Entangled Probability Distributions for Center-of-Mass Tomography
Abstract
:1. Introduction
2. Entangled Probability Distributions
3. Examples of Entangled Probability Distribution
4. Dynamics of Tomograms for Hamiltonians Quadratic in the Position and Momentum Operators
5. Cluster Tomography
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung; Springer: Berlin/Heidelberg, Germany, 1933. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 385, 437–490. [Google Scholar] [CrossRef]
- Landau, L. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441, English translation: The damping problem of wave mechanics. In Collected papers of L.D. Landau; Ter Haar, Ed.; Pergamon Press Ltd./Gordon and Breach, Science Publishers, Inc.: New York, NY, USA, 1965; pp. 8–18. [Google Scholar] [CrossRef]
- von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 1927, 1927, 245–272. Available online: http://eudml.org/doc/59230 (accessed on 28 July 2024).
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics. Non-Relativistic Theory; Pergamon Press Ltd./Elsevier Ltd.: Oxford, UK, 1981. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press/Oxford University Press: Oxford, UK, 2008; Available online: https://archive.org/details/principlesofquan0000unse_i1n0/ (accessed on 28 July 2024).
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Schleich, W.P. Quantum Optics in Phase Space; WILEY-VCH Verlag Berlin GmbH: Berlin, Germany, 2001. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar] [CrossRef]
- Kano, Y. A new phase-space distribution function in the statistical theory of the electromagnetic field. J. Math. Phys. 1965, 6, 1913–1915. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Kirkwood, J.G. Quantum statistics of almost classical assemblies. Phys. Rev. 1933, 44, 31–37. [Google Scholar] [CrossRef]
- Margenau, H.; Hill, R.N. Correlation between measurements in quantum theory. Prog. Theor. Phys. 1961, 26, 722–738. [Google Scholar] [CrossRef]
- Cohen, L. Generalized phase-space distribution functions. J. Math. Phys. 1966, 7, 781–786. [Google Scholar] [CrossRef]
- Cohen, L. Time-frequency distributions—A review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Robertson, H. A general formulation of the uncertainty principle and its classical interpretation. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Schrödinger, E. Zum Heisenbergschen Unschärfeprinzip. Sitzungsber. Preuss. Akad. Wiss. Phys. Mmath. Kl. 1930, 19, 296–303, English translation: Schrödinger, E. About Heisenberg uncertainty relation. arXiv 1999, preprint quant-ph/9903100. [Google Scholar] [CrossRef]
- Bertrand, J.; Bertrand, P. A tomographic approach to Wigner’s function. Found. Phys. 1987, 17, 397–405. [Google Scholar] [CrossRef]
- Vogel, K.; Risken, H. Quasiprobability distributions in dispersive optical bistability. Phys. Rev. A 1989, 39, 4675–4683. [Google Scholar] [CrossRef] [PubMed]
- Smithey, D.T.; Beck, M.; Raymer, M.G.; Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 1993, 70, 1244–1247. [Google Scholar] [CrossRef]
- Guerra, F.; Morato, L. Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 1983, 27, 1774–1786. [Google Scholar] [CrossRef]
- Ballentine, L.E. Quantum Mechanics: A Modern Development; World Scientific Publishing Company: Singapore, 2014. [Google Scholar] [CrossRef]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef]
- Ibort, A.; Man’ko, V.I.; Marmo, G.; Simoni, A.; Ventriglia, F. An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 2009, 79, 065013. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Positive distribution description for spin states. Phys. Lett. A 1997, 229, 335–339. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative commutation relations, star products and tomography. J. Phys. A Math. Gen. 2002, 35, 699. [Google Scholar] [CrossRef]
- Arkhipov, A.S.; Lozovik, Y.E.; Man’ko, V.I. Tomography for several particles with one random variable. J. Russ. Laser Res. 2003, 24, 237–255. [Google Scholar] [CrossRef]
- Arkhipov, A.S.; Man’ko, V.I. Quantum transitions in the center-of-mass tomographic probability representation. Phys. Rev. A 2005, 71, 012101. [Google Scholar] [CrossRef]
- Dudinets, I.V.; Man’ko, V.I. Center-of-mass tomography and Wigner function for multimode photon states. Int. J. Theor. Phys. 2018, 57, 1631–1644. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Quantum oscillator at temperature T and the evolution of a charged-particle state in the electric field in the probability representation of quantum mechanics. Entropy 2023, 25, 213. [Google Scholar] [CrossRef] [PubMed]
- D’Ariano, G.M.; Paris, M.G.; Sacchi, M.F. Quantum tomography. Adv. Imag. Electr. Phys. 2003, 128, 205–308. [Google Scholar] [CrossRef]
- Filinov, V.S.; Schubert, G.; Levashov, P.; Bonitz, M.; Fehske, H.; Fortov, V.E.; Filinov, A.V. Center-of-mass tomographic approach to quantum dynamics. Phys. Lett. A 2008, 372, 5064–5070. [Google Scholar] [CrossRef]
- Lvovsky, A.I.; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009, 81, 299–332. [Google Scholar] [CrossRef]
