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Abstract: Magnetic quantum oscillations (MQOs) are traditionally applied to investigate the electronic
structure of metals. In layered quasi-two-dimensional (Q2D) materials, the MQOs have several
qualitative features, offering additional helpful information, provided their theoretical description is
developed. Within the framework of the Kubo formula and the self-consistent Born approximation,
we reconsider the phase of the beats in the amplitude of the Shubnikov oscillations of the interlayer
conductivity in Q2D metals. We show that the phase shift of the beats of the Shubnikov (conductivity)
oscillations relative to the de Haas–van Alphen (magnetization) oscillations is larger than woud be
expected and, under certain conditions, can reach the value of π/2, as observed experimentally. We
explain the phase inversion of the MQOs during the 3D–2D crossover and predict the decrease in the
relative MQO amplitude of the interlayer magnetoresistance in a strong magnetic field, larger than
the beat frequency.

Keywords: quasi-two-dimensional metals; layered materials; quantum magnetization; interlayer
conductivity; magnetic quantum oscillations; beating phase

1. Introduction

Layered quasi-two-dimensional (Q2D) metals (see Figure 1) represent a wide class
of materials, intermediate between the various 2D electron systems and usual three-
dimensional (3D) compounds. The Q2D materials attract enormous research interest
due to the variety of new electronic phenomena and diverse potential applications. They
include high-temperature superconductors, organic metals, van der Waals crystals, artificial
heterostructures, and so on. An experimental study of their electronic structure, in addition
to ab initio calculations, is crucial for understanding and utilizing their properties. Although
angle-resolved photoemission spectroscopy (ARPES) provides visual data on the electronic
bands and Fermi surface (FS), more traditional tools, such as magnetic quantum oscillations
(MQOs) [1], commonly have higher accuracy and availability.

The MQOs originate from the Landau-level (LL) quantization of the electron spectrum
in a magnetic field field B and appear in all thermodynamic and transport quantities as
their periodic 1/B dependence. The standard MQO theory, based on the Lifshitz–Kosevich
(LK) formula [2] (see [1] for modern LK theory), is often applied even in Q2D metals and
provides the FS extremal cross-section areas Si = 2πeh̄Fi/c from the fundamental MQO
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frequencies, Fi, with e denoting the elementary charge, c the speed of light, and h̄ the
reduced Planck constant. Such data, collected at various directions of the magnetic field
B, helped to determine the FS of most known metals. Less accurate, the LK theory also
describes the damping of the MQO amplitude by temperature and disorder as a function
of the magnetic field strength B, which enables estimating the electron effective mass and
mean free time for each band [1].

Figure 1. Schematic representation of a layered Q2D metal (a) and its Fermi surface (b).

The strong anisotropy of layered Q2D metals introduces special features to MQOs.
The Q2D electron dispersion, obtained in the tight-binding approximation for the interlayer
z direction, is provided by

ϵ3D(k) = ϵ∥

(
k∥

)
− 2tz cos(kzd), (1)

where k denotes the wavenumber, ϵ∥

(
k∥

)
is the intralayer electron dispersion, tz is the

interlayer transfer integral of electrons, and d is the lattice constant along the z-axis. Often,
in Q2D metals, the Fermi energy µ ≫ tz, and the FS is a warped cylinder with two close
cross-section areas corresponding to the “neck” and “belly” of the FS (see Figure 1b). Ac-
cording to the LK theory, at B parallel z, the MQOs have two close fundamental frequencies
F1 = F − ∆F/2 and F2 = F + ∆F/2. As the MQO amplitudes with these two frequencies
are also close, the resulting MQOs at frequency F have amplitude modulations with fre-
quency ∆F, called beats. The beat frequency ∆F is proportional to the interlayer transfer
integral: ∆F/F ≈ 4tz/µ. It non-monotonously depends on the direction of the magnetic
field, which follows the angular magnetoresistance oscillations (AMROs) [3–6], and can
be used to determine the in-plane Fermi momentum [5,6] and even high harmonics of FS
warping [7,8].

Even if the MQOs are weak, the interlayer electron transport in Q2D metals exhibits
several unique properties, such as the aforementioned AMROs [3–6] and longitudinal
interlayer magnetoresistance [9–11]. There are even more new features of MQOs in Q2D
metals that are not described within the standard LK theory. The interplay between the
angular and quantum magnetoresistance oscillations is nontrivial [12,13] and leads to
the angular modulations of the MQO amplitude [13]. The so-called difference or slow
oscillations (SOs) of magnetoresistance [14–17] at frequency 2∆F appear and survive at
much higher temperatures than the usual MQOs. The SOs help to determine the type of
disorder and provide further practical information, such as the interlayer transfer integral.
Another feature beyond the LK theory is the phase shift of the beats between the MQOs
of the thermodynamic and transport quantities [15,18]. This phase shift increases with B,
as observed in various Q2D metals [18–20] and substantiated theoretically [15,18]. The
experimentally observed phase shift of the beats ∆ϕexp often considerably exceeds the
theoretical prediction ∆ϕtheor (e.g., see Figure 3 in Ref. [15] or Figure 6 in Ref. [19]).
In the present paper, we explain this inconsistency and develop a more accurate theory of
this effect.
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The beatings of the MQO amplitude due to the interlayer electron hopping were
observed in a number of other layered materials [5,6,21–25]. Note that the phase shift
of the beats is observed not only between the de Haas–van Alphen (dHvA) and the
Shubnikov–de Haas (SdH) effects but also between the oscillations of other quantities,
e.g., the interlayer magnetoresistance and thermopower [22], or magnetoresistance and
specific heat [26]. The MQOs of magnetization and of the interlayer conductivity were
also measured simultaneously in the Dirac semimetals BaGa2 [27]. There are various other
combined SdH and dHvA measurements in layered metals where the MQO beats are
observed [28–31]. Similar beating effects may also appear in artificial heterostructures and
multilayer topological insulators [32,33], as well as in layered Weyl semimetals [26].

