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Abstract: On 17 October 1947, Niels Bohr was made a knight of the Order of the Elephant by the King
of Denmark in view of his outstanding achievements and contributions to science. Bohr designed
his own coat of arms that featured a pattern of Yin and Yang (Tai Chi symbol) to symbolize the
wave–particle complementarity. However, Bohr’s Yin-Yang diagram (YYD) was neither drawn based
on the principles of quantum mechanics, nor did it originate from the traditional Taoist YYD. Scientists
still have doubts about the legitimacy of using YYD as the icon of the wave–particle complementarity,
because the YYD belonging to quantum mechanics itself is unknown so far. This paper reports the
YYDs existing in quantum mechanics and justifies the role of YYD in the wave–particle duality by
showing that any system, whether classical or quantum, has an ideal YYD as long as it satisfies
Bohr’s principle of complementarity (BPC). The deviation of a deformed YYD from the ideal YYD
indicates the extent to which a real system satisfies BPC. This paper constructs the quantum YYD
by the complex quantum trajectory of a particle tunneling via a step barrier, which displays the
continuous transition between the wave behavior and the particle behavior. It appears that the YYD
designed by Bohr in his coat of arms resembles the YYD generated by tunneling motion, not only in
appearance but also in the governing equation.

Keywords: Bohr’s coat of arms; principle of complementarity; Yin-Yang diagram; quantum tunneling
dynamics; complex quantum trajectory

1. Introduction

Before Niels Bohr, the principle of complementarity had appeared in many intellectual
disciplines, dating as far back as Yin-Yang thought in ancient China more than 3000 years
ago. Yin and Yang elements appear in pairs, called the complementary pairs, such as the
moon and the sun, female and male, dark and bright, cold and hot, passive and active,
and so on. Complementary elements are opposite in nature yet rely on each other to exist.
Bohr was the first person to introduce the principle of complementarity into the world
of physics and regarded it as a universal principle. Bohr’s principle of complementarity
(BPC) holds that objects have certain pairs of complementary properties which cannot all
be observed or measured simultaneously. Using one particular piece of apparatus, only
one of the features could be made manifest at the expense of the other.

Taoist Yin-Yang diagram (YYD), which is also known as Tai Chi symbol in China [1,2],
is a graphical demonstration of the complementary Yin-Yang pair by means of areas in
black and red to display their interlaced changes within a period (see Figure 1a). Why Bohr
used this ancient symbol to represent his principle of complementarity [3] has remained a
mystery for nearly eighty years. Except for philosophical or even religious connections,
physicists have so far found no scientific clues to substantiate Bohr’s original ideas [4].
The key reason why this mystery has not been solved for many years is because physi-
cists and even Bohr himself have no idea how to create the YYD from the principle of
complementarity. Taoist YYD is a graphic representation of the ancient Chinese version
of the principle of complementarity [5]. However, Taoist YYD has no unified form, and
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Chinese scholars of various dynasties have proposed different methods for the drawing of
Taoist YYD. Different complementary pairs will derive different forms of YYD, so there
is indeed no YYD that can uniquely represent BPC. Although the forms of YYD are quite
diverse, these different forms of YYD have common characteristics. This paper proposes
the common rules in the construction of various YYDs. The ancient Taoist YYD and the
quantum YYDs of wave–particle duality and tunneling effect can all be constructed by the
proposed common rules. The resulting YYDs are all concrete realizations of the idea of
complementarity, and any one of them can be used as a symbol of BPC.
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Figure 1. (a) Bohr designed his own coat of arms that featured a symbol of Yin and Yang, and a motto
in Latin “contraria sunt complementa” (opposites are complementary) [6]. (b) Two states A and B
of a system are said to be complementary, if they are jointly complete and mutually exclusive, or
equivalently, pA + pB = 1, where pA and pB are the quantitative measures for A and B, respectively.

As shown in Figure 1, the areas occupied by red and black in Taoist YYD serve as the
quantitative indices pA and pB for the state A (Yang) and state B (Yin), respectively. Using
the two indices pA and pB, the two properties of BPC, i.e., joint completeness and mutual
exclusion, can be expressed quantitatively.

YYD is a graphical indicator that reflects the degree to which a system satisfies the
principle of complementarity, and it is present in almost every system in nature, whether
classical or quantum. What Bohr could not have imagined was that he did not need to
borrow Taoist YYD to convey his principle of complementarity, because the principle of
complementarity is the theoretical foundation of Taoist YYD. This study reverses Bohr’s
idea by applying the definition of YYD to reproduce Taoist YYD, which is an ideal YYD
satisfying BPC, and using the same definition to construct the YYDs belonging to quantum
mechanics itself. The results obtained here reveal that the YYD designed by Bohr in his
coat of arms is different from Taoist YYD but is close to the quantum YYD based on
tunneling effect.

Taoist YYD contains two states: Yin and Yang, whose magnitudes wax and wane over
time, but their sum remains constant, hence forming a pattern like two fish rotating around
each other within a circle. The Yin-Yang states in Taoist YYD are a complementary pair
possessing three properties. The first property is that they are jointly complete, that is,
the two states constitute the entire system. The second property is that they are mutually
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exclusive, that is, there is no intersection or interference between the two states. The
combination of the above two properties indicates that the Yin-Yang states satisfy BPC [7],
which can be expressed as pA + pB = 1 in terms of the quantitative measures pA and pB (see
Figure 1b). The third property of the Yin-Yang pair is that the pair remains complementary
over a complete period, i.e., pA(t) + pB(t) = 1, 0 ≤ t ≤ T. The YYD composed of the
Yin-Yang states having the above three properties is said to be an ideal YYD. The traditional
Taoist YYD is a typical example of ideal YYDs, and this paper reveals two ideal YYDs
emerging from quantum mechanics, one from two-path interference experiments and the
other from quantum tunneling dynamics.

The complementary pair (A, B) that Bohr considered includes: (i) position and mo-
mentum, (ii) spin on different axes, (iii) wave nature and particle nature of a quanton,
(iv) value of a field and its change, (v) entanglement and coherence, and (vi) photon po-
larization. Among these complementary pairs, the most discussed is the particle nature
and the wave nature of a quanton, whose relationship with BPC has been tested by many
experiments in recent decades. In these experiments, the quantitative measures for the com-
plementary pair are given by (pA, pB) =

(
D2, V2), where D is the distinguishability of the

which-way information, and V is visibility of wave fringe measured by the Mach–Zehnder
interferometer (MZI) [8,9]. The manifested wave and/or particle property of the tested
quantons depend on the detecting devices used in the experiments. In the all-or-nothing
cases [10–12], quantons behave as a particle (pA = 1 and pB = 0) or as a wave (pA = 0
and pB = 1), while in the intermediate cases [13–16], quantons behave simultaneously as a
particle and as a wave, whose quantitative measures satisfy the inequality pA + pB ≤ 1. It
was further verified [17] that the equality pA + pB = 1 holds if the tested quantons have
no internal degree of freedom, for which the conditions of joint completeness and mutual
exclusion are both met.

In recent years, the advancement of quantum beam splitters [18] has allowed the MZI
to be set in a state of quantum superposition of “on” and “off” such that the wave and par-
ticle behaviors of a single photon can coexist simultaneously, with a continuous morphing
between them. Unlike the classical MZI, where the wave nature and the particle nature
are treated independently, the wave and particle natures of a single quanton in the setup
of quantum MZI become quantum states [19,20] so that there can be interference between
them. The interference between the wave state and the particle state in the quantum MZI
implies that they are not mutually exclusive and cannot form a qualified complementary
pair (A, B), for which the violation of the complementarity, 1 < pA + pB ≤ 2, has been
experimentally observed [21,22].

Although BPC has been tested by numerous experiments, these experiments still
cannot tell us why Bohr used the YYD to symbolize his principle. As a first point,
this paper constructs the ideal YYD and the deformed YYD from the experimental data
(pA, pB) =

(
D2, V2). According to the difference between the ideal YYD and the deformed

YYD, one can judge the extent to which the experimental results satisfy the principle of
complementarity. Interestingly, the ideal YYD constructed by the two-path interference
experiment is closer to the traditional Taoist YYD but different from the YYD designed by
Bohr in his coat of arms. This finding prompts us to explore another complementary pair
in order to more closer represent Bohr’s YYD.

The finding of a more suitable complementary pair is inspired by the quantum tun-
neling motion of a quanton via a step barrier, wherein one finds that the changes in the
quanton’s real velocity

.
xR and imaginary velocity

.
xI synchronously reflect the alternating

changes in its particle nature and wave nature. It was pointed out that the wave–particle
duality is a direct result of quantum motion occurring in complex space [23–25]. The
validity of the complex-trajectory interpretation of wave–particle duality is further sup-
ported by the recent findings of weak measurements, which reveal that every physical
observable has a real part as well as an imaginary part [26,27]. Similar to the entanglement,
the imaginarity has been recognized as an indispensable resource responsible for quantum
advantages [28–30], which has ruled out the real-valued standard formalism of quantum
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theory [31]. When a quanton exhibits particle behavior, the real component xR alone is
sufficient to describe its motion, as treated in classical mechanics. But when a quanton’s
motion exhibits wave behavior, the imaginary component xI is also needed to describe
its motion. The results obtained reveal that the quantum YYD constructed by the comple-
mentary pair (pA, pB) =

( .
x2

R,
.
x2

I

)
is closer to Bohr’s YYD than the YYD constructed by the

complementary pair (pA, pB) =
(

D2, V2).
In what follows, first the general YYD and the ideal YYD are defined in Section 2

and it is shown that the traditional Taoist YYD is the oldest example of the ideal YYD
satisfying BPC. With (pA, pB) =

(
D2, V2), Section 3 constructs the quantum YYD by the

data of the two-path interference experiments, from which the similarity between Taoist
YYD and the interference-based YYD is shown. Section 4 introduces the mapping between
the complex tunneling trajectory and the quantum YYD for a particle’s tunneling motion
via a step barrier. The particle’s tunneling trajectories are solved by quantum Hamilton
mechanics [32] in Section 5 to yield the particle’s complex position xR + ixI and complex
velocity

.
xR + i

.
xI by which the tunneling-based YYD is then generated. The obtained

tunneling-based YYD is a graphical recorder of the particle’s tunneling dynamics, which
moves together with the particle, recording the velocity of the particle, and presenting it
graphically, as demonstrated in Section 6. The tunneling-based YYD is not always an ideal
YYD, and how its shape evolves with the intensity of the tunneling effect is discussed in
Section 7. Section 8 compares the four different YYDs considered in this paper and clarifies
their relationship with BPC, which brings to the following conclusions: complementarity is
a universal principle, as Bohr said, and the YYD constructed in this paper is a universal
image found all over in the nature.

2. Definitions for General YYD and Ideal YYD

Traditional Taoist YYD is an ideal YYD satisfying BPC, which is a special case of the
general YYD. In this Section, the general YYD is defined first and then it is explained under
what conditions the ideal YYD can be induced. A general YYD is defined for any periodic
system, which is composed of state A (Yang) and state B (Yin) with quantitative measures
pA and pB normalized between 0 and 1. The growth and decline of the Yin-Yang states are
conveyed through the interlacing changes of pA (in red) and pB (in black). As shown in
Figure 2, the shape of YYD is uniquely determined by its inner and outer curves.

The radial coordinates of the inner and outer curves are called inner and outer radii,
respectively. In terms of the quantitative measures pA(t) and pB(t) recorded at each
moment t, the inner radius of a general YYD is defined by

r =
{

pA(t), 0 ≤ t ≤ T/2
pB(t), T/2 ≤ t ≤ T

=

{
pA(θ), 0 ≤ θ ≤ π,
pB(θ), π ≤ θ ≤ 2π,

(1)

and its outer radius is defined by r = pA(θ) + pB(θ), where the azimuth angle θ = 2πt/T
is measured clockwise from the vertical axis and T is the period of time, as shown in
Figure 2. It is noted that the periodic property of the system implies pA(0) = pA(2π) and
pB(0) = pB(2π).

The ideal YYD is a special case of the general YYD, which further meets the continuity
condition and the complementarity condition. The continuity condition requires that the
two sections of the inner curve defined by Equation (1) must be continuous at the origin,
i.e., pA(π) = pB(2π) = 0, or equivalently, the state A must occupy the whole system at
θ = 2π (θ = 0), and the state B must occupy the whole system at θ = π. The complementar-
ity condition requires that the states A and B must satisfy BPC: pA(θ) + pB(θ) = 1 over the
entire interval, or equivalently, the outer curve has to be a unit circle, r = pA(θ)+ pB(θ) = 1,
0 ≤ θ ≤ 2π.
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Figure 2. A schematic diagram of constructing Taoist YYD according to the principle of comple-
mentarity. (A, B) a qualified complementary pair of a periodic system satisfying the condition
pA(tk) + pB(tk) = 1 at every moment tk within the period 0 ≤ tk ≤ T. The inner curve of Taoist YYD
is defined by the polar coordinates (rk, θk), where rk = pA(tk) for 0 ≤ tk ≤ T/2, and rk = pB(tk), for
T/2 ≤ tk ≤ T, and the outer curve is defined by rk = pA(tk) + pB(tk). The quantitative measures
pA(tk) and pB(tk) used in the traditional Taoist YYD are the proportions of the states A and B in the
entire system at time tk, just like the proportions of day and night on a certain day tk of the year.

In ancient China, the most representative complementary pair (A, B) was day and
night. In this case, pA represents the proportion of daytime in a day, and pB represents the
proportion of night. These two proportions vary on different days of the year, but they
always meet the complementarity condition pA + pB = 1. By recording the proportions of
day and night for each day of the year in the polar coordinates, with white area denoting the
daytime and black area denoting the nighttime, the original YYD in ancient China was then
formed [5]. However, the original YYD determined by sunshine time is not an ideal YYD,
because it does not necessarily satisfy the continuity condition. The continuity condition
requires that in the year there be exactly one day with 24 h daytime (at the summer solstice,
θ = 0) and exactly one another day with 24 h nighttime (at the winter solstice, θ = π).
Except for those who live at a certain latitude on the earth, people cannot actually draw an
ideal YYD based on local sunshine hours.

The first ideal YYD, called Taoist YYD, was constructed by Chen Tuan (871AC–989AC),
a philosopher in the early Song Dynasty of China. He drew the YYD according to the
sequence of the sixty-four hexagrams appeared in the Book of Changes [10] (also called
Yijing or I Ching), which is the oldest Chinese classics formed around the ninth century
BC. Here, the Taoist YYD is reproduced by the BPC. Figure 2 shows a schematic diagram
of constructing Taoist YYD from the measured pA(t) and pB(t) under the situation that
the system is divided into four parts, and one period is divided into eight intervals. In
Taoist YYD, the quantitative measures pA(tk) and pB(tk), k = 0, 1, · · · , 8, represent the
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proportions of the states A and B in the entire system at time tk. For example, at time
t1, state A occupies three-quarters of the system, and state B occupies one-quarter of the
system, so one gets pA = 3/4 and pB = 1/4. The situation considered in Figure 2 can
be extended to the general case, where the system has N/2 partitions and the period has
N partitions. Now, the measure pA (pB) represents the ratio of the number of partitions
containing A (B) state to the total N/2 partitions of the system. Therefore,

pA(tk) =

{
1 − k/ (N /2), k = 0, 1, . . . , N/2,
k/(N / 2)− 1, k = N/2, . . . , N.

(2)

In order to satisfy the complementarity condition, the measure of B is set to
pB(tk) = 1 − pA(tk). Substituting the pA(tk) and pB(tk) defined by Equation (2) into
Equation (1) yields the polar coordinates (rk, θk) describing the inner curve of Taoist YYD:

rk =

{
1 − k/(N/2), k = 0, 1, . . . , N/2
2 − k/(N/2), k = N/2, . . . , N

=

{
1 − θk/π, 0 ≤ θk ≤ π,
2 − θk/π, π ≤ θk ≤ 2π,

(3)

where the index k and the azimuth angle θk have the linear relation k/(N/2) = θk/π; by
noting that when the integer k increases sequentially from 0 to N/2, the azimuth angle θk
increases linearly from 0 to π. It is noted that the continuity condition pA(π) = pB(2π) = 0
is also satisfied by pA and pB defined by Equation (2). When N is set to 8, the eight points
(rk, θk) defined by Equation (3) are just those shown in Figure 2. When N is set to 64, the
curve formed by connecting the sixty four coordinate points (rk, θk) defined in Equation (3)
recovers the traditional Taoist YYD, which was first constructed according to the order of
the sixty four hexagrams in the Book of Changes. The ancient Taoist YYD is reproduced
here by the principle of complementarity, i.e., by requiring that the complementary pair
(A, B) must be jointly complete and mutually exclusive.