- Bazrafkan, M.; Nahvifard, E. Stationary perturbation theory in the probability representation of quantum mechanics. J. Russ. Laser Res. 2009, 4, 392–403. [Google Scholar] [CrossRef]
- Toninelli, E.; Ndagano, B.; Vallös, A.; Sephton, B.; Nape, I.; Ambrosio, A.; Capasso, F.; Padgett, M.J.; Forbes, A. Concepts in quantum state tomography and classical implementation with intense light: A tutorial. Adv. Opt. Photon. 2019, 11, 67–134. [Google Scholar] [CrossRef]
- Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge Studies in Modern Optics; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Carbonaro, P.; Compagno, G.; Persico, F. Canonical dressing of atoms by intense radiation fields. Phys. Lett. A 1979, 73, 97–99. [Google Scholar] [CrossRef]
- Benivegna, G.; Messina, A. New quantum effects in the dynamics of a two-mode field coupled to a two-level atom. J. Mod. Opt. 1994, 41, 907–925. [Google Scholar] [CrossRef]
- Cirone, M.; Compagno, G.; Palma, G.M.; Passante, R.; Persico, F. Casimir–Polder potentials as entanglement probe. EPL (Europhys. Lett.) 2007, 78, 30003. [Google Scholar] [CrossRef]
- Migliore, R.; Yuasa, K.; Nakazato, H.; Messina, A. Generation of multipartite entangled states in Josephson architectures. Phys. Rev. B 2006, 74, 104503. [Google Scholar] [CrossRef]
- Grimaudo, R.; Vitanov, N.V.; Magalhães de Castro, A.S.; Valenti, D.; Messina, A. Greenberger–Horne–Zeilinger-state generation in qubit-chains via a single Landau–Majorana–Stückelberg–Zener π/2-pulse. Fortschr. Phys. 2022, 70, 2200010. [Google Scholar] [CrossRef]
- Stornaiolo, C. Emergent classical universes from initial quantum states in a tomographical description. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050167. [Google Scholar] [CrossRef]
- Berra-Montiel, J.; Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 2022, 137, 283. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, O.V. Dynamics of system states in the probability representation of quantum mechanics. Entropy 2023, 25, 785. [Google Scholar] [CrossRef]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; Edizioni della Normale: Pisa, Italy; Springer: Basel, Switzerland, 2011. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1956; Available online: https://altexploit.wordpress.com/wp-content/uploads/2017/07/a-n-kolmogorov-foundations-of-the-theory-of-probability-chelsea-pub-co-1960.pdf (accessed on 28 July 2024).
- Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett. 2001, 87, 077901. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable induced. Phys. Rev. Lett. 2004, 92, 060402. [Google Scholar] [CrossRef] [PubMed]
- Basieva, I.; Khrennikov, A. Conditional probability framework for entanglement and its decoupling from tensor product structure. J. Phys. A Math. Theor. 2022, 55, 395302. [Google Scholar] [CrossRef]
- Khrennikov, A.; Basieva, I. Entanglement of observables: Quantum conditional probability approach. Found. Phys. 2023, 53, 84. [Google Scholar] [CrossRef]
- Khrennikov, A.; Alodjants, A. Classical (local and contextual) probability model for Bohm–Bell type experiments: No-signaling as independence of random variables. Entropy 2019, 21, 157. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A. Roots of quantum computing supremacy: Superposition, entanglement, or complementarity? Eur. Phys. J. Spec. Top. 2021, 230, 1053–1057. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Vilela Mendes, R. Noncommutative time-frequency tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Tomographic entropic inequalities in the probability representation of quantum mechanics. AIP Conf. Proc. 2012, 1488, 110–121. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Invariants and the Evolution of Nonstationary Quantum Systems; Nova Science Publishers, Inc.: Commack, NY, USA, 1989. [Google Scholar]
- Mechler, M.; Man’ko, M.A.; Man’ko, V.I.; Adam, P. Even and odd cat states of two and three qubits in the probability representation of quantum mechanics. Entropy 2024, 26, 485. [Google Scholar] [CrossRef]
- Quantum Research News. Researchers Unveil Probability Representation of Quantum States in Cat States Study. Quantum News, 10 June 2024. Available online: https://quantumzeitgeist.com/researchers-unveil-probability-representation-of-quantum-states-in-cat-states (accessed on 28 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudinets, I.V.; Man’ko, M.A.; Man’ko, V.I. Entangled Probability Distributions for Center-of-Mass Tomography. Physics 2024, 6, 1035-1045. https://doi.org/10.3390/physics6030064
Dudinets IV, Man’ko MA, Man’ko VI. Entangled Probability Distributions for Center-of-Mass Tomography. Physics. 2024; 6(3):1035-1045. https://doi.org/10.3390/physics6030064
Chicago/Turabian StyleDudinets, Ivan V., Margarita A. Man’ko, and Vladimir I. Man’ko. 2024. "Entangled Probability Distributions for Center-of-Mass Tomography" Physics 6, no. 3: 1035-1045. https://doi.org/10.3390/physics6030064
APA StyleDudinets, I. V., Man’ko, M. A., & Man’ko, V. I. (2024). Entangled Probability Distributions for Center-of-Mass Tomography. Physics, 6(3), 1035-1045. https://doi.org/10.3390/physics6030064