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Abstract: In the present introductory to the Special Issue “75 Years of the Casimir Effect: Advances
and Prospects”, we summarize the state of the art in this field of physics, briefly describe the topics
of the contributing papers, formulate several unresolved problems, and outline possible pathways
towards their resolution. Special attention is given to experiments on measuring the Casimir force,
to the known problem of the dissipation of conduction electrons when one compares experiment
with theory, and to the Casimir effect in novel materials and non-traditional situations. We conclude
that in the future, this multidisciplinary quantum effect will continue to play a crucial role in both
fundamental physics and its applications.

1. Introduction

The Casimir effect [1] was discovered 75 years ago, and now is an appropriate time to
summarize its role in different physical phenomena, the results thus far obtained, and the
unsolved problems, as well as to outline possible pathways towards their resolution.

At first sight, the Casimir prediction of the attractive force acting between two parallel,
uncharged ideal metal planes kept at zero temperature could be considered to have a rather
modest physical significance. The reason is that this force takes noticeable values only
at extremely short separations between the plates, and both the ideal metal and the zero
temperature are idealizations which are literally unrealizable in physical experiments.

The importance of the Casimir discovery greatly exceeded these expectations. The
Casimir force is determined by the vacuum fluctuations of the electromagnetic and other
quantum fields. These fluctuations are inherent to all physical phenomena in which
Casimir forces may play some role. A few years after its discovery, the Casimir effect was
generalized for the case of ideal metal planes kept at non-zero temperatures [2–4] and,
within the framework of the Lifshitz theory [5–7], for two thick plates made of any material.
It was shown that the Casimir force is a generalization of the van der Waals force [8] for
separations where relativistic effects come into play, and to any temperature. The forces in
question also act between atoms, molecules, and material surfaces, and in this case they are
called Casimir–Polder forces [9].

There are a great number of applications of the Casimir force caused by the zero-
point and thermal fluctuations of the electromagnetic field in condensed matter physics
and atomic physics. In condensed matter physics, the Casimir force acts between any
closely spaced surfaces made of metallic, dielectric, and semiconductor materials (see,
e.g., Refs. [10–31], reviews [32,33], and monographs [34,35]). In atomic physics, the Casimir–
Polder force has been calculated in many systems [36–47]. It plays a primary role in the
phenomena of quantum reflection [48–55] and Bose–Einstein condensation [56–61] (see
also the monograph [62,63]).

Many measurements of the Casimir force have been performed by means of an atomic
force microscope, where the sharp tip was replaced with a relatively large sphere (see
Refs. [32,34,64–78]), and by means of a micromechanical torsional oscillator [32,34,79–85].
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Based on these measurement results, the Casimir force was applied for the creation of vari-
ous next-generation micro- and nanoelectromechanical devices [86–99]. The Casimir–Polder
force has been measured in experiments on quantum reflection [49–52] and Bose–Einstein
condensation [56,57,60,61].

The Casimir effect for other than electromagnetic (scalar, spinor, gluon, etc.) fields
has found prospective applications in elementary particle physics, for instance, in the bag
model of hadrons (see Refs. [100–106] and the monograph [107]). It has been demonstrated
that the Casimir effect is also of high importance in topologically non-trivial cosmological
models, where the identification conditions play the same role as the materials boundaries,
changing the spectrum of the vacuum fluctuations and leading to non-zero Casimir energy
density [108–113]. A similar effect was found in multi-dimensional physics, where the extra
spatial dimensions are compactified at some energy scale [114–116].

All of the above permits us to conclude that the Casimir force, regarded initially as an
interesting but toy and somewhat exotic example, has developed over time into a broad
research area, which is often called Casimir physics.

2. The Topics Highlighted in This Special Issue

This Special Issue, entitled “75 Years of the Casimir Effect: Advances and Prospects”,
presents several scientific directions within the wide research area of Casimir-related
phenomena. After the creation of the Lifshtz theory, which allows for the calculation of
the Casimir force in plane-parallel configurations only, it was generalized for the case
of arbitrary-shaped bodies [117–126] and, specifically, for the experimentally important
configuration of a sphere above a plate [127–135]. In this Special Issue, this line of research
is represented by Ref. [136], which is devoted to the application of the scattering approach
for calculating the Casimir–Polder interaction with magnetodielectric bodies, by Ref. [137],
which reviews an application of the method of derivative expansion in Casimir physics, by
Ref. [138], which considers the Casimir forces with periodic structures, and by Ref. [139],
calculating the Casimir–Polder force for a conducting cone.

Special attention in this Special Issue is devoted to recent progress in measuring the
Casimir force. Reference [140] reviews the last experiments performed by means of an
atomic force microscope. This includes measuring the normal Casimir force between the
smooth surfaces of both non-magnetic and magnetic metals, normal and lateral Casimir
forces between the corrugated surfaces, and the thermal Casimir force in graphene systems.
The comparison of the experimental results with theory for graphene systems required
the development of a novel approach to describing the response of graphene to the elec-
tromagnetic field because the previously used semi-phenomenological approaches, based
on the Kubo formula, the two-dimensional Drude model, and density–density correlation
functions [141–144], turned out to be insufficient. The new approach, which was found to
be in agreement with the measurement data, uses the polarization tensor of graphene with
non-zero values of the energy gap and the chemical potential found within the framework
of thermal quantum field theory in (2 + 1) dimensions [145–148].

Two other experimental papers are devoted to the dynamical sensitivity of three-
layer microelectromechanical systems exploiting the Casimir force to the optical
properties of the intervening liquid layer [149] and to the planned experiment on
measuring the Casimir pressure between two parallel plates spaced at micrometer
separations [150]. Realization of the last experiment will allow to strengthen the con-
straints on the Yukawa-type corrections to the Newton law of gravitation and on the
hypothetical constituents of dark matter and dark energy, such as axions, chameleons,
symmetrons, and environment-dependent dilatons [151–155], which are often constrained
from measuring the Casimir force [156–162]. One more experimentally oriented paper
considers the possibility of compensating the electrostatic interaction between dielectric
and metallic test bodies [163]. This investigation is directed towards solving the problem of
surface patches, which complicates measurements of the Casimir force [164,165].
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The major problem of Casimir physics, which has remained unresolved over the
last 25 years, is the question of how to describe the free charge carriers correctly when
calculating the Casimir force. It has been shown Refs. [32,34,72,74,75,80,81,85] that for
metallic test bodies the Casimir force, calculated by means of the Lifshitz theory using
the dissipative Drude model at low frequencies, is excluded by the measurement data. If
the dissipationless plasma model is used in the calculations, the theoretical results agree
with all precise experiments on measuring the Casimir force [32,34,72,74,75,80,81,85]. For
the dielectric test bodies, theory comes into agreement with the measurement data only
if the role of free charge carriers, which are present in all real dielectrics at any non-zero
temperature, is omitted in the computations [32,34,65,69,70,166].

According to the results of Ref. [167] published in this Special Issue, the roots of
the problem are not in accounting for or disregarding the dissipation properties of the
conduction electrons in calculations of the Casimir force, but in the necessity of accounting
for these properties correctly. It is shown that an account of the relaxation properties of
conduction electrons at low frequencies by means of the Drude model in the region of
propagating waves with any polarization and transverse magnetic evanescