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Abstract: We review the formalism of center-of-mass tomograms, which allows us to describe
quantum states in terms of probability distribution functions. We introduce the concept of separable
and entangled probability distributions for center-of-mass tomography. We obtain the time evolution
of center-of-mass tomograms of entangled states of the inverted oscillator.
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1. Introduction

Conventional probability theory [1] provides the basis to study the properties of
quantum systems. The formulation of quantum mechanics is based on the Schrödinger
equation [2]. The states of quantum systems are commonly described by the complex wave
function or the density operator [2–6]. An alternative way to represent the states is given by
quasi-probability distributions like the Wigner function [7,8], the Husimi Q-function [9,10],
and the Glauber–Sudarshan P-function [11,12]. There exist other quasi-probability func-
tions as well [13–16]. Quasi-probability distributions are not fair probabilities: they are
functions on the phase space whose arguments, position, and momentum are not simulta-
neously measurable due to the uncertainty relations [17–19].

The problem of constructing the probability representation of quantum states has
been discussed for many decades, for example, with measuring the quantum system states
expressed in terms of the Wigner function. It was found [20,21] that the Wigner function
can be expressed in terms of the probability distribution of position, measured using the
optical tomography method [22]. Also, one can find arguments based on the statistical
interpretation of quantum physics, which are closely related to the probability description
of quantum states presented in the study [23]. An analogous connection with the statistical
approach to quantum mechanics is available in a textbook by Leslie E. Ballentine; see [24]
and references therein.

In addition, the quasi-probability functions can take negative or even complex val-
ues [8]. The probability representation of quantum mechanics [25,26] provides the descrip-
tion of the states of quantum systems in terms of nonnegative probability distributions
called tomograms, both for discrete variables [27] and continuous variables [25,26]. The to-
mograms are related to the density operator or quasi-probability distributions by means
of invertible integral transforms. For example, the Wigner function and tomogram are
connected by the Radon transform [26]. All invertible maps of density operators and ob-
servables onto functions are described by the star-product formalism [28]. Special cases of
such maps include sympletic tomography [25,26] and center-of-mass tomography [29,30].
Examples of center-of-mass tomograms [29,31] and symplectic tomograms for states of a
harmonic oscillator like Fock states and coherent or Schrödinger cat states are presented in
Refs. [26,32]. The tomographic methods and their applications to analyze quantum systems
were considered in Refs. [33–37]. Some other aspects of quantum systems in the context of
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interactions with light and external fields [38–41] and the entanglement formation [42,43]
were discussed.

The tomographic picture allows one to describe the states of both quantum and classi-
cal systems by tomograms [25,26]; it finds application in cosmology [44,45]. The difference
between quantum systems and classical systems consists in the possibility to be in an
entangled state. This feature leads to the concept of entangled probability distributions [46],
which has not been studied in classical probability theory. Classical probability theory is
described, for example, in Refs. [47,48]. Some new aspects of entanglement phenomena
are discussed in recent papers [49–54]. In this paper, we introduce the notion of entangled
probability distributions for center-of-mass tomography and study them in view of the
probability representation of quantum mechanics. We consider examples of center-of-mass
tomograms of entangled states of harmonic and inverted oscillators. We also determine the
time evolution of these states using the method of integrals of motion developed in Ref. [32].
The idea of the method is that, for systems like harmonic oscillators or inverted oscillators,
the position and momentum operators in the Heisenberg representation are expressed
in terms of integrals of motion and are linear in the position and momentum operators.
This allows one to obtain the evolution of tomograms by corresponding time-dependent
transforms of the parameters of initial tomograms. Also, we consider examples of cluster
tomograms [31]—a generalization of center-of-mass tomography.

In the current study, we construct new conditional probability distribution functions
and entangled probability distribution functions, which describe quantum states of quan-
tum systems, and to study their properties. Earlier, these probability distributions were not
considered, since classical and quantum systems provide different randomness phenomena
such as, for example, the existence of the position-and-momentum uncertainty relations for
quantum systems [17–19].

This paper is organized as follows. In Section 2, we review the probability representa-
tion of quantum states, paying special attention to center-of-mass tomography. In Section 3,
we consider examples of center-of-mass tomograms for entangled states and their connec-
tion to symplectic tomograms. In Section 4, we obtain the dynamics of tomograms for
harmonic and inverted oscillators. Section 5 is devoted to cluster tomography. Summary
and prospects are given in Section 6.