Another noticeable feature of the 3D–2D crossover, driven by the parameter
λ = 4∆F/Bz (where Bz denotes the magnetic field component along the z-axis), is the
phase inversion of the MQOs of conductivity as compared to those of the electronic density
of state (DoS) at the Fermi level and, hence, of all the thermodynamic quantities. At a
considerably low magnetic field, the MQOs of conductivity and DoS have opposite phases
as soon as the former is proportional to the electron mean free time, which is inversely pro-
portional to the DoS [34,35], according to the golden Fermi rule or the Born approximation.
However, in a high magnetic field Bz ≫ ∆F in Q2D metals, when the Landau levels (LLs)
become separated and the DoS between the LLs is zero, the MQO phase of conductivity
and DoS coincide. The latter follows both from the direct observations [10,36,37] and calcu-
lations [9–11,17,38], being supported by the simple qualitative argument that if the DoS at
the Fermi level is zero the conductivity must also be zero at a low temperature. However,
in spite of a general understanding, the quantitative description of this phase inversion
is absent. In Section 4, we show how this phase inversion during the 3D–2D crossover
is described by analytical formulas. The understanding of this MQO phase inversion is
helpful for experimental studies of the Berry phase using MQO measurements [39–42].

2. Available Experimental Observations and Their Description

The MQOs have been extensively investigated in various Q2D metals, including
the cuprate [43–46] and iron-based [47,48] high-Tc superconductors, organic metals [5,6],
van der Walls layered crystals, artificial heterostructures, and various of other materials.
The two most common MQO experiments are the measurements of magnetization and
conductivity oscillations, i.e., the dHvA and the SdH effects. However, the observation of
the phase shift between their beats is less common because it requires the measurements of
both these effects on the same sample.

In Ref. [19], the Fermi surface of a layered organic metal (BEDT-TTF)4[Ni(dto)2]
was studied by measuring the quantum oscillations of both magnetization and interlayer
conductivity. The authors have shown that the standard LK theory [1] quite well describes
the results on magnetization oscillations. The detected positions of the beat nodes of the
dHvA oscillation amplitude are quite well fitted by the formula

Bnode =
4

4Nnode − 1
∆F, Nnode = 1, 2, 3, . . . , (2)

where ∆F is the beat frequency providing the FS warping. However, the observed positions
of the beat nodes of the Shubnikov oscillation amplitude in Ref. [19] are found to be
considerably shifted and well enough fitted by another formula:

Bnode =
4

4Nnode + 1
∆F, Nnode = 0, 1, 2, 3, . . . . (3)

A similar difference in the positions of the beat nodes of dHvA oscillations and
Shubnikov oscillations was also observed in κ-(BEDT-TTF)2Cu[N(CN)2]Br [20]. The LK
theory does not explain the observed phase shift of the beat nodes regarding π/2 between
the oscillations of magnetization and interlayer conductivity.
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The 3D–2D crossover in the MQO behavior happens [10] when B ∼ ∆F, i.e., when the
LL separation h̄ωc becomes comparable to the interlayer bandwidth 4tz, where ωc = eB/(m∗c)
is the cyclotron frequency, with m∗ the effective electron mass. The phase shift between
the MQO beats of dHvA and SdH effects is considerable when h̄ωc ≳ 4tz, i.e., during this
3D–2D crossover.

The expressions for interlayer conductivity derived [14,18] in the tau approximation
highly underestimate the observed phase shift ϕb between the beats of magnetization and
interlayer conductivity, providing

ϕb = arctan[h̄ωc/(2πtz)], (4)

Equation (4) always predicts ϕb < π/2, which does not explain the experimental
data from Ref. [19]. Note that the phase shift of the beats observed in Ref. [18] is also
about 2.4 times larger than the prediction of Equation (4). Indeed, substituting the known
parameters in the Q2D organic metal β-(BEDT-TTF)2IBr2, namely the cyclotron mass
m∗ = 4.2me, with me the electron mass, as obtained from the temperature dependence of
the MQO amplitude, and the interlayer bandwidth 4tz = 1.15 meV, as extracted from the
ratio between the beating and fundamental MQO frequencies, into Equation (4), one obtains
the 2.4 times smaller slope of the linear dependence of tan ϕb on Bz than the experimental
data in Figure 4 from Ref. [18].

The calculations of the interlayer conductivity using the Kubo formula predict a larger
phase shift of the beats provided by [15]

tan ϕb =
h̄ωc

2πtz

(
1 +

2π2kBTD

h̄ωc

)
=

h̄ωc

2πtz

(
1 +

π

ωcτ

)
≡ h̄ωc

2πtz
(1 + γ0), (5)

where TD ≡ h̄/(2πkBτ) is called the Dingle temperature, kB is the Boltzmann constant, τ
is the electron mean free time, and γ0 = π/(ωcτ) is the dimensionless parameter. MQO
damping by crystal disorder. These quantities enter the Dingle factor RD0 = exp(−γ0) =
exp[−2π2kBTD/(h̄ωc)], describing the damping of MQOs by crystal disorder (see Equa-
tions (6)–(8) below). However, even this enhanced phase shift of the beats provided by
Equation (5) is still insufficient to quantitatively describe the effect observed in Refs. [18,19].

Note that τ measured from the MQOs is, generally, shorter than the transport mean
free time τtr and the mean free time, τ∗, arising from short-range disorder only and
measured from the damping of slow magnetoresistance oscillations [14]. This difference,
τ < τ∗ ≈ τtr, appears because the MQOs are damped not only by short-range disorder
but also by long-range sample inhomogeneities, which smear the Fermi energy similar to
the temperature effect [10,14–17]. The opposite case when the transport mean free time
τtr < τ ≲ τ∗ is also possible in heterogeneous conductors, where there are rare but strong
inhomogeneities, such as domain walls or linear crystal defects. Then, inside each domain
of the size larger than the Larmor radius, the material is a clean metal with a large τ~τ∗, but
the electronic transport across the sample is complicated due to of its heterogeneity, which
corresponds to quite a short time τtr. As follows from the calculations in Refs. [15,17], it is
τ∗ rather than τ that enters Equation (5).

3. Analysis Input

The materials to which our study is applicable are the strongly anisotropic layered
Q2D metals, where tz is of the same order of magnitude as h̄ωc. For the comparison of our
formulas with experiments, we take the data from Refs. [18,19] obtained on the organic
metals (BEDT-TTF)4[Ni(dto)2] and β-(BEDT-TTF)2IBr2.

Throughout this study, we consider B perpendicular to conducting layers, so that
B = Bz. We use the expressions for the MQOs of magnetization and interlayer conductivity
from Refs. [15,17,49,50] obtained in the self-consistent Born approximation. In the leading
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order of the expansion in powers of the Dingle factor RD0 at temperature T, the oscillating
part of the magnetization reads (see Equation (33) in Ref. [49] or Equation (6) in Ref. [50])

M̃ ≈ eµ

2π2h̄cd
RD0RT

[
J0(λ) sin(α) +

λ

α
J1(λ) cos(α)

]
, (6)

and the oscillating part of the interlayer conductivity is (see Equation (18) in Ref. [15] or
Equation (64) in Ref. [17])

σQO
zz ≈ 2σ

(0)
zz cos(α)RD0RT Rzσ, Rzσ = J0(λ)−

2
λ
(1 + γ0)J1(λ), (7)

where λ = 4∆F/Bz = 4πtz/(h̄ωc), α = 2πµ/(h̄ωc), J0 and J1 are the Bessel functions of
zero and first orders, respectively, σ

(0)
zz is the interlayer conductivity without magnetic

field, and RT = 2π2kBT/(h̄ωc)/ sinh(2π2kBT/(h̄ωc)) is the temperature damping factor
of MQOs.

At strong Q2D anisotropy, when 2tz/µ = λ/α ≪ 1 and the beats of MQOs are the
most pronounced, the last term in the square brackets of Equation (6) can be omitted, and
the oscillating part of magnetization simplifies to

M̃ ≈ eµ

2π2h̄cd
sin(α)RD0RT RM, RM = J0(λ). (8)

The MQOs correspond to the rapidly oscillating factors sin(α) or cos(α) in Equa-
tions (6)–(8), while the factors RM and Rzσ describe the beats of the MQO amplitudes and
are the subject of our study.

4. Analysis and Results

Let us first consider the limit of λ ≫ 1, corresponding to a rather large electron
interlayer transfer integral 4πtz ≫ h̄ωc or weak magnetic field. Then, one can use the
large-argument asymptotic expansions of the Bessel functions in Equations (7) and (8). As
a result, the beating factors of the MQO amplitudes in Equations (7) and (8) simplify to

RM =

√
2/π cos(λ − π/4)√

λ
, (9)

Rzσ =

√
2/π cos(λ − π/4)√

λ
+

(16γ0 + 15) cos(λ + π/4)
4
√

2πλ3/2
. (10)

At λ ≫ 2(γ0 + 1), the second term in Equation (10) is negligibly small, and one obtains
the same beating factors of the MQOs of magnetization and interlayer conductivity,

Rzσ ≈
√

2/π cos(λ − π/4)√
λ

= RM. (11)

Hence, in this limit, the phase shift of the beats is absent: ϕb ≈ 0.
In the opposite limit of strong MQO damping by disorder, γ0 ≫ λ/2, the first term in

Equation (10) can be omitted, and one obtains

Rzσ ≈ 23/2γ0 cos(λ + π/4)√
πλ3/2 . (12)

Comparing Equations (9) and (12), one can see that, at γ0 ≫ λ/2, the MQO beats of
the interlayer conductivity are shifted from those of magnetization by the phase ϕb = π/2.
As follows from Equation (9), the beat nodes of magnetization oscillations M̃ in Equation (8)
are located at λ ≈ −π/4 + πNnode, where Nnode ≥ 1 is an integer, and from Equation (12)
it follows that the beat nodes of the interlayer conductivity oscillations σQO

zz provided
by Equation (7) are shifted by π/2 and located at λ ≈ π/4 + πNnode. These λ values
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provide the same position of the beat nodes as the expressions (2) and (3) for Nnode ≥ 1
and ∆F = λ|Bz|/π, corresponding to the fit of the experimental data in Ref. [19]. Hence,
Equations (9) and (12) describe the experimental observations in Ref. [19] quite well.
However, Equation (12) assumes γ0 ≫ λ/2, while γ0 ∼ λ in the experiment in Ref. [19].
The Dingle temperature extracted from the experimental data in Ref. [19] is TD ≈ 0.5 K. The
beat frequency in the organic metal (BEDT-TTF)4[Ni(dto)2] studied in Ref. [19] is ∆F ≈ 4.5 T,
which corresponds to tz = 0.06 meV ≈ 0.7 K. Hence, the ratio γ0/λ = 2π2TD/(4πtz) =
πTD/(2tz) ≈ 1.12 in Ref. [19]. Then, to improve the quantitative description of the observed
phase shift of the MQO beats, one needs to consider the case λ ∼ γ0 ∼ 1 more carefully.