As the number of partitions N approaches infinity, the discrete points defined by
Equation (3) become a continuous polar curve

r =
{

1 − θ/π, 0 ≤ θ ≤ π,
2 − θ/π, π ≤ θ ≤ 2π,

(4)

This is the inner curve of the ideal Taoist YYD formed by two sections of Archimedean
spiral, which has a general expression r = a + bθ. If Bohr’s original intention was to
use Taoist YYD to convey his principle of complementarity, his correct choice should be
the pattern in Figure 2, which is Taoist YYD drawn exactly according to his principle of
complementarity. However, the YYD designed by Bohr in his coat of arms, as shown in
Figure 3, is based on a popular drawing method, which is composed of a unit circle and
two inscribed circles with polar equation given by

r =
{

cos θ, 0 ≤ θ ≤ π/2,
−cos θ, π ≤ θ ≤ 3π/2.

(5)

Apparently, the inner curve of Bohr’s YYD only passes through the first and third
quadrants and is significantly different from Taoist YYD defined by Equation (4). In what
follows, the definition (1) of the general YYD to derive the YYDs belonging to quantum
mechanics itself.
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Figure 3. Bohr’s YYD designed in his coat of arms is composed of a unit circle and two inscribed
circles. The polar equation of the inner curve is given by r = ±cos θ.

3. Constructing Quantum YYD by Two-Path Interference Experiments

Among various natural phenomena, wave–particle duality best embodies the comple-
mentary relationship. In the past several decades, many experiments have been proposed
to test whether the wave–particle duality satisfies BPC. However, all experiments on
wave–particle duality so far still cannot explain the relationship between Bohr’s YYD and
wave–particle duality. In this Section, it is shown that regardless of the test results of
BPC, a YYD can always be constructed according to Equation (1) by the experimental data
(pA, pB) =

(
D2, V2) from the MZI, where pA = D2 is a measure of the particle nature

regarding the distinguishability of the which-way information, and pB = V2 is a measure
of the wave nature regarding the visibility of wave fringe.

An experimental setup to construct the YYD for wave–particle duality is shown in
Figure 4a [16,33], wherein a single photon pulse is split by a variable beam splitter (VBS)
with adjustable reflectivity in the range 0 ≤ R1 ≤ 1, and a piezoelectric transducer (PZT) is
employed to adjust the relative phase ϕ between the two paths. The two paths of photon
are recombined at the beam merger (BM), which is a fixed equal-probability beam splitter,
and finally the photon is detected by the detectors D1 and D2. The measured values of
D and V depend on the reflectivity R1 of the VBS. If R1 = 0 or R1 = 1, the which-path
information is known deterministically, and the photon manifests the property of a pure
particle with D = 1 and V = 0. If 0 < R1 < 1, the interference fringe appears behind the
beam merger and yields a nonzero wave visibility V, which achieves its maximum value
V = 1 at R1 = 1/2.

Following Berthold-Georg Englert [9], the distinguishability D has two different
notions: a-priori distinguishability and a-posteriori distinguishability, where the former is
also called predictability P, which refers to a which-way information obtained using an
unbalanced interferometer with different particle flux along the two paths. The a-priori
distinguishability and visibility are especially useful in the construction of the ideal YYD,
because it requires analytical expressions for the distinguishability and the visibility. In the
case of a MZI without path loss, the a-priori distinguishability, P, and the a-priori visibility,
V, can be expressed analytically as a function of R1 [33]:

P(R1) = |1 − 2R1|, V(R1) = 2
√

R1(1 − R1), 0 ≤ R1 ≤ 1. (6)
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Substituting pA = P2 and pB = V2 into Equation (1), the polar equation of the YYD
corresponding to the two-path interference experiment reads

r =
{

(1 − 2R1)
2, 0 ≤ R1 ≤ 1/2

4R1(1 − R1), 1/2 ≤ R1 ≤ 1
=

{
(1 − θ/π)2, 0 ≤ θ ≤ π,

(θ/π)(2 − θ/π), π ≤ θ ≤ 2π,
(7)

where the azimuth angle, θ, is related to the reflectivity, R1, as θ = 2πR1. The continuity condi-
tion pA(π) = pB(2π) = 0 and the complementarity condition pA(θ) + pB(θ) = P2 + V2 = 1
are satisfied so that the resulting YYD is an ideal YYD as shown in Figure 4b.
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Figure 4. The quantum YYDs obtained from the two-path interference experiments. (a) The schematic
diagram of the Mach–Zehnder interferometer used to measure the predictability P and the visibility
V. See text for details. (b) The ideal quantum YYD constructed by using the quantitative measures
(pA, pB) =

(
P2, V2) without path loss in the interferometer. L1 and L2 denote the losses of the

two paths, and R1 and R2 are the adjustable reflectivities of the beam splitters in the input and
output ports, respectively. (c,d) The deformed YYDs caused by the path loss L2. , whose outer
curves remain the same as the ideal YYD, but whose inner curves have a discontinuity δpA at θ = π.
(e,f) The deformed YYDs with (pA, pB) measured from the other configuration of the experiment by
interchanging the input port and the output port in (a). The resulting YYD has a deformation in the
outer curve without causing the discontinuity in the inner curve.

There are visible differences in the mathematical form between Taoist YYD (4) and
the interference-based YYD (7) in that the former is a linear function of θ/π, while the
latter is a quadratic function of θ/π. The quadratic form of the interference-based YYD
comes from the feature that quantum probability is the squared magnitude of the wave
function. Despite of their difference, both Taoist YYD and the interference-based YYD
satisfy the condition of BPC: pA(θ) + pB(θ) = 1, 0 ≤ θ ≤ 2π, so both can be regarded as
representative symbols of BPC.

The ideal YYD shown in Figure 4b is constructed from a perfect MZI without path loss;
however, path loss in a MZI is inevitable, which causes the actual YYD to deviate from the
ideal YYD. In what follows in this Section, the two kinds of nonideal YYDs are considered,
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one from the violation of the continuity condition and the other from the violation of the
complementarity condition. When path loss occurs, the measured values of V and P are
different from their ideal values (6) and read [33]

V(R1) =
2
√

R1(1 − R1)(1 − L1)(1 − L2)

(1 − R1)(1 − L1) + R1(1 − L2)
and P(R1) =

|(1 − R1)(1 − L1)− R1(1 − L2)|
(1 − R1)(1 − L1) + R1(1 − L2)

, (8)

respectively, where L1 and L2 with values between 0 and 1 are the losses of the
two paths and are simulated in the experiment by the two beam splitters BS1 and BS2
with reflectivity equal to L1 and L2, as shown in Figure 4a. Again by substituting pA = P2

and pB = V2 from Equation (8) into Equation (1), one obtains the deformed YYD caused
by the path loss as shown in Figure 4c,d. It can be seen that this type of path loss does
not produce the deformation of the outer curve of the YYD, that is, the complementarity
condition pA + pB = P2 + V2 = 1 is still satisfied, but the inner curve of the YYD is not
continuous. The continuity condition requires pA(π) = pB(2π) = 0, but for this case,
pA(π) = P2(1/2) = (L2/2)2/(1 − L2/2)2 ̸= 0 and pB(2π) = V2(1) = 0. The discrepancy
between pA(π) and pB(2π) denoted by δpA increases with the path loss L2 as shown in
Figure 4c,d.

Figure 4e,f demonstrates the YYD deformation caused by the path loss under another
configuration of the experiment, where the setups in the input and output ports are
interchanged such that the input port is a fixed equal-probability beam splitter, while the
output port is a variable beam splitter with adjustable reflectivity in the range 0 ≤ R2 ≤ 1.
The predictability P and the visibility V for this configuration can be expressed by [33]

P(R1) = |1 − 2R2|, V(R1) =
2
√

R2(1 − R2)(1 − L1)(1 − L2)

(1 − R2)(1 − L1) + R2(1 − L2)
, 0 ≤ R2 ≤ 1. (9)

Opposite to the case (8), as can be seen from Figure 4e,f, the type (9) of path loss
causes the outer curve of the YYD to deviate from the unit circle, i.e., the complementarity
condition pA + pB = 1 is not satisfied over the entire interval, but the continuity conditions
pA(π) = P2(1/2) = 0 and pB(2π) = V2(1) = 0 still hold. As the path loss increases, the
deformation of YYD intensifies and deviates further from the ideal YYD. In short, both the
violation of the continuity condition (Figure 4c,d) and the violation of complementarity
condition (Figure 4e,f) can deform the ideal YYD (Figure 4b), and the deformation tells us
graphically the extent to which BPC is violated.