2. Entangled Probability Distributions

In the probability representation of a quantum state, such as a one-dimensional os-
cillator, the state is determined by the tomogram, which is the conditional probability
distribution, w(X|µ, ν), of one random variable. The wave function, ψ(X), introduced in
quantum mechanics can be mapped onto the probability distribution w(X|µ, ν) of random
variable X, which is the position measured in an ensemble of reference frames in the os-
cillator’s phase space, where µ and ν determine the axes in the phase space [55] (in what
follows, we consider Planck’s constant h̄ = 1),

w(X|µ, ν) =
1

2 π |ν|

∣∣∣∣∫ ψ(Y) exp
(

iµ
2 ν

Y2 − i
ν

XY
)

dY
∣∣∣∣2. (1)

This function is the conditional probability distribution of random position X, mea-
sured in the set of reference frames in the phase space. In these frames, the axes of the
position and momentum were first rescaled, in view of the transformations q′ = sq and
p′ = s−1 p, and then they were rotated as q′′ = cos Θ q′ + sin Θ p′. It turns out that the
conditional probability distribution function w(X|µ, ν) determines the density matrix,
ρ(x, x′) = ψ(x)ψ∗(x′) [3], of the pure state with the wave function ψ(x). The conditional
probability distribution function contains the same information on the oscillator state as the
wave function does. The conditional probability distribution is an infinite set of probability
distributions of one random variable X used in conventional probability theory [51,52].

We consider a quantum system with two degrees of freedom. In center-of-mass
tomography, the state of a quantum system is described by the center-of-mass tomogram.
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The center-of-mass tomogram of a quantum state with the density operator, ρ̂, is defined as
follows [29]:

w(X|µ1, ν1, µ2, µ2) = Tr(ρ̂ δ(X − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)), (2)

where q̂j and p̂j are the position and momentum operators for each degree of freedom.
The name “center-of-mass tomogram” for function (2) reflects a formal coincidence of the
linear form X = µ1q1 + ν1 p1 + µ2q2 + ν2 p2 in the argument of Dirac δ-function with the
center-of-mass expression. It is so if one considers parameters µ1, ν1, µ2, and ν2 as masses
of four particles and parameters q1, p1, q2, and p2 as positions of the particles. Then, the
parameter X coincides with the center-of-mass system, if the sum of the four masses is
equal to 1.

The center-of-mass tomogram is a nonnegative probability distribution of the random
variable X associated with the center-of-mass position of the system in the phase space in
rotated and scaled reference frames, which are determined by parameters µ1, ν1, µ2, and ν2.
Note that the tomogram effectively operates with four variables, due to the homogeneity
property of the Dirac delta-function. The density operator of a state can be reconstructed
from the center-of-mass tomogram; it reads

ρ̂ =
1

4π2

∫
w(X|µ1, ν1, µ2, µ2) exp(i(X − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2))

× dX dµ1 dν1 dµ2 dν2. (3)

The center-of-mass tomogram can be treated as the conditional probability distribu-
tion [31], where µ1, ν1, µ2, and ν2 are parameters describing the condition of measuring X.
The treatment follows from the “no-signalling” property [56],∫

dX w(X|µ1, ν1, µ2, ν2) = 1, (4)

which holds for parameters µ1, ν1, µ2, and ν2. In the case of pure states, the center-of-mass
tomogram is given in Ref. [29]; it is

w(X|µ1, µ2, ν1, ν2) =
∫

dY1dY2
δ(X − Y1 − Y2)

4π2|ν1ν2|

×
∣∣∣∣∫ dq1dq2 ψ(q1, q2) exp

(
iµ1

2ν1
q2

1 +
iµ2

2ν2
q2

2 −
iY1

ν1
q1 −

iY2

ν2
q2

)∣∣∣∣2. (5)

There exist other probability distributions that can be identified with quantum states;
for instance, the symplectic tomogram. The symplectic tomogram is the nonnegative
probability distribution of random variables X1 and X2 associated with the position of
the subsystem in the phase space in rotated and scaled reference frames determined by
parameters µ1, ν1, µ2, and ν2; it reads

ws(X1, X2|µ1, µ2, ν1, ν2) = Tr(ρ̂ δ(X1 − µ1q̂1 − ν1 p̂1) δ(X2 − µ2q̂2 − ν2 p̂2)). (6)

The inverse transform is

ρ̂ =
1

4π2

∫
ws(X1, X2|µ1, µ2, ν1, ν2) exp(i(X1 + X2 − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2))

× dX1 dX2 dµ1 dν1 dµ2 dν2. (7)