The phase shift ϕb of the MQO beats becomes even stronger than that provided by
Equations (9) and (12) if one applies Equations (7) and (8) without the asymptotic expan-
sions of the Bessel functions at a large argument, i.e., without the assumption λ ≫ 1, which
is more relevant to the experiment in Ref. [19]. In Figure 2, using Equations (7) and (8) at
γ0(λ) = {0.1, 1.12, 2, 3}λ, we plot the beating factors RM and Rzσ, describing the MQO am-
plitudes of magnetization and conductivity without the Dingle and temperature damping
factors. The theoretical curves in Figure 2 correspond to four values γ0/λ = {0.1, 1.12, 2, 3}
to describe the experimental data from Refs. [18,19], where γ0/λ ≈ 0.1 and γ0/λ ≈ 1.12
correspondingly. In Figure 2, we take a special scale of the abscissa axis so that the zeros of
both curves, called the beat nodes, fall into integer values. From Figure 2, one finds that
the beat nodes for the interlayer conductivity oscillations σQO

zz (7) are shifted relative to
the magnetization oscillating M̃ (8) beat nodes by a quarter of the period λ ≈ π∆F/|Bz|.
(In Ref. [17], we used a different definition of ∆F ≈ 2tzBz/(h̄ωc) = λBz/π.) The beat
nodes of M̃ in Figure 2 are located at 4λ/π ≈ {3, 7, 11, 15}. This coincides with the
prediction of simplified limiting-case Formula (9) and remarkably well agrees with the
experimental data from Ref. [19] fitted by Equation (2). At γ0(λ) = 0.1λ, the positions of
σQO

zz are close to the positions of the beat nodes of the amplitude of the magnetization
oscillations. The beat nodes of σQO

zz plotted in Figure 2 at γ0(λ) = {1.12, 2, 3}λ are located
at 4λ/π ≈ {0, 5, 9, 13}. For Nnode ≥ 1, the positions coincide with Equation (3), which fits
the experimental data from Ref. [19].

Figure 2. The beating factors Rzσ (see Equation (7)) and RM (8) as functions of the inverse magnetic
field, 1/|Bz|. Rzσ is shown for γ0/λ = 0.1, 1.12, 2, and 3, as indicated.



Physics 2024, 6 1005

Equations (7) and (8) also remarkably well agree with the experimental data from
Ref. [18]. Figure 3 shows the measured positions of the magnetization and conductiv-
ity beat nodes from the experiments [18,19] along with the theoretical predictions by
Equations (7) and (8). The measured positions of the beat nodes in Ref. [19] at Nnode ≥ 1
are remarkably well described by Equations (2) and (3). Figure 3 demonstrates exception-
ally good agreement between the theory developed here and the experimental data [18,19]
for the beat-node positions with number Nnode ≥ 1. These beat-node positions for the
MQOs of magnetization and interlayer conductivity are fitted quite well by two straight
lines each one parallel to another. Hence, one concludes that Equations (7) and (8) describe
the beating nodes with Nnode ≥ 1 remarkably well. Let us note that though the experimen-
tal data in Refs. [18,19] are taken on different compounds, they both show agreement with
the proposed theory.

Figure 3. The dependence of the beat-node positions, Nnode, of the MQOs of σQO
zz and M̃ on the

inverse magnetic field, 1/|Bz|, for γ0 = 1.12λ. “dHvA exp1” and “SdH exp1” denote the experimental
data from Ref. [19], relatively well fitted by expressions (2) and (3), “dHvA exp2” and “SdH exp2”
denote the experimental data from Figures 2 and 3 from Ref. [18], “dHvA thr” denotes the results
obtained from the zeros of expression (9), and “SdH thr” denotes the results obtained numerically
from the solution of Rzσ = 0.

The position λ = 0 of the zeroth beating node provided by Equation (7) holds at any
ratio γ0/λ, as illustrated in Figure 2 and can be shown analytically. Indeed, in a very high
magnetic field λ → 0, the ratio γ0/λ = h̄/(4τtz) → const, and the zeroth beating node is
provided by

Rzσ = J0(λ)−
2
λ
(1 + γ0)J1(λ) ≈ −γ0

λ
λ +

(γ0 − 1)
8

λ2 = 0. (13)

λ = 0 is the root of Equation (13) forany ratio γ0/λ. Another root, λ =
√

8γ0/(γ0 − 1),
is physically irrelevant as soon as it provides a value that is too large:

λ =
1 +

√
1 + 32γ2

0/λ2

2γ0/λ
> 2

√
2 , (14)

far beyond the limit λ ≪ 1, where the expansion (13) holds.
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The position of the very first beat node at Nnode = 0 differs in Equations (3) and (7).
According to Equation (3), the beating node Nnode = 0 of σQO

zz oscillations to be at 4λ/π = 1,
which does not coincide with the positions Nnode = ∞ or λ = 0 of the zeroth beating node
provided by Equation (7) and shown in Figure 2. As just shown (see Equation (14)), the
origin of this difference is not a “wrong” choice of the parameter γ0/λ entering Equation (7).

Actually, the position λ = π/4 of the zeroth beating node Nnode = 0, predicted by the
“fit” (3), has not been observed experimentally. The beat frequency in the organic metal
(BEDT-TTF)4[Ni(dto)2] studied in Ref. [19] is ∆F ≈ 4.5 T. According to Equation (3), the
zeroth beating node is at B = 4∆F ≈ 18 T. In Ref. [19], the experimental data on the SdH
oscillations in (BEDT-TTF)4[Ni(dto)2] are shown only up to B = 6 T in Figure 6 in Ref. [19],
while the data up to B = 28 T are provided only for the dHvA oscillations in Figure 3 in
Ref. [19]. In Figure 6.1 in Ref. [51], the SdH data up to B = 28 T are shown for the same
organic metal (BEDT-TTF)4[Ni(dto)2], and no beating nodes are observed in the magnetic-
field interval 4 T < B < 28 T. A similar difference in the beat-node positions of the dHvA
and Shubnikov oscillations in the κ-(BEDT-TTF)2Cu[N(CN)2]Br [20] was also detected by
the non-observation of the SdH beat node in the magnetic-field interval 16 T < B < 28 T.
Hence, Equation (7) describes the available experimental data on the MQO beats of the
interlayer conductivity exceptionally well.