4. The Mapping between Quantum YYD and Complex Tunneling Velocity

The YYD generated by the two-path interference experiments shows a static picture of
YYD, as found in Section 3. This Section considers a complementary pair (A, B), whose
quantitative measures (pA(t), pB(t)) are time dependent so that the pattern of YYD changes
with time. This dynamic picture of the YYD can be visualized by the quantum tunnel-
ing process, where the particle’s real and imaginary velocity components

( .
xR(t),

.
xI(t)

)
constitute a time-dependent complementary pair. The concepts of trajectory and velocity
given to a tunneling particle are derived from the complex trajectory interpretation of
quantum mechanics [32,34–40], which is different from the probability interpretation, as
compared in Figure 5, but they have a common source: the wavefunction ψ(x). Probability
interpretation treats the particle’s position x ∈ R as a real variable and employs |ψ(x)|2 as
the probability of finding the particle at the position x. On the other hand, the complex
trajectory interpretation uses the same wavefunction, ψ(x) but with x ∈ C to generate the
complex quantum trajectory x(t) = xR(t) + ixI(t).
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Figure 5. Comparing two quantum interpretations of tunneling phenomenon. (a) Probability
interpretation uses the wavefunction, ψ(x) with x ∈ R to describe the particle’s wave behavior
within the step barrier and treats |ψ(x)|2 as the probability of finding the particle at position x.
(b) Trajectory interpretation uses the same wavefunction ψ(x) with x ∈ C to generate the complex
trajectory x(t) = xR(t) + ixI(t), which is a continuous trajectory traversing the barrier. E denotes the
particle energy.

Here, the wavefunction is considered describing a particle’s tunneling motion via a
step barrier with height, V0 greater than the particle’s energy, E. Such a wavefunction ψ(x)
can be found analytically from the Schrödinger equation and then used in the quantum
Hamilton mechanics [32] to produce the particle’s complex position, x(t) = xR(t) + ixI(t),
and complex velocity,

.
x(t) =

.
xR(t) + i

.
xI(t), during the tunneling process. As soon

as x(t) and
.
x(t) are determined, the quantitative measures (pA, pB) =

(
x2

R, x2
I
)

and

(pA, pB) =
( .

x2
R,

.
x2

I

)
can be used in Equation (1) to construct the tunneling-based YYDs.

Figure 6 shows how the complex tunneling velocities are mapped into the quantum
YYD. The Figure 6, left, shows the positions Pi of the particle on the tunneling trajectory
at nine moments ti, i = 0, 1, . . . , 8. A trajectory point Pi with velocity

.
xR(ti) + i

.
xI(ti)

is mapped into the point P′
i on the YYD with radial coordinate ri =

.
x2

R(ti) +
.
x2

I (ti) and
azimuth coordinate θi = 2πti/T, where T is the total tunneling time. As time ti increases
from 0 to T, the area swept by the radial line segment

.
x2

R forms the Yang region (in red) of
the YYD, while the area swept by the radial line segment

.
x2

I forms the Yin region (in black)
of the YYD.

Among the nine trajectory points, P0 is the entry point whose velocity
.
x0 is pure real,

P4 is the turning point whose velocity
.
x4 is pure imaginary, and P8 is the exit point whose

velocity is opposite to the entrance velocity
.
x8 = − .

x0. Given the trajectory point Pi with the
accompanying velocity

.
x(ti) =

.
xR(ti) + i

.
xI(ti), the inner and outer curves of the YYD can

be determined as shown in the Figure 6, right. As time t evolves continuously, the tunneling
particle follows a continuous complex trajectory x(t) = xR(t) + ixI(t) and, according to
Equation (1), the inner curve of the velocity-based quantum YYD can be expressed in
polar coordinates:

r =

{ .
x2

R(t), 0 ≤ t ≤ T/2
.
x2

I (t), T/2 ≤ t ≤ T
=

{
pA(θ), 0 ≤ θ ≤ π,
pB(θ), π ≤ θ ≤ 2π,

(10)

and the outer curve is given by r = pA + pB =
.
x2

R(t) +
.
x2

I (t). The azimuth coordinate
θ is related to time t as θ = 2πt/T, 0 ≤ t ≤ T. In the time range of 0 ≤ t < T/2, the
inner radius of the YYD is given by the squared real velocity r = pA =

.
x2

R, while in the
time range of T/2 ≤ t < T, the inter radius is given by the squared imaginary velocity
r = pB =

.
x2

I .



Physics 2024, 6 974Physics 2024, 6, FOR PEER REVIEW  11 
 

 

 
Figure 6. The mapping of the complex tunneling velocity into the quantum YYD. A trajectory point 𝑃 with real velocity, 𝑥ሶோ, and imaginary velocity, 𝑥ሶூ, (left) is mapped into a point 𝑃ᇱ on the YYD 
(right) in such a way that the Yang (in red) region is formed by the time evolution of the squared 
real velocity, 𝑥ሶோଶ, while the Yin (in black) region is formed by the squared imaginary velocity, 𝑥ሶூଶ. 
See text for details. 

Among the nine trajectory points, 𝑃 is the entry point whose velocity 𝑥ሶ is pure 
real, 𝑃ସ is the turning point whose velocity 𝑥ሶସ is pure imaginary, and 𝑃  is the exit 
point whose velocity is opposite to the entrance velocity 𝑥ሶ଼ = −𝑥ሶ. Given the trajectory 
point 𝑃  with the accompanying velocity 𝑥ሶ(𝑡) = 𝑥ሶோ(𝑡) + i𝑥ሶூ(𝑡), the inner and outer 
curves of the YYD can be determined as shown in the Figure 6, right. As time 𝑡 evolves 
continuously, the tunneling particle follows a continuous complex trajectory 𝑥(𝑡) =𝑥ோ(𝑡) + i𝑥ூ(𝑡)  and, according to Equation (1), the inner curve of the velocity-based 
quantum YYD can be expressed in polar coordinates:  𝑟 = ൜𝑥ሶோଶ(𝑡), 0 ≤ 𝑡 ≤ 𝑇/2𝑥ሶூଶ(𝑡), 𝑇/2 ≤ 𝑡 ≤ 𝑇 = ൜𝑝(𝜃), 0 ≤ 𝜃 ≤ 𝜋,𝑝(𝜃), 𝜋 ≤ 𝜃 ≤ 2𝜋, (10)

and the outer curve is given by 𝑟 = 𝑝 + 𝑝 = 𝑥ሶோଶ(𝑡) + 𝑥ሶூଶ(𝑡). The azimuth coordinate 𝜃 
is related to time 𝑡 as 𝜃 = 2𝜋𝑡/𝑇, 0 ≤ 𝑡 ≤ 𝑇. In the time range of 0 ≤ 𝑡 < 𝑇/2, the inner 
radius of the YYD is given by the squared real velocity 𝑟 = 𝑝 = 𝑥ሶோଶ, while in the time 
range of 𝑇/2 ≤ 𝑡 < 𝑇, the inter radius is given by the squared imaginary velocity 𝑟 =𝑝 = 𝑥ሶூଶ. 