The center-of-mass tomogram and symplectic tomogram are related as follows:

ws(X1, X2|µ1, µ2, ν1, ν2) =
1

4π2

∫
w(X|k1µ1, k2µ2, k1ν1, k2ν2)ei(X−k1X1−k2X2) dk1 dk2 dX. (8)
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The state of the first subsystem can be found in terms of the center-of-mass tomogram
of the whole system, in view of the formula [31]

w1(X1|µ1, ν1) = Tr(ρ̂1 δ(X1 − µ1q̂1 − ν1 p̂1)) =
1

2π

∫
w(X|kµ1, 0, kν1, 0)ei(X−kX1) dk dX, (9)

where ρ̂1 = Tr2 ρ̂ is the density operator of the first subsystem, obtained by taking the
partial trace of the density operator ρ̂ of the whole system over the second subsystem.

Let us introduce the concept of separable and entangled probability distributions
for center-of-mass tomography. The symplectic tomogram of a separable state of a sys-
tem, which consists of two subsystems, is represented by the convex sum of symplectic
tomograms of subsystems [46],

ws(X1, X2|µ1, µ2, ν1, ν2) = ∑
k

pk w(k)
1 (X1|µ1, ν1)w(k)

2 (X2|µ2, ν2), (10)

where pk are probabilities, i.e., pk ≥ 0 and ∑k pk = 1. The probability distribution
ws(X1, X2|µ1, µ2, ν1, ν2) is called the entangled probability distribution if it cannot be pre-
sented as the convex sum of the form (10) [46]. For the center-of-mass tomogram, the
relation between tomograms of the system and its subsystems for a separable state follows
from (10); it has the form

w(X|µ1, µ2, ν1, ν2) = ∑
k

pk

∫
w(k)

1 (X1|µ1, ν1)w(k)
2 (X − X1|µ2, ν2) dX1. (11)

The probability distribution w(X|µ1, µ2, ν1, ν2) is said to be the entangled probability
distribution if it cannot be cast in the form (11). The generalization of formula (11) to the
case of systems with many degrees of freedom is given in Appendix A.

In Section 3 just below, we consider examples of separable and entangled probability
distributions for center-of-mass tomography.

3. Examples of Entangled Probability Distribution

Let us consider an entangled state of a two-dimensional oscillator, which is a superposi-
tion of the ground state ψ0(q) = π−1/4e−q2/2 and the first excited state
ψ1(q) = π−1/4

√
2 q e−q2/2 of the form

ψent(q1, q2) =
1√
2
(ψ0(q1)ψ1(q2) + ψ1(q1)ψ0(q2)) =

q1 + q2√
π

exp

(
−

q2
1

2
−

q2
2

2

)
. (12)

The center-of-mass tomogram of this state follows from the general relation (5); it reads

went(X|µ1, µ2, ν1, ν2) =
e−X2/σ

√
πσ

(
1
2
− µ1µ2 + ν1ν2

σ
+

X2

σ

(
1 +

2(µ1µ2 + ν1ν2)

σ

))
, (13)

where σ = µ2
1 + µ2

2 + ν2
1 + ν2

2 . We call this probability distribution the entangled probability
distribution, since it determines the entangled state. To compare it with the center-of-mass
tomogram of a separable state, we consider the following wave function:

ψsep(q1, q2) = ψ0(q1)ψ1(q2) =

√
2q2√
π

exp

(
−

q2
1

2
−

q2
2

2

)
. (14)

The corresponding tomogram is given by

wsep(X|µ1, µ2, ν1, ν2) =
e−X2/σ

√
πσ3

(
µ2

1 + ν2
1 +

2X2

σ

(
µ2

2 + ν2
2

))
. (15)
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Tomograms of the separable and entangled states of the first susbsystem considered
above are

wsep
1 (X1|µ1, ν1) =

1√
π(µ2

1 + ν2
1)

exp

(
−

X2
1

µ2
1 + ν2

1

)
, (16)

went
1 (X1|µ1, ν1) =

1√
π(µ2

1 + ν2
1)

(
1
2
+

X2
1

µ2
1 + ν2

1

)
exp

(
−

X2
1

µ2
1 + ν2

1

)
. (17)

Symplectic tomograms of the separable and entangled states read

ws
sep(X1, X2|µ1, µ2, ν1, ν2) =

2X2
2

π(µ2
1 + ν2

1)
1/2(µ2

2 + ν2
2)