In Ref. [18], the Dingle temperature extracted from the experimental data is TD = 0.8 K,
but the Dingle temperature from the scattering by short-range disorder is T∗

D = 0.15 K;
see Figure 4 in Ref. [14]. The beat frequency ∆F ≈ 40.9 T in the organic metal β-(BEDT-
TTF)2IBr2 studied in Ref. [18] is considerably larger than in (BEDT-TTF)4[Ni(dto)2] studied
in Ref. [19]. It corresponds to tz = 1.15 meV ≈ 13.3 K and γ0/λ ≈ 0.1. For γ0 ≪
λ/23/2, the expression (10) for Rzσ(λ) is approximately same as Equation (11). Since
Equations (9) and (11) are similar, the latter means that the beat nodes for magnetization,
M̃, and conductivity, σQO

zz , oscillations are close at this limit. In Figure 4, we show that the
beat nodes found at γ0 = 0.1λ fit quite well with the experimental data on the position of
the beat nodes from Figure 3 of Ref. [18]. The higher the Nnode of the MQO beat nodes of
the magnetization and interlayer conductivity, the shorter the distance between them.

Figure 4. The dependence of the positions, Nnode, of the beat node of magnetic quantum oscillations
of σQO

zz and M̃ on the inverse magnetic field, 1/|Bz|, for γ0(λ) = 0.1λ. “dHvA exp” and “SdH exp”
denote the measurements from Figure 3 in Ref. [18], “dHvA thr” denotes the results found from the
zeros of expression (9), and “SdH thr” denotes those found from the numerical solution of Rzσ = 0.
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5. Discussion

The analytical formulas obtained in this paper describe the interlayer conductivity σzz.
These formulas can also be applied to describe the first MQO harmonic of the interlayer
magnetoresistance ρzz = 1/σzz if the MQOs are not strong enough so that the non-linear
effects in the MQO amplitude may be neglected [52]. As soon as only the first MQO
harmonic is kept and the higher-order terms in the MQO amplitude are negligible, one
may safely apply the relation ρzz = σ−1

zz to describe the interlayer magnetoresistance [52].
However, for strong MQOs, their averaging over temperature and long-range disorder
differs for ρzz and σzz [10,52].

A finite temperature T suppresses the MQOs via the smearing of the Fermi energy
by widening the Fermi–Dirac distribution function of the electrons, as provided by the
damping factor RT . This does not considerably affect the phases of MQOs and their beats.
The second effect of raising the temperature is the enhancement of electron–electron (e–e)
and electron–phonon (e–ph) interactions, which reduce the electron mean free time, τ(T).
Although in the main order the effects of the e–e and e–ph interactions on the product of
the Dingle and temperature damping factors RDRT cancel each other out [1,53–57], the
phase shift of the beats provided by Equation (5) depends on τ. Hence, with raising the
temperature, a slight increase in the phase shift of the beats between the MQOs of the
interlayer conductivity and magnetization may appear.

In this paper, we have shown that the developed theory and specifically Equation (7)
describe quite well the available experimental data on the MQO beats of the interlayer
conductivity σzz. They also predict some new remarkable and observable features. In partic-
ular, Equation (7) predicts a strong decrease in the MQO beating factor Rzσ of the interlayer
conductivity with the increase in the magnetic field, corresponding to λ → 0. This de-
crease in Rzσ is partially compensated by the Dingle factor RD0 and by the temperature
damping factor RT . However, the product RD0RT Rzσ, describing the MQO amplitude of
the interlayer conductivity, may still be non-monotonic in a high field, in contrast to the
amplitude of the magnetization MQOs described by Equation (8), which always mono-
tonically increases in a very high field at h̄ωc ≫ tz. This nonmonotonic magnetic-field
dependence of the MQO amplitude on the interlayer conductivity in a high field is rather
robust to the variations in the material parameters, e.g, to the variations in temperature and
sample quality provided by the ratio γ0/λ = πkBTD/(2tz) = h̄/(4tzτ). In Figure 5, we
show this high-field non-monotonic dependence of the ρzz MQO amplitude (−1)RD0RT Rzσ

on π/λ = |Bz|/∆F for two different ratios γ0/λ and temperatures T. For all the sets of
parameters, the MQO amplitude of the interlayer magnetoresistance in Figure 5 has a well
seen maximum at B∗

z ≳ 2∆F and decreases in a very high field Bz > B∗
z . At small ratios,

γ0/λ < 0.3, the increase in temperature up to the Dingle temperature, TD, has almost no
effect on the graph, but, at higher T ≳ tz, it shifts the MQO amplitude maximum at B = B∗

z
to higher fields, as shown in Figure 5. The exact value B∗

z of the magnetic field where the
MQO amplitude of the interlayer resistivity is maximal and starts to decrease depends on
the electron mean free time τ and on the temperature, as one can see in Figure 5, as soon as
(i) the MQO amplitude is the product of three damping factors according to Equation (7)
and (ii) Rzσ in Equations (7) or (13) contains γ0 ∝ 1/τ, which determines the slope dRzσ/dλ
at λ → 0 and the maximal MQO amplitude of ρzz. This field B∗

z ≳ 2∆F is rather large if
∆F ∝ tz is not quite small.