5. Computing Complex Tunneling Trajectory 
To construct the YYD by Equation (10), one needs the particle’s tunneling velocity 𝑥ሶ(𝑡) = 𝑥ሶோ(𝑡) + i𝑥ሶூ(𝑡), which can be derived from the complex-extended Schrödinger 

equation, iℏ 𝜕𝛹(𝑡, 𝑥)𝜕𝑡 = − ℏଶ2𝑚 𝜕ଶ𝜕𝑥ଶ 𝛹(𝑡, 𝑥) + 𝑉(𝑥)𝛹(𝑡, 𝑥), (11)

where ℏ is the reduced Planck constant, 𝑚 is the particle mass, and the coordinate 𝑥 
is defined on the complex plane 𝑥 = 𝑥ோ + i𝑥ூ ∈ ℂ. Using the transformation 𝛹(𝑡, 𝑥) =𝑒୧ௌ(௧,௫) ℏ⁄ , one transforms the Schrödinger equation (11) into the quantum Hamil-
ton–Jacobi equation (QHJE): 

Figure 6. The mapping of the complex tunneling velocity into the quantum YYD. A trajectory
point Pi with real velocity,

.
xR, and imaginary velocity,

.
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i on the
YYD (right) in such a way that the Yang (in red) region is formed by the time evolution of the squared
real velocity,

.
x2

R, while the Yin (in black) region is formed by the squared imaginary velocity,
.
x2
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5. Computing Complex Tunneling Trajectory

To construct the YYD by Equation (10), one needs the particle’s tunneling velocity
.
x(t) =

.
xR(t) + i

.
xI(t), which can be derived from the complex-extended Schrödinger

equation,

iℏ∂Ψ(t, x)
∂t

= − ℏ2

2m
∂2

∂x2 Ψ(t, x) + V(x)Ψ(t, x), (11)

where ℏ is the reduced Planck constant, m is the particle mass, and the coordinate x is de-
fined on the complex plane x = xR + ixI ∈ C. Using the transformation Ψ(t, x) = eiS(t,x)/ℏ,
one transforms the Schrödinger Equation (11) into the quantum Hamilton–Jacobi equation
(QHJE):

∂S(t, x)
∂t

+

[
1

2m
p2 + V(t, x) +

1
2mi

∂p
∂x

]
p=∂S/∂x

=
∂S(t, x)

∂t
+ H(t, x, p)|p=∂S/∂x = 0, (12)

where p = ∂S/∂x is the canonical momentum conjugate to x, S(t, x) is the quantum action
function, and H(t, x, p) is the quantum Hamiltonian defined as

H(t, x, p) =
1

2m
p2 + V(t, x) + Q(t, x). (13)

The quantum Hamiltonian H(t, x, p) (13) contains three items: (i) the particle’s kinetic
energy p2/2m, (ii) the applied potential V(t, x), and (iii) the internal quantum potential
Q(t, x), defined as:

Q(t, x) =
1

2mi
∂p
∂x

∣∣∣∣
p=∂S/∂x

=
ℏ

2mi
∂2S(t, x)

∂x2 = − ℏ2

2m
∂2ln Ψ(t, x)

∂x2 . (14)
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It can be seen that the quantum potential is state-dependent and is uniquely deter-
mined by the wavefunction Ψ(t, x). If the applied potential V(t, x) is independent of time,
that is, V(t, x) = V(x), then the wavefunction Ψ(t, x) can be further separated as

Ψ(t, x) = ψ(x)e−i(E/ℏ)t =⇒ S(t, x) = −iℏln ψ(x)− Et. (15)

The particle’s momentum, p, according to the momentum definition in QHJE, is then
given by

p =
∂S
∂x

=
ℏ
i

dln ψ(x)
dx

=
ℏ
i

ψ′(x)
ψ(x)

. (16)

Substituting the separated form of S(t, x) into QHJE (12) yields

H(t, x, p) =
p2

2m
+ V(x) + Q(x) = −∂S

∂t
= E = const. (17)

Equation (17) expresses the law of energy conservation, indicating that the total
energy, E, of the particle represented by the Hamiltonian H(t, x, p) is a constant. The
energy conservation law (17) is actually an alternative expression of the time-independent
Schrödinger equation,

ℏ2

2m
d2ψ

dx2 + (E − V(x))ψ = 0, (18)

as can be shown by substituting the momentum p (16) and the quantum potential Q (14)
into Equation (17).

According to the Hamiltonian H(t, x, p) (17), the quantum Hamilton equations of
motion read

.
x =

∂H
∂p

=
p
m

, x(t0) = x0 ∈ C, (19)

.
p = −∂H

∂x
= − d

dx
(V + Q), p(t0) = p0 ∈ C, (20)

where the sum of V and Q is defined as the total potential,

VT = V + Q = E − p2

2m
= E +

ℏ2

2m

(
ψ′(x)

ψ(x)

)2

. (21)

The wave behavior of the particle is attributed to the quantum potential Q. If Q is
constant, Equations (19) and (20) become classical equations of motion and the particle
exhibits particle behavior. The quantum potential Q has a close relationship with the
quantum probability. From Equation (21), one can see that except for a constant bias E, the
magnitude of the total potential, |VT| = |V + Q|, is inversely proportional to the probability
density function, |ψ(x)|2. Therefore, the smaller the probability density function |ψ(x)|2 the
higher the corresponding total potential is. Where ψ(x) is equal to zero, the total potential
is infinitely high, so a particle with limited energy cannot reach it, and the probability of
finding the particle there is zero.

For a given quantum state ψ(x), the velocity and acceleration of a particle moving in
this state are computed by Equations (19) and (20), respectively:

.
x =

p
m

=
ℏ

im
1

ψ(x)
dψ(x)

dx
, x(t0) = x0 ∈ C, (22)

..
x = − 1

m
dVTotal

dx
= −1

2
d

dx

(
ℏ
m

ψ′(x)
ψ(x)

)2

,
.
x(t0) =

.
x0 ∈ C. (23)
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The particle’s trajectory x(t) in the state ψ(x) is obtained by integrating Equation (22)
and the quantum force exerted on the particle at different positions is given by
Equation (23).

The applied potential V(x) in Equation (18) to be considered here is the step barrier:

V(x) =
{

V0, xR > 0,
0, xR < 0,

(24)

where the height, V0, of the step barrier is greater than the energy, E, of the incident
particle in order to explore quantum tunneling motion. The solution of the Schrödinger
Equation (18) with V(x) (24) is obtained readily as

ψ(x) =
{

Cek2x + De−k2x, xR ≥ 0,
Aeik1x + Be−ik1x, xR < 0,

(25)

where k1 =
√

2mE/ℏ and k2 =
√

2m(V0 − E)/ℏ. The range xR < 0 is the region of free
motion, while xR ≥ 0 is the region where quantum tunneling motion takes place to generate
the associated YYD. With the wavefunction ψ(x) given by Equation (25), the particle’s
velocity in the region xR ≥ 0 is obtained by Equation (22) as

dx
dt

=
ℏk2

im
Cek2x −De−k2x

Cek2x +De−k2x , Re(x) ≥ 0, (26)

dx
dt

=
ℏk1

m
Aeik1x −Be−ik1x

Aeik1x + Be−ik1x , Re(x) < 0, (27)

where the four constants A, B, C, and D are to be determined from the given initial
conditions. To avoid the influence of physical units on the shape of the quantum YYD, the
dimensionless variables

(√
2mE/ℏ

)
x → x and (2E/ℏ)t → t are adopted here to rewrite

Equations (26) and (27) as

dx
dt

=
n
i
Cenx −De−nx

Cenx +De−nx , Re(x) ≥ 0, (28)

dx
dt

=
Aenx −Be−nx

Aenx + Be−nx , Re(x) < 0, (29)

where the parameter n =
√

V0/E − 1 is a measure of the tunneling intensity. When
n = 0, i.e., V0 = E, the tunneling effect disappears completely. The four constants in
Equations (28) and (29) are determined by the given initial conditions x(0+) = x(0−) = 0
and

.
x(0+) =

.
x(0−) = 1, from which

B = 0,
C
D =

n + i
n − i

. (30)

In the region Re(x) < 0, the particle is free from the action of the applied potential
and has a constant velocity,

.
x = 1 given by Equation (29) with B = 0. By substituting

ψ(x) = Aeik1x for Re(x) < 0 into Equation (21), one obtains VT = V + Q = 0, which
together with Equation (30) shows that the particle exhibits particle behavior with constant
velocity, as shown in the region outside the step potential in Figure 5.