3/2
exp

(
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

)
, (18)

ws
ent(X1, X2|µ1, µ2, ν1, ν2) =

1
π(µ2

1 + ν2
1)

1/2(µ2
2 + ν2

2)
1/2

×
(

X2
1

µ2
1 + ν2

1
+

X2
2

µ2
2 + ν2

2
+

2X1X2(µ1µ2 + ν1ν2)(
µ2

1 + ν2
1
)(

µ2
2 + ν2

2
) ) exp

(
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

)
. (19)

4. Dynamics of Tomograms for Hamiltonians Quadratic in the Position and
Momentum Operators

In this Section, we consider the evolution of the center-of-mass tomogram of systems
with Hamiltonians, which are quadratic in the position and momentum operators. The in-
tegrals of motion of such systems are linear in the position and momentum operators [57].
This allows one to obtain the time dependence of the center-of-mass tomogram describing
the quantum state. Indeed, the density operator evolves as

ρ̂(t) = û(t)ρ̂(0)û†(t), (20)

where û(t) = exp
(
−itĤ

)
is the evolution operator. The center-of-mass tomogram corre-

sponding to the state ρ̂(t) is expressed in terms of the position and momentum operators,
q̂H(t) = û†(t) q̂ û(t) and p̂H(t) = û†(t) p̂ û(t); in the Heisenberg representation, it is

w(X|µ1, µ2, ν1, ν2; t) = Tr(ρ̂(t) δ(X − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)) =

Tr
(

ρ̂(0) δ
(

X − µ1q̂H
1 (t)− ν1 p̂H

1 (t)− µ2q̂H
2 (t)− ν2 p̂H

2 (t)
))

. (21)

As the first example, let us consider a two-dimensional harmonic oscillator,

Ĥ =
p̂2

1
2

+
q̂2

1
2
+

p̂2
2

2
+

q̂2
2

2
. (22)

The position and momentum operators in the Heisenberg representation have the
form [46]

q̂H
1 (t) = q̂1 cos t + p̂1 sin t, q̂H

2 (t) = q̂2 cos t + p̂2 sin t,

p̂H
1 (t) = −q̂1 sin t + p̂1 cos t, p̂H

2 (t) = −q̂2 sin t + p̂2 cos t. (23)

The center-of-mass tomogram can be rewritten as

w(X|µ1, µ2, ν1, ν2; t) = w(X|µH
1 (t), µH

2 (t), νH
1 (t), νH

2 (t), t = 0), (24)
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where the time-dependent parameters are [46]

µH
1 (t) = µ1 cos t − ν1 sin t, µH

2 (t) = µ2 cos t − ν2 sin t,

νH
1 (t) = µ1 sin t + ν1 cos t, νH

2 (t) = µ2 sin t + ν2 cos t. (25)

In this way, the evolution of the center-of-mass tomogram for quadratic Hamiltonians
can be obtained by the corresponding time-dependent transformation of the parameters of
the initial tomogram. If the initial state of the system is the entangled state (12), then after
the evolution, the state is described by

went(X|µ1, µ2, ν1, ν2; t) =
e−X2/σ

√
πσ

×
(

1
2
−

µH
1 (t)µH

2 (t) + νH
1 (t)νH

2 (t)
σ

+
X2

σ

(
1 +

2(µH
1 (t)µH

2 (t) + νH
1 (t)νH

2 (t))
σ

))
. (26)

The other example is a two-dimensional inverted oscillator with the Hamiltonian

Ĥ =
p̂2

1
2

−
q̂2

1
2
+

p̂2
2

2
−

q̂2
2

2
. (27)

The center-of-mass tomogram of this system, which is initially in the entangled state,
has the form (26), where the parameters are given by [46]

µH
1 (t) = µ1 cosh t + ν1 sinh t, µH

2 (t) = µ2 cosh t + ν2 cosh t,

νH
1 (t) = µ1 sinh t + ν1 cosh t, νH

2 (t) = µ2 sinh t + ν2 cosh t. (28)

5. Cluster Tomography

States of quantum systems with several degrees of freedom can be described by cluster
tomograms. The cluster tomogram for a system with three degrees of freedom is defined as
follows [31]:

wcl(X, X3|µ1, µ2, µ3, ν1, ν2, ν3) = Tr(ρ̂ δ(X − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)

× δ(X3 − µ3q̂3 − ν3 p̂3)). (29)