The predicted decrease in the MQO amplitude of the interlayer conductivity in a high
field is somewhat counterintuitive, being the opposite to what is observed in magnetization,
but it can be straightforwardly tested experimentally in various Q2D layered compounds,
such as organic metals, van der Waals crystals, artificial heterostructures, and so on. We
suppose that the proposed decrease in the MQO amplitude in a high field was actually
observed in a number of experiments but mistaken for the non-existing beat node at a
high magnetic field beyond the available range. For example, as mentioned in Section 4,
in Refs. [19,20,51], the beating node Nnode = 0 of the SdH effect was not observed but
assumed from some decrease in the MQO amplitude in a very high field. This decrease may
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be considered as the experimental indication of the predicted high-field non-monotonic
behavior of the MQO amplitude of the interlayer conductivity, but further experimental
studies of this remarkable effect are required to be compared with the theoretical predictions
made here and to determine the range of parameters where the effect is observed.

Figure 5. The MQO amplitude of interlayer conductivity σzz in Equation (7) provided by the product
(−1)RD0RT Rzσ as a function of magnetic field for γ0 = {0.3, 3}λ at temperature T = {0, 1}TD.

Another noticeable prediction of our theoretical analysis here is that all the curves
in Figure 2, describing the MQO amplitudes, periodically cross at the same points. This
can also be checked experimentally. However, this experimental test is less obvious and
convenient than the above prediction of the monotonic magnetic-field dependence of the
ρzz MQO amplitude because the corresponding experimental data for the M(Bz) and R(Bz)
magnetic oscillations must be properly normalized for such comparison.

Now, let us consider the MQO phase of the interlayer conductivity. For the Q2D
electron spectrum (1) in a magnetic field, one can straightforwardly calculate [49,50], the
one-particle DoS, ν. Neglecting the higher harmonics, the DoS oscillations are provided
by [49,50]

ν̃ ≈ ν02RDRν cos(α), Rν = −J0(λ), (15)

where ν0 = m∗/(2πh̄2d) is its non-oscillating part per one spin component. The phase of
DoS oscillations is strictly tied to that of magnetization provided by Equation (8) because
the corresponding beating factors satisfy Rν = −RM. In a weak magnetic field, when
λ ≫ 1 corresponding to the 3D limit, the second term in the beating factor Rzσ of the
interlayer conductivity provided by Equation (7) is much smaller than its first term. Then,
Rzσ ≈ RM = J0(λ) = −Rν, and the MQO phases of the interlayer conductivity σzz and
of the DoS ν are strictly opposite, as predicted by the 3D theory of the SdH effect [34,35].
In the opposite case, λ < π, corresponding to the 3D–2D crossover or nearly 2D limit, the
SdH beating factor Rzσ < 0, as follows from Equation (7) and illustrated in Figure 5. Since
Rν = −RM < 0 is also negative at λ < 1, at the 3D–2D crossover B ≳ ∆F or in the almost
2D limit B ≫ ∆F, the quantum oscillations of the electronic DoS and of the interlayer
conductivity have the same phase. One can see that our theory developed here describes
the phase inversion of the SdH oscillations during the 3D–2D crossover.

The analysis presented here is generic to layered Q2D metals and can be applied
to quite a wide class of layered compounds, which are still being actively studied by
MQOs [25,27–30,58–61]. The dHvA effect measures a thermodynamic quantity, magneti-
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zation, which only depends on the electron density of the states and its variations with
the magnetic field. The SdH effect measures the electron transport and depends on the
electron velocity and scattering time. The difference between the dHvA and SdH effects
indicates the proximity to 3D–2D crossover, as shown in this paper. The comparative study
provides additional knowledge about the electronic structure and scattering processes than
the dHvA or SdH effects alone. For example, if the observed MQOs for some frequency
are quite strong in terms of the SdH effect but much weaker or absent regarding dHvA,
it is quite probable that these MQOs are difference-frequency oscillations or SO [14], and
their frequency provides the interlayer bandwidth 4tz or another energy splitting of the
electronic spectrum rather than the area of the FS pockets.

6. Conclusions

In this paper, we developed the quantitative theoretical description of the beating
phase of the magnetic quantum oscillations of the interlayer magnetoresistance and magne-
tization in Q2D metals, which are traditionally used to extract practical information about
the electronic properties. The theory developed agrees remarkably well with the available
experimental data and provides explanation for the long-standing puzzle of the observed
exceptionally large phase shift of the beats between the MQOs of the thermodynamic and
transport electronic properties. In addition, our theory also makes several new predictions
that can be tested experimentally. The most unexpected prediction is the non-monotonic
field dependence of the MQO amplitude of the interlayer magnetoresistance in a high mag-
netic field Bz~∆F, where ∆F is the beat frequency. Naively, one may expect a monotonic
growth in the MQO amplitude of the interlayer conductivity in a strong magnetic field
|Bz| > ∆F, similar to magnetization, but we predict here its decrease at |Bz| ≳ 4∆F in the
regime of 3D–2D crossover, as illustrated in Figure 5. The analytical formulas obtained by
us here also explain and describe the phase inversion of the SdH oscillations during the
3D–2D crossover.

Author Contributions: Conceptualization, P.D.G.; methodology, P.D.G. and T.I.M.; validation, I.S.V.,
V.D.K. and T.I.M.; formal analysis, T.I.M.; investigation, P.D.G. and T.I.M.; writing—original draft
preparation, T.I.M.; writing—review and editing, P.D.G.; supervision, P.D.G.; funding acquisition,
I.Y.P. and P.D.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation grant #22-42-09018. V.D.K.
acknowledges the Foundation for the Advancement of Theoretical Physics and Mathematics “Basis”,
Russia, for grant #22-1-1-24-1 and NUST “MISIS” grant No. K2-2022-025.