In the region Re(x) ≥ 0, the particle undergoes tunneling process with wave behavior
caused by the quantum potential, Q. Once a particle enters the tunneling process, its motion
extends from the real axis to the complex plane, and its complex trajectory can be solved
analytically from Equation (28) as

αenx − e−nx = βe−in2t, (31)
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where the two constants α and β are determined from the given initial conditions as

α =
C
D =

n + i
n − i

, β =
2i

n − i
. (32)

Due to |α| = 1, the constant α can be expressed as α = eiθα with θα = 2tan−1(1/n). In
terms of θα and n, the particle’s complex trajectory x(t) can be solved from Equation (31) as
an explicit function of time

x(t) =
1
n

[
−i

θα

2
+ sinh−1

(
β

2
e−i(n2t+θα/2)

)]
= xR(t) + ixI(t). (33)

Regarding the particle’s velocity, Equation (31) is substituted into Equation (28) to
yield an analytical expression for

.
x(t):

dx
dt

= ±n
i

βe−in2t√
β2e−2in2t + 4α

=
.
xR(t) + i

.
xI(t). (34)

where the plus sign is taken for the time interval 0 ≤ t < T/2, and the minus sign is
for T/2 ≤ t < T, where T is the total tunneling time to be determined. The quantum
YYD shown in Figure 6 is drawn using

.
xR(t) and

.
xI(t) computed from Equation (33). The

remaining task is to determine the tunneling time T = tout, the turning point xtp, and the
exit point xout of the tunneling trajectory, as shown in Figure 7.
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Figure 7. The analytical expression of the tunneling trajectory. The time, position, and velocity
of the three trajectory points (entry point xin, turning point xtp, and exit point xout) are expressed
analytically in terms of the parameter n =

√
V0/E − 1. The red arrows along the trajectory denote

the moving directions of the particle. See text for details.

The turning point xtp is the position where the particle reaches the maximum depth
of penetration. Taking the absolute values of both sides of Equation (31), the relationship
between xR and xI is obtained as follows:

cosh (2nxR) = cos(θα + 2nxI) +
|β|2

2
. (35)

The maximum value of xR occurs at cos(θα + 2nxI) = 1, and the related coordinate xI
solution is



Physics 2024, 6 978

xI = − θα

2n
= − 1

n
tan−1

(
1
n

)
. (36)

Substituting the above xI (36) into Equation (35) yields the maximum penetration
depth:

δp =
1

2n
cosh−1

(
10 +

2
n2 + 1

)
=

1
n

tanh−1
(

1
n2 + 2

)1/2
. (37)

When the particle reaches the maximum penetration depth, its position is the turning
point xtp, so the complex coordinates of xtp can be expressed as

xtp = δp + ixI = δp − i
θα

2n
=

1
n

tanh−1
(

1
n2 + 2

) 1
2
− i

n
tan−1

(
1
n

)
. (38)

Next, let us compute the time ttp and the velocity
.
xtp when the particle reaches the

turning point ttp. Squaring both sides of Equation (31) and using the turning condition,
θα + 2nxI = 0, one obtains ttp as

ttp =
π

(2n2)
. (39)

The velocity
.
xtp at the turning point is then determined by substituting the position

xtp (39) into Equation (28) to give

.
xtp =

n
i

e2nδp − 1
e2nδp + 1

=
n
i

tanh
(
nδp
)
= −i

(
n2

n2 + 2

)1/2

. (40)

This result verifies what Figures 5 and 7 show, that the particle has only imaginary
velocity component at the turning point.

Finally, let us calculate the position xout and time tout at the exit point. From Figure 7,
one observes that the real coordinates xR of the entry point and exit point are both zero. By
using this condition in Equation (35), one obtains

cos(θα + 2nxI) =
n2 − 1
n2 + 1

= cos(θα). (41)

from which xI = 0 or xI = −θα/n, where the former corresponds to the position of the
entrance, and the latter corresponds to the position of the exit. Therefore, the position
coordinate of the particle at the exit is

xout = 0 − iθα

n
= −i

2
n

tan−1
(

1
n

)
. (42)

Comparing Equation (42) with Equation (38), one has Im(xout) = 2Im
(

xtp
)
= −θα/n,

that is, the imaginary coordinate of the exit point is twice that of the turning point. Fur-
thermore, the time for the particle to reach the exit point can be obtained by substituting
xout (42) into Equation (31) as

T = tout =
π

n2 . (43)

Comparing T with ttp (35), one finds that the time for the particle to reach the turning
point is exactly half of the overall tunneling T. This result explains why in Figure 6,
when the YYD is drawn halfway at P′

4, the particle just reaches the turning point P4. The
particle’s velocity at the exit point is found by substituting xout = iθα/n into Equation (28)
as

.
xout = −1. Hence, the reflected velocity

.
xout from the step barrier is the same as the
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incident velocity
.
xin, but in the opposite direction. The characteristics of the entire tunneling

trajectory are summarized in Figure 7.

6. Time Evolution of Quantum YYD

The obtained tunneling-based YYD in Figure 6 is actually a graphical recorder of the
particle’s tunneling dynamics, which stores the particle’s velocity at every moment so far.
Figure 8 shows the time evolution of the YYD at nine moments, t0, t1, · · · , t8, corresponding
to nine trajectory points in Figure 6. When time increases from 0 to T/2, the real velocity
of the particle (in red) decreases from the maximum value at P′

0 to zero at P′
4, while at

the same time, the imaginary velocity of the particle (in black) increases from zero to the
maximum value. In the time range of T/2 ≤ t < T, one sees the opposite trend that the
real velocity of the particle increases from zero at P′

4 to the maximum value at P′
8, and at

the same time, the imaginary velocity decreases from the maximum value to zero. Only
when the quantum tunneling process is completed one can see the complete quantum YYD,
wherein the intertwined red and black pattern expresses the alternating changes of the real
velocity and the imaginary velocity during the tunneling process.
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Figure 8. The time evolution of the YYD in the quantum tunneling process. The areas swept by the
radius r = pA =

.
x2

R and r = pB =
.
x2

I are plotted at nine instances t = kT/8, k = 0, 1, · · · , 8. The Yang
(in red) region is the area swept by r = pA(θ), showing the distribution of particle’s real velocity,
while the Yin (in black) region is the area swept r = pB(θ), showing the distribution of particle’s
imaginary velocity.
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Figure 9 shows the velocity distributions at nine trajectory points along the tunneling
trajectory. It appears that the quantum YYD moves together with the particle, recording
the velocity of the particle, and then presenting it graphically. The quantum YYD allows us
to examine how the particle nature and the wave nature interchanges during the tunneling
process. The imaginary velocity of a particle is a measure of its wave nature such that
the greater the imaginary velocity of a particle is, the higher the uncertainty of its motion
in the real space is, and the greater the wave nature it has [23]. As shown in Figure 9,
when the particle continues to tunnel towards the barrier, the particle’s real velocity (in
red) gradually decreases while its imaginary velocity (in black) increases. This means that
as the particle tunnels deeper, its wave nature becomes larger. When the particle reaches
the turning point P4, its imaginary velocity reaches the maximum, while its real velocity is
zero, which means that the particle behaves completely like a wave at the turning point. In
the process of returning from point P4 to the exit point P8, the real velocity increases while
the imaginary velocity decreases, indicating that the particle nature gradually recovers
towards the exit, at which the imaginary velocity of the particle is zero and the wave nature
of the particle disappears completely. After leaving the step potential, the particle returns
to the free space, and its motion is again described by Equation (29) with A = 0, which
yields

.
x = −1 and indicates a classical motion along the negative real axis.
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Figure 9. The tunneling-based quantum YYD moves with the particle and records the particle’s
velocity. From the entry point to the turning point, the real velocity component (in red) decreases
while the imaginary velocity component (in black) increases, indicating that the particle nature
decreases and the wave nature increases. When reaching the turning point, the particle has only an
imaginary velocity component (pure wave nature). From the turning point to the exit point, the red
area increases while the black area decreases, indicating that the particle nature increases and the
wave nature decreases. When the particle reaches the exit, the particle is left with only real velocity
component and exhibits pure particle nature.
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In quantum mechanics, the wave-like behavior of a tunneling particle is described
by the probability density function |ψ(x)|2 as shown in Figure 5a. As soon as the particle
imaginary velocity is uniquely determined by |ψ(x)|2, as derived below in this Section,
the imaginary velocity serves as an alternative indicator of the particle’s wave behavior.
The relation between the particle’s velocity

.
x and the wavefunction ψ(x) is given by

Equation (16) as

p = m
.
x =

∂S
∂x

=
ℏ
i

dln ψ(x)
dx

=
ℏ
i

ψ′(x)
ψ(x)

. (44)

To separate the complex velocity
.
x into its real part and imaginary part, let us express

wavefunction ψ(x) as ψ(x) = |ψ|eiθψ , where θψ ∈ R is the phase of ψ(x). Using this
expression of ψ(x) in Equation (44) yields

.
x =

ℏ
m

dθψ

dx
+

ℏ
2mi

d
dx

ln|ψ(x)|2 =
ℏ
m

dθψ

dx
+

ℏ
mi

1
|ψ(x)|

d|ψ(x)|
dx

=
.
xR + i

.
xI . (45)

from which the imaginary velocity is

.
xI = − ℏ

2m
d

dx
ln|ψ(x)|2 = − ℏ

m
1

|ψ(x)|
d|ψ(x)|

dx
. (46)

One can see that the imaginary velocity
.
xI is uniquely determined by the probability

density function |ψ(x)|2 and can be interpreted as the change rate of |ψ(x)| per unit
magnitude of |ψ(x)|. Therefore, when the particle’s imaginary velocity

.
xI reaches the

maximum, it is the place where the wave magnitude |ψ(x)| changes most drastically, that is,
where the wave behavior of the particle is most significant. Corresponding to the quantum
tunneling process, this is exactly where the particle reaches the turning point, as shown in
Figure 9.