It is a conditional probability distribution of variables X and X3 related to the center-
of-mass positions of the first and second subsystems with two and one degrees of freedom,
respectively. The positions are measured in rotated and scaled reference frames determined
by parameters µ1, ν1, µ2, ν2, µ3, and ν3. The cluster tomogram for a pure state with the
wave function ψ reads

wcl(X, X3|µ1, µ2, µ3, ν1, ν2, ν3) =
∫

dY1dY2
δ(X − Y1 − Y2)

4π2|ν1ν2|
×∣∣∣∣∫ dq1 dq2 dq3ψ(q1, q2, q3) exp

(
iµ1

2ν1
q2

1 +
iµ2

2ν2
q2

2 +
iµ3

2ν3
q2

3 −
iY1

ν1
q1 −

iY2

ν2
q2 −

iX3

ν3
q3

)∣∣∣∣2. (30)

Now, we calculate the cluster tomogram of the W state, which is an entangled state of
a three-dimensional oscillator of the form

ψW(q1, q2, q3) =
1√
3

(
ψ0(q1)ψ0(q2)ψ1(q3) + ψ0(q1)ψ1(q2)ψ0(q3)

+ψ1(q1)ψ0(q2)ψ0(q3)
)

. (31)

The cluster tomogram of the state W reads
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wcl
W(X, X3|µ1, µ2, µ3, ν1, ν2, ν3) =

2
3π

e−
X2

3
σ3

− X2
σ12

√
σ3 σ12

(
X2

3
σ3

+ X2 (µ1 + µ2)
2 + (ν1 + ν2)

2

σ2
12

+2 X X3
µ1µ3 + ν1ν3 + µ2µ3 + ν2ν3

σ3 σ12
+

(µ1 − µ2)
2 + (ν1 − ν2)

2

2 σ12

)
, (32)

where σ3 = µ2
3 + ν2

3 and σ12 = µ2
1 + ν2

1 + µ2
2 + ν2

2 . The tomogram of the state W satisfies the
normalization condition∫

wcl
W(X, X3|µ1, µ2, µ3, ν1, ν2, ν3) dX dX3 = 1. (33)

6. Conclusions

To conclude, let us point out the main results of this study.
We considered the tomographic picture of quantum mechanics, where the states of

quantum systems are described by tomograms. The tomograms are fair probability distribu-
tion functions, in contrast to quasi-probability functions like the Wigner function. This fact
allows one to transfer some properties of quantum systems to classical probability theory.
In this paper, we focused on center-of-mass tomographic probability distribution [30].
We introduced entangled probability distributions for center-of-mass tomography; they
correspond to entangled states of quantum systems. Such probability distributions have not
been discussed in classical probability theory. We considered examples of two-dimensional
usual harmonic and inverted oscillators. Also, we studied symplectic and cluster tomo-
graphic probability distributions [31] for the oscillator states. We used the method of
integrals of motion [32] to determine the time evolution of tomograms.

We constructed new kinds of probability distribution functions, which earlier had
not been known in the probability theory describing the classical randomness phenomena.
One of such new probability distributions is the center-of-mass probability distribution,
introduced for the description of states of quantum harmonic oscillators. The other new
probability distribution is the cluster tomographic probability distribution. The introduced
probability distribution functions have a specific property. They describe systems with
many subsystems. For center-of-mass tomography, only one variable is enough; however,
for cluster tomography, few random variables are needed. Also, these probability distribu-
tions are able to describe the quantum phenomenon of entanglement, which is not available
for classical systems. In view of these circumstances, we call these probability distributions
the entangled probability distributions. Such entangled probability distributions had not
been known in classical probability theory.

The approach to finding and studying entangled probability distributions is based
on constructing probability representations of quantum states. This involves using wave
functions with the property that linear superpositions of these functions belong to a set
that determines the probability distributions. In classical mechanics, the superpositions
of classical trajectories do not have such a property. The superposition of two solutions of
Newton equation is not the solution to the Newton equation. Thus, only in the quantum
world can we obtain entangled probability distributions that describe the system states,
which are represented by superpositions of the system’s wave functions.

In quantum mechanics, the system states are separable and entangled. For separable
states, density operators determining the states are expressed as convex sums of direct
products of density operators of the subsystems. After constructing the probability rep-
resentation of system separable states, we see that the probability distribution is equal to
the convex sum of the products of probability distributions determining the subsystem
states. For entangled states, density operators cannot be expressed as the convex sum of the
products of probability distributions determining the subsystem states. This means that the
probability distributions determining the entangled quantum states of the systems cannot
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be represented as convex sums of the products of probability distributions determining the
probability distributions of the subsystems. Simple examples illustrating these properties
are presented in Ref. [46].