Data Availability Statement: Dataset available upon request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AMRO angular magnetoresistance oscillations
ARPES angle-resolved photoemission spectroscopy
BEDT-TTF bis(ethylenedithio)tetrathiafulvalene
DoS density of states
dHvA de Haas–van Alphen
dto dithiooxalate
FS Fermi surface
LK Lifshitz–Kosevich
LL Landau level
MQO Magnetic quantum oscillation
Q2D quasi-two-dimensional
SdH Shubnikov–de Haas
SO slow oscillations
2D, 3D 2-, 3-dimensional



Physics 2024, 6 1010

References
1. Shoenberg, D. Magnetic Oscillations in Metals; Cambridge University Press: Cambridge, UK, 1984. [CrossRef]
2. Lifshitz, I.M.; Kosevich, A.M. On the theory of the de Haas–van Alphen effect for particles with an arbitrary dispersion law. Dokl.

Akad. Nauk SSSR [Proc. USSR Acad. Sci.] 1954, 96, 963–966.
3. Yagi, R.; Iye, Y.; Osada, T.; Kagoshima, S. Semiclassical interpretation of the angular-dependent oscillatory magnetoresistance in

quasi-two-dimensional systems. J. Phys. Soc. Jpn. 1990, 59, 3069–3072. [CrossRef]
4. Moses, P.; McKenzie, R.H. Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance

of layered Fermi liquids. Phys. Rev. B 1999, 60, 7998–8011. [CrossRef]
5. Kartsovnik, M.V. High magnetic fields: A tool for studying electronic properties of layered organic metals. Chem. Rev. 2004,

104, 5737–5782. [CrossRef] [PubMed]
6. Wosnitza, J. Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors; Springer: Berlin/Heidelberg,

Germany, 2013. [CrossRef]
7. Bergemann, C.; Julian, S.R.; Mackenzie, A.P.; NishiZaki, S.; Maeno, Y. Detailed topography of the Fermi surface of Sr2RuO4. Phys.

Rev. Lett. 2000, 84, 2662–2665. [CrossRef] [PubMed]
8. Grigoriev, P.D. Angular dependence of the Fermi surface cross-section area and magnetoresistance in quasi-two-dimensional

metals. Phys. Rev. B 2010, 81, 205122. [CrossRef]
9. Grigoriev, P.D. Weakly incoherent regime of interlayer conductivity in a magnetic field. Phys. Rev. B 2011, 83, 245129. [CrossRef]
10. Grigoriev, P.D.; Kartsovnik, M.V.; Biberacher, W. Magnetic-field-induced dimensional crossover in the organic metal α-(BEDT-

TTF)2KHg(SCN)4. Phys. Rev. B 2012, 86, 165125. [CrossRef]
11. Grigoriev, P.D. Longitudinal interlayer magnetoresistance in strongly anisotropic quasi-two-dimensional metals. Phys. Rev. B

2013, 88, 054415. [CrossRef]
12. Grigoriev, P.D.; Mogilyuk, T.I. Angular dependence of magnetoresistance in strongly anisotropic quasi-two-dimensional metals:

Influence of Landau-level shape. Phys. Rev. B 2014, 90, 115138. [CrossRef]
13. Grigoriev, P.D.; Mogilyuk, T.I. False spin zeros in the angular dependence of magnetic quantum oscillations in quasi-two-

dimensional metals. Phys. Rev. B 2017, 95, 195130. [CrossRef]
14. Kartsovnik, M.V.; Grigoriev, P.D.; Biberacher, W.; Kushch, N.D.; Wyder, P. Slow oscillations of magnetoresistance in quasi-two-

dimensional metals. Phys. Rev. Lett. 2002, 89, 126802. [CrossRef] [PubMed]
15. Grigoriev, P.D. Theory of the Shubnikov–de Haas effect in quasi-two-dimensional metals. Phys. Rev. B 2003, 67, 144401. [CrossRef]
16. Grigoriev, P.D.; Ziman, T. Magnetic oscillations measure interlayer coupling in cuprate superconductors. Phys. Rev. B 2017,

96, 165110. [CrossRef]
17. Mogilyuk, T.I.; Grigoriev, P.D. Magnetic oscillations of in-plane conductivity in quasi-two-dimensional metals. Phys. Rev. B 2018,

98, 045118. [CrossRef]
18. Grigoriev, P.D.; Kartsovnik, M.V.; Biberacher, W.; Kushch, N.D.; Wyder, P. Anomalous beating phase of the oscillating interlayer

magnetoresistance in layered metals. Phys. Rev. B 2002, 65, 060403. [CrossRef]
19. Schiller, M.; Schmidt, W.; Balthes, E.; Schweitzer, D.; Koo, H.-J.; Whangbo, M.H.; Heinen, I.; Klausa, T.; Kircher, P.; Strunz, W.