The driving force behind the tunneling dynamics comes from the total potential
VT = V0 + Q, as shown by Equation (23). Since the applied potential V0 is a constant, the
quantum potential Q is the dominant potential governing the particle’s tunneling motion.
It is precisely because of the effect of quantum potential Q that the particle is forced to
turn back after penetrating the step barrier for a certain distance. The deeper the particle
penetrates the step barrier, the greater resistance it encounters. The maximum depth to
which a particle penetrates is where it tolerates the greatest resistance.

One determine the total potential VT by substituting the wavefunction ψ(x) from
Equation (25) into Equation (21) to obtain the following result:

VT =
Q(x) + V0

E
= 1 +

(
dln ψ(x)

dx

)2
= 1 + n2

(
αenx − e−nx

αenx + e−nx

)2

. (47)

where VT is expressed in a dimensionless form. Once the total potential is obtained, the
quantum force exerted on the particle during the tunneling process can be found as

FQ = −dVT

dx
= −2n3

(
αenx − e−nx

αenx + e−nx

)[
1 −

(
αenx − e−nx

αenx + e−nx

)2
]

. (48)

If expressed in terms of the particle’s velocity
.
x, FQ can be rewritten in a simple form as

FQ = −2i
.
x
(

n2 +
.
x2
)

. (49)
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With the velocity
.
xtp (40), one can determine the quantum force exerted on the particle

at the turning point as

(
FQ
)

tp = −
2n3(n2 + 1

)
(n2 + 2)

3
2

. (50)

As expected, the quantum force experienced by the particle at the turning point is
in the negative xR direction, preventing the particle from continuing to penetrate in the
positive xR direction. Equation (50) shows that as n =

√
V0/E − 1 increases, the resistance

encountered by the particle becomes greater, resulting in a smaller penetration depth (37).
From the perspective of probability, the higher the step barrier V0 is, the lower the

probability of tunneling is. The transition from the probability interpretation to the trajec-
tory interpretation of the tunneling phenomenon requires the assistance of the quantum
potential Q(x). Figure 10 shows the complex trajectories of the particle moving over the
total potential surface VT = Q(x) + V0 in the two cases of n = 1 and n = 5, indicating that
when n is larger, the total potential surface becomes steeper, and the depth that the particle
can penetrate is shallower. The turning point P4 is the place with the highest total potential
in the overall tunneling trajectory, while the entry point P0 and the exit point P8 are the
places with the lowest total potential.
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Figure 10. The complex trajectories of a tunneling particle on the total potential surface. When a
particle undergoes quantum tunneling towards the real axis, xR, the height of the quantum potential
increases with the tunneling depth. When the particle reaches the turning point (P4), the quantum
potential reaches its maximum. The higher the step barrier height, V0, the steeper the tunnel trajectory
and the shallower the tunneling depth. When V0 approaches infinity, the tunneling depth of the
particle is zero, that is, the particle is immediately reflected when it encounters the surface of the step
barrier. The red arrows along the trajectory denote the moving directions of the particle.

7. Growth of Quantum YYD with Tunneling Intensity

The quantum YYD based on tunneling velocity (pA, pB) =
( .

x2
R,

.
x2

I

)
is not always an

ideal YYD, and its shape depends on the intensity of the quantum tunneling effect. It is
found here that the stronger the quantum tunneling effect the clearer and more complete the
quantum YYD is. Once the intensity of the tunneling effect approaches zero, the quantum
YYD disappears. The intensity of the tunneling effect is related to the relative magnitude
between the incident particle’s energy E and the step barrier height, V0. This relative
magnitude is measured by the dimensionless parameter n =

√
V0/E − 1. The larger the

value of n is, the smaller the particle’s energy is compared to the barrier height, and a larger
tunneling effect is required for the particle to penetrate the barrier.
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What makes us curious is how the intensity of the tunneling effect affects the quantum
YYD. Figure 11 shows the quantum YYDs corresponding to different values of n. One can
see that the quantum YYD is born from n = 0, initially like a melon seed, and gradually
grows into a perfect appearance as n increases. As n ≫ 1, the quantum YYD no longer
changes, and the corresponding polar Equation (10) converges to

r =
{

cos2(n2t
)
, 0 ≤ t < T/2

sin2(n2t
)
, T/2 ≤ t < T

=

{
(1 + cos θ)/2, 0 ≤ θ ≤ π,
(1 − cos θ)/2, π ≤ θ ≤ 2π,

(51)

where T = π/n2 is the dimensionless tunneling time. The satisfaction of the comple-
mentarity condition pA + pB = cos2(n2t

)
+ sin2(n2t

)
= 1 and the continuity condition

pA(π) = pB(2π) = 0 show that the quantum YYD described by Equation (51) is an ideal
YYD, whose inner curve is composed of two sections of cardioid. For small value of n, the
corresponding YYDs as shown in Figure 11 are nonideal and only satisfy the condition of
mutual exclusion, i.e., pA(θ) + pB(θ) ≤ 1. In this case, the pair (pA, pB) =

( .
x2

R,
.
x2

I

)
is only

partially complementary, because the condition of complementarity pA(θ) + pB(θ) = 1 is
still satisfied for θ near 0 and 2π, but pA(θ) + pB(θ) < 1 for other values of θ.
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Comparing Equation (51) with Equation (5), it was quite surprising to find that the 
ideal YYD generated by the tunneling motion resembles Bohr’s YYD designed in his coat 
of arms. If Bohr drew YYD based on Equation (51) instead of Equation (5), then the coat 
of arms he designed would completely reflect his principle of complementarity not only 
in image but also in theory.  

Figure 11 shows that when the parameter 𝑛 = ඥ𝑉/𝐸 − 1 ≫ 1, the tunneling-based 
YYD converges to a steady-state pattern, known as the ideal YYD. Since the ideal YYD is 
drawn based on the particle’s tunneling trajectory, it is expected that the tunneling tra-
jectory also converges to a steady-state pattern as 𝑛 ≫ 1 . Let us verify that this 
steady-state trajectory is a semicircle on the complex plane. 

Figure 11. The evolution of the velocity-based YYD with the intensity of the tunneling effect,
n =

√
V0/E − 1. When n is small, the real velocity component

.
xR (particlelike behavior) is dominant

in the YYD, leading to a deformed YYD with a long strip shape concentrating near θ = 0. When
n increases, the imaginary velocity component

.
xI (the wavelike behavior) becomes comparable to

.
xR, and the resulting YYD is fuller. As n ≫ 1, the velocity-based YYD approaches the ideal YYD
whose inner curve is composed of two sections of cardioid and whose outer curve is a unit circle. The
numbers refer to the nine trajectory points in Figure 6.
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Comparing Equation (51) with Equation (5), it was quite surprising to find that the
ideal YYD generated by the tunneling motion resembles Bohr’s YYD designed in his coat
of arms. If Bohr drew YYD based on Equation (51) instead of Equation (5), then the coat of
arms he designed would completely reflect his principle of complementarity not only in
image but also in theory.

Figure 11 shows that when the parameter n =
√

V0/E − 1 ≫ 1, the tunneling-based
YYD converges to a steady-state pattern, known as the ideal YYD. Since the ideal YYD
is drawn based on the particle’s tunneling trajectory, it is expected that the tunneling
trajectory also converges to a steady-state pattern as n ≫ 1. Let us verify that this steady-
state trajectory is a semicircle on the complex plane.