Some examples of entangled states, which are Schrödinger cat states constructed for
two qubits and two oscillating qubits, are given in Ref. [58]; see also the following recent
statement [59]. Entangled probability distributions determining these Schrödinger cat
states were not discussed in conventional probability theory. In a future publication, we
aim to consider the possibility of constructing classical analogs of quantum center-of-mass
probability distributions and study their properties. Also, we consider to study the entropic
characteristics of center-of-mass probability distributions introduced for both quantum and
classical systems.
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Appendix A

Hereafter, we consider a system, which consists of two subsystems with numbers of
degrees of freedom N1 and N2. In order to find the relation between tomograms of the
system and its subsystems, we consider the density operator of a separable state,

ρ̂12 = ∑
k

pk ρ̂
(k)
1 ⊗ ρ̂

(k)
2 , (A1)

where pk ≥ 0 and ∑k pk = 1. The corresponding symplectic tomogram is given by the
convex sum of the symplectic tomograms of the subsystems; it has the form

ws(X⃗1, X⃗2 |⃗µ1, µ⃗2, ν⃗1, ν⃗2) = ∑
k

pk ws
1, k(X⃗1 |⃗µ1, ν⃗1)ws

2, k(X⃗2 |⃗µ2, ν⃗2). (A2)

Here, the variables are vectors with components X⃗1 =
(
X1j
)
, µ⃗1 =

(
µ1j
)
, ν⃗1 =

(
ν1j
)
,

where j = 1, 2, ..., N1, and X⃗2 =
(
X2p

)
, µ⃗2 =

(
µ2p
)
, ν⃗1 =

(
ν2p
)
, where p = 1, 2, ..., N2.

The connection between the symplectic and the center-of-mass tomograms presented
in Ref. [31] allows one to obtain the relation between the center-of-mass tomogram of the
system and its subsystems. Indeed, the center-of-mass tomogram of the state (A1) reads

w(X |⃗µ1, µ⃗2, ν⃗1, ν⃗2) =
∫

ws(X⃗1, X⃗2 |⃗µ1, µ⃗2, ν⃗1, ν⃗2) δ

(
X − ∑

j
X1j − ∑

p
X2p

)
dX⃗1 dX⃗2, (A3)

where the integral is taken over the components of the vectors X⃗1 and X⃗2. Next, we use
Equation (A2) to obtain

w(X |⃗µ1, µ⃗2, ν⃗1, ν⃗2) = ∑
k

pk

∫
δ

(
X − ∑

j
X1j − ∑

p
X2p

)
×ws

1, k(X⃗1 |⃗µ1, ν⃗1)ws
2, k(X⃗2 |⃗µ2, ν⃗2) dX⃗1 dX⃗2. (A4)
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We express the symplectic tomograms of the subsystem in terms of the center-of-mass
tomograms, that is

ws
1, k(X⃗1 |⃗µ1, ν⃗1) =

1
(2π)N1

∫
w1, k(ζ1 |⃗k1 ◦ µ⃗1, k⃗1 ◦ ν⃗1) ei(ζ1−⃗k1 X⃗1) d⃗k1 dζ1, (A5)

ws
2, k(X⃗2 |⃗µ2, ν⃗2) =

1
(2π)N2

∫
w2, k(ζ2 |⃗k2 ◦ µ⃗2, k⃗2 ◦ ν⃗2) ei(ζ2−⃗k2 X⃗2) d⃗k2 dζ2. (A6)

Here, a⃗ ◦ b⃗ denotes the vector with components a⃗ ◦ b⃗ = (aj bj), where a⃗ = (aj) and
b⃗ = (bj).

w(X |⃗µ1, µ⃗2, ν⃗1, ν⃗2) =
1

(2π)N ∑
k

pk

∫
w1, k(ζ1 |⃗k1 ◦ µ⃗1, k⃗1 ◦ ν⃗1)w2, k(ζ2 |⃗k2 ◦ µ⃗2, k⃗2 ◦ ν⃗2)

×δ

X − ∑
j

X1j − ∑
p

X2p

 ei(ζ1+ζ2−⃗k1 X⃗1−⃗k2 X⃗2) dX⃗1 dX⃗2 d⃗k1 dζ1 d⃗k2 dζ2, (A7)

where N = N1 + N2 is the number of degrees of freedom of the whole system.
We conclude that the center-of-mass tomogram of a separable state is presented in the

form (A7).
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