i
[
κα P̂y + κβ

(
P̂x + P̂z

)]
, (A2)[

Ẑ, P̂2
]

= 2i
[
κα P̂z + κβ

(
−P̂x + P̂y

)]
, (A3)
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and [
P̂x, P̂2

]
= 2iη

(
P̂y + P̂z

)
, (A4)[

P̂y, P̂2
]

= 2iη
(
−P̂x + P̂z

)
, (A5)[

P̂z, P̂2
]

= −2iη
(

P̂x + P̂y

)
. (A6)

One can find that in the noncommutative phase space,
[
P̂, P̂2

]
̸= 0, which implies the trans-

lation symmetry breaking. When the noncommutative parameters vanish, the commutative
relations (A1)–(A6) reduce to the canonical relations in Heisenberg algebra.

Appendix B. Proof of the Noncanonical Map

Proof. By using noncanonical map (11) and (12), the noncommutative relations between
the position operators X̂µ are expressed as[

X̂µ, X̂ν
]

= [xµ + λµκ p̂κ , (xν + λνσ p̂σ)]

= [xµ, p̂σ]λ
σν + λνκ [ p̂κ , xµ]

= ih̄(λµν − λνµ). (A7)

In applying λ-matrix (13) subtraction, the noncommutative relation (8) with the Θ-matrix (15)
is obtained.

Similarly, the noncommutative relations between the momentum operators P̂µ are
expressed as [

P̂µ, P̂ν

]
=

[
p̂µ + πµκxκ , ( p̂ν + πνσxσ)

]
=

[
p̂µ, xσ

]
πσν + πνκ

[
xκ , p̂µ

]
= ih̄

(
−πµν + πνµ

)
. (A8)

Through π-matrix (14) subtraction, the noncommutative relation (9) with the Φ-matrix (16)
is obtained.

In the same way, the noncommutative relations between the position and momentum
operators are expressed as follows:[

X̂µ, P̂ν

]
= [xµ + λµκ p̂κ , p̂ν + πνσxσ]

= [xµ, p̂ν] + λµκ [ p̂κ , xσ]πσν

= ih̄(δµ
ν − λµκπκν). (A9)

In making the matrix product of λ and π, the noncommutative relation is obtained:[
X̂µ, P̂ν

]
= iΩµ

ν, (A10)

where

[Ωµ
ν] =


h̄ + 3θη/h̄ θη/h̄ 0 −θη/h̄

ηθ/h̄ h̄ + θη(2h̄) θη/(4h̄) −θη(4h̄)
0 θη/(4h̄) h̄ + θη(2h̄) θη(4h̄)

−ηθ/h̄ −θη/(4h̄) θη/(4h̄) h̄ + θη/(2h̄)

. (A11)

These representations of the position and momentum operators can be regarded as
Heisenbereg representations of the noncommutative quantum mechanics. The noncanoni-
cal map provides an efficient way to approximately perform the Heisenberg algebra in the
noncommutative phase space even though the map is not unitary or canonical. It can be
verified that the commutative relations obtained satisfy the Lorentz invariants.
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Appendix C. The Perturbed Matrix Elements

Using the mathematical identity

σ · (A × p) + σ · (p × A) = 0, (A12)

one obtains (
1 0

)
σ · (p × A)

(
1
0

)
= (p × A)z, (A13)

(
0 1

)
σ · (p × A)

(
0
1

)
= −(p × A)z, (A14)

(
1 0

)
σ · (p × A)

(
0
1

)
= (p × A)x − i(p × A)y, (A15)

(
0 1

)
σ · (p × A)

(
1
0

)
= (p × A)x + i(p × A)y. (A16)

Using the mathematical identities (A13)–(A16), we obtain the perturbed matrix elements:

H(1)
p′ ,λ′ ,±;p,λ,± = Mp′λ′ ;pλ

[
cA0

(
1 +

c2p′ · p
(m0c2 + λ′E′

p)(m0c2 + λEp)

)
− c2

(
p · A

m0c2 + λEp
+

p′ · A
m0c2 + λ′Ep

)

− ic2
(

(A × p)z

m0c2 + λEp
± (p′ × A)z

m0c2 + λ′Ep

)
+

c3 A0(p′ × p)z

(m0c2 + λ′E′
p)(m0c2 + λEp)

]
, (A17)

H(1)
p′ ,λ′ ,±;p,λ,∓ = Mp′λ′ ;pλ

[
∓ic2

(
1

m0c2 + λEp
− 1

m0c2 + λ′Ep

)(
(p × A)y − (p × A)x

)
+ c3 A0

∓i(p′ × p)y + (p′ × p)x

(m0c2 + λ′E′
p)(m0c2 + λEp)

]
, (A18)

where

Mpλ′ ;pλ =

√
(m0c2 + λ′E′

p)(m0c2 + λEp)

2λ′λE′
pEP

. (A19)

For the case of p′ = p, the matrix elements (A17) and (A18) reduce to

H(1)
p,λ′ ,±;p,λ,± = Npλ′ ;pλ

[
cA0

(
1 +

c2p2

(m0c2 + λ′Ep)(m0c2 + λEp)

)
− c2p · A

m0c2 + λEp
− c2p · A

m0c2 + λ′Ep

− ic2
(

(p × A)z

m0c2 + λEp
± (p × A)z

m0c2 + λ′Ep

)]
, (A20)

H(1)
p,λ′ ,±;p,λ,∓ = Npλ′ ;pλ

[
∓ic2

(
1

m0c2 + λEp
− 1

m0c2 + λ′Ep

)(
i(p × A)y − (p · A)x

)]
, (A21)

where

Npλ′ ;pλ =
1

2Ep

√
(m0c2 + λ′Ep)(m0c2 + λEp)

λ′λ
. (A22)

Appendix D. Lorentz-Type Force

Using noncanonical map (11) and (12) with its Heisenberg representation (18), we
calculate the following commutator:
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[
P̂µ, cα · P̂

]
=

[
P̂µ, cαν · P̂ν

]
=

[
( p̂µ − Aµ), cαν · ( p̂ν − Aν)

]
= −cαν

[
p̂µ, Aν

]
− cαν

[
Aµ, p̂ν

]
= ih̄cαν(∂µ Aν − ∂ν Aµ)

= ih̄cανFµν

= ih̄vνFµν. (A23)
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