Figure 12 shows the tunneling trajectories of the particle on the complex plane solved
from Equation (28) under several different values of n. The main feature of this series of
trajectories indicates that as the value of n increases, the covering range of the particle’s
position x becomes narrower, as expressed by the relation |nx| ≈ 1/n. Therefore, when n is
large, one obtains the result |nx| ≪ 1. With this observation, the exponential function enx

can be estimated by its first-order expansion 1 + nx, which is then used in Equation (28) to
yield the particle’s velocity for n ≫ 1 as

dx
dt

=
n
i

α2enx − e−nx

α2enx + e−nx ≈ 1 − in2x
1 + ix

≈ 1 − in2x, n ≫ 1, (52)

where note that |nx| ≪ 1 and 1 + ix ≈ 1. With the initial condition x(0) = 0, the solution
of Equation (48) can be found readily as

x(t) =
1
n2 sin

(
n2t
)
− i

n2

(
1 − cos

(
n2t
))

= xR(t) + ixI(t), n ≫ 1, (53)
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Figure 12. The change of the particle’s tunneling trajectory on the complex plane with the parameter
n. For large n, the particle’s position x within the barrier is more restricted, as expressed by the
relation |x| ≪ n−1. As n increases, the tunneling trajectory of the particle eventually approaches a
perfect semicircle.

From Equation (53), one can obtain the position, velocity, and time when the particle
reaches the turning point and the exit point. These results are identical to those summarized
in Figure 7, when n is large. For example, the overall tunneling time T is the time that the
real coordinate xR(t) returns to zero, and from Equation (53), one has T = π/n2, which is
identical to Equation (43). In addition, the penetration depth δp is the maximum value of
the real part of x(t), which is equal to 1/n2 from Equation (53), and this result is identical
to Equation (37) as n is large.
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The tunneling trajectory expressed by Equation (53) is a semicircle on the complex
plane with radius 1/n2 and center

(
0,−1/n2):

(xR)
2 +

(
xI + 1/n2

)2
=

1
n4 , xR ≥ 0, n ≫ 1. (54)

It is based on this ideal tunneling trajectory that one can construct the ideal quantum
YYD. Differentiating Equation (53) with respect to time, one obtains the real and imaginary
velocities of the particle as

.
xR(t) = cos

(
n2t
)

,
.
xI(t) = −sin

(
n2t
)

, n ≫ 1. (55)

Using Equation (55) in Equation (10), one obtains the ideal YYD as given by Equation (51).
The YYD derived previously is based on the velocity distribution of a tunneling

particle, so a natural question is whether the quantum YYD can also be constructed by the
position distribution of a tunneling particle. The answer is yes, and surprisingly, when
the value of n is large, the YYDs obtained by these two different methods are the same.
To search for the complementary pair (A, B) for the position-based YYD, let us consider
Equation (54), which under the coordinate transformation xR = n2xR and xI = n2xI + 1 can
be expressed as x2

R + x2
I = 1. Hence, the new pair (A, B) = (xR, xI) with the quantitative

measures

pA = x2
I =

(
n2xI + 1

)2
, pB = x2

R =
(

n2xR

)2
. (56)

becomes complementary by noting pA + pB = x2
I + x2

R = 1. Therefore, the outer curve of
the position-based YYD is r = pA + pB = 1, which is a unit circle, and the corresponding
inner curve defined by Equation (1) becomes

r =

{(
n2xI + 1

)2, 0 ≤ t < T/2(
n2xR

)2, T/2 ≤ t < T
=

{
cos2(n2t

)
, 0 ≤ t < T/2,

sin2(n2t
)
, T/2 ≤ t < T,

(57)

where xR(t) and xI(t) are given by Equation (53). Equation (51) and Equation (57) are
equivalent, which implies that the velocity-based YYD and the position-based YYD become
identical as n ≫ 1.

For a general value of n not satisfying n ≫ 1, the symmetric center of the tunneling
trajectory is not at (xR, xI) =

(
0,−1/n2), but at

(
0,−(1/n)tan−1(1/n)

)
, as can be seen

from Figure 7. Hence, for a general position-based YYD, the quantitative measures pA and
pB in Equation (56) are replaced by

pA =
(

n2xI + ntan−1(1/n)
)2

, pB =
(

n2xR

)2
, (58)

where the time history of the complex position x(t) = xR(t) + ixI(t) is solved from
Equation (28) for a general value of n.

Figure 13 shows how the position-based YYD evolves with the tunneling intensity n.
The YYD emerges from the origin with n = 0, initially resembling a walnut in appearance,
and grows into an ideal YYD as n increases. Regardless of whether the velocity or position
data are used to construct the YYD, one finds that when the value of n is large, the
two methods result in the same ideal YYDs, whose outer curve approaches a perfect circle,
and whose inner curve approaches a cardioid.
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Figure 13. The growth of the position-based YYD with the tunneling intensity n. On plotting
the position-based YYD, the quantitative measures are given by pA =

(
n2xI + ntan−1(1/n)

)2 and

pB =
(
n2xR

)2. As n increases from 0, the YYD grows from the origin, initially like the shape of
a walnut. As n ≫ 1, the position-based YYD becomes identical to the velocity-based YYD. The
numbers refer to the nine trajectory points in Figure 6.

8. Conclusions

In this paper, it is found that Bohr’s YYD in quantum tunneling dynamics and dis-
cussed four special forms of YYD relating to BPC. Bohr’s YYD in his coat of arms is a
popular YYD consisting of a unit circle and two inscribed circles, as shown in Figure 14a.
Except for being like the tunneling-based YYD in appearance, this popular YYD has no
link to physical systems. The second type of YYD is the traditional Taoist YYD, which is
an ancient realization of BPC as shown in Figure 14b. The third type of YYD in Figure 14c
visualizes a particle’s tunneling motion by displaying the time evolution of the particle’s
position and velocity. The fourth type of YYD in Figure 14d is drawn based on the data of
the two-path interference experiments for testing the wave–particle duality. Taoist YYD has
been reproduced in this article by BPC, which, in turn, justifies Bohr’s use of Taoist YYD as
the icon of his principle. The only pity is that the YYD designed by Bohr in his cost of arms
is not Taoist YYD drawn based on his principle. However, Bohr did not need to borrow
Taoist YYD to symbolize the wave–particle duality, because the wave–particle duality has
its own representative YYDs, i.e., the tunneling-based YYD and the interference-based YYD,
as revealed in this article. The investigation in this paper shows that Bohr’s YYD and its
quantum version, the tunneling-based YYD, belong to the same category, while Taoist YYD
and its quantum version, the interference-based YYD, belong to another category.
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When the complementary pair satisfies the conditions of continuity and comple-
mentarity, the obtained YYD turns out to be an ideal one, whose outer curve is a perfect 

Figure 14. The interconnection of four YYDs and their relationship with BPC. (a) Bohr’s YYD is
based on a popular construction to symbolize the principle of complementarity. (b) Taoist YYD is
proved to be an ancient realization of BPC, which justifies the role of YYD in Bohr’s principle. (c) The
tunneling-based YYD visualizes a particle’s tunneling motion via a step barrier by displaying the
time evolution of the particle’s velocity. (d) The interference-based YYD is drawn by the data from
two-path interferometers to test BPC. According to the inner curves of the four YYDs, Bohr’s YYD
and its quantum version, the tunneling-based YYD, belong to the same category, while Taoist YYD
and its quantum version, the interference-based YYD, belong to another category.

The types of YYD are not limited to those shown in Figure 14. Actually, every system
in nature has its accompanying YYD that can be constructed according to Equation (1). Any
complementary pair A and B in a system, whether classical or quantum, can be employed
to construct the system’s YYD, if their quantitative measures pA and pB are available within
a period. In ancient China, the complementary pair could be the daytime and nighttime
in a day. In classical mechanics, the complementary pair could be the kinetic energy and
the gravitational potential energy of a particle during vertical projectile motion or could be
the kinetic energy and the elastic potential energy of a spring-mass system. In quantum
mechanics, the complementary pair could be the particle nature and the wave nature of a
photon in a two-path interference experiment or could be the real and imaginary velocities
of a tunneling particle. If, as Bohr said, complementarity is a universal principle, the YYD
constructed in this paper is a universal image found all over in nature.

When the complementary pair satisfies the conditions of continuity and complemen-
tarity, the obtained YYD turns out to be an ideal one, whose outer curve is a perfect circle
with continuous inner curve. One can then judge the degree to which the system satisfies
BPC based on the deviation of the system’s YYD from the ideal YYD.
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