Investigations of the Fermi surface of a new organic metal: (BEDT-TTF)4[Ni(dto)2]. Europhys. Lett. 2000, 51, 82. [CrossRef]
20. Weiss, H.; Kartsovnik, M.V.; Biberacher, W.; Balthes, E.; Jansen, A.G.M.; Kushch, N.D. Angle-dependent magnetoquantum

oscillations in κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1999, 60, R16259–R16262. [CrossRef]
21. Kang, W.; Jo, Y.; Noh, D.-Y.; Son, K.-I.; Chung, O.-H. Appearance of beating in the Shubnikov–de Haas oscillations of the organic

conductor κ-(BEDT-TTF)2Cu(NCS)2 under pressure. J. Phys. Soc. Jpn. 2010, 79, 044716. [CrossRef]
22. Krstovska, D. Quantum oscillations of the interlayer magnetothermopower in a Q2D organic conductor. J. Phys. Soc. Jpn. 2011,

80, 044701. [CrossRef]
23. Audouard, A.; Fortin, J.Y.; Vignolles, D.; Lyubovskii, R.B.; Drigo, L.; Shilov, G.V.; Duc, F.; Zhilyaeva, E.I.; Lyubovskaya, R.N.;

Canadell, E. Non-Lifshitz–Kosevich field- and temperature-dependent amplitude of quantum oscillations in the quasi-two
dimensional metal θ-(ET)4ZnBr4(C6H4Cl2). J. Phys. Condens. Matter 2015, 27, 315601. [CrossRef]

24. Arnold, F.; Naumann, M.; Rosner, H.; Kikugawa, N.; Graf, D.; Balicas, L.; Terashima, T.; Uji, S.; Takatsu, H.; Khim, S.; et al. Fermi
surface of PtCoO2 from quantum oscillations and electronic structure calculations. Phys. Rev. B 2020, 101, 195101. [CrossRef]

25. Oberbauer, S.; Erkenov, S.; Biberacher, W.; Kushch, N.D.; Gross, R.; Kartsovnik, M.V. Coherent heavy charge carriers in an organic
conductor near the bandwidth-controlled Mott transition. Phys. Rev. B 2023, 107, 075139. [CrossRef]

26. Wang, J.-F.; Dong, Q.-X.; Huang, Y.-F.; Wang, Z.-S.; Guo, Z.-P.; Wang, Z.-J.; Ren, Z.-A.; Li, G.; Sun, P.-J.; Dai, X.; et al. Quantum
oscillations in the magnetic Weyl semimetal NdAlSi arising from strong Weyl fermion–4 f electron exchange interaction. Phys.
Rev. B 2023, 108, 024423. [CrossRef]

27. Xu, S.; Bao, C.; Guo, P.-J.; Wang, Y.-Y.; Yu, Q.-H.; Sun, L.-L.; Su, Y.; Liu, K.; Lu, Z.-Y.; Zhou, S.; et al. Interlayer quantum transport
in Dirac semimetal BaGa2. Nat. Commun. 2020, 11, 2370. [CrossRef]

28. Hornung, J.; Mishra, S.; Stirnat, J.; Raba, M.; Schwarze, B.V.; Klotz, J.; Aoki, D.; Wosnitza, J.; Helm, T.; Sheikin, I. Anomalous
quantum oscillations of CeCoIn5 in high magnetic fields. Phys. Rev. B 2021, 104, 235155. [CrossRef]

29. Zeng, X.-Y.; Dai, Z.-Y.; Xu, S.; Zhao, N.-N.; Wang, H.; Wang, X.-Y.; Lin, J.-F.; Gong, J.; Ma, X.-P.; Han, K.; et al. Quantum oscillations
and weak anisotropic resistivity in the chiral fermion semimetal PdGa. Phys. Rev. B 2022, 106, 205120. [CrossRef]

http://doi.org/10.1017/CBO9780511897870
http://dx.doi.org/10.1143/JPSJ.59.3069
http://dx.doi.org/10.1103/PhysRevB.60.7998
http://dx.doi.org/10.1021/cr0306891
http://www.ncbi.nlm.nih.gov/pubmed/15535667
http://dx.doi.org/10.1007/BFb0048479
http://dx.doi.org/10.1103/PhysRevLett.84.2662
http://www.ncbi.nlm.nih.gov/pubmed/11017294
http://dx.doi.org/10.1103/PhysRevB.81.205122
http://dx.doi.org/10.1103/PhysRevB.83.245129
http://dx.doi.org/10.1103/PhysRevB.86.165125
http://dx.doi.org/10.1103/PhysRevB.88.054415
http://dx.doi.org/10.1103/PhysRevB.90.115138
http://dx.doi.org/10.1103/PhysRevB.95.195130
http://dx.doi.org/10.1103/PhysRevLett.89.126802
http://www.ncbi.nlm.nih.gov/pubmed/12225113
http://dx.doi.org/10.1103/PhysRevB.67.144401
http://dx.doi.org/10.1103/PhysRevB.96.165110
http://dx.doi.org/10.1103/PhysRevB.98.045118
http://dx.doi.org/10.1103/PhysRevB.65.060403
http://dx.doi.org/10.1209/epl/i2000-00329-2
http://dx.doi.org/10.1103/PhysRevB.60.R16259
http://dx.doi.org/10.1143/JPSJ.79.044716
http://dx.doi.org/10.1143/JPSJ.80.044701
http://dx.doi.org/10.1088/0953-8984/27/31/315601
http://dx.doi.org/10.1103/PhysRevB.101.195101
http://dx.doi.org/10.1103/PhysRevB.107.075139
http://dx.doi.org/10.1103/PhysRevB.108.024423
http://dx.doi.org/10.1038/s41467-020-15854-0
http://dx.doi.org/10.1103/PhysRevB.104.235155
http://dx.doi.org/10.1103/PhysRevB.106.205120


Physics 2024, 6 1011

30. Luo, X.; Ma, X.; Zhang, J.; Xing, Y.; Shen, A.; Ye, H.; Shen, S.; Peng, J.; Cao, S.; Dong, S.; et al. Investigation of de Haas–van Alphen
and Shubnikov–de Haas quantum oscillations in PrTe3. Phys. Rev. B 2024, 109, 035121. [CrossRef]

31. Daschner, M.; Grosche, F.M.; Liu, C.; Gudac, B.; Novak, M.; Kokanović, I. Probing the Fermi surface with quantum oscillation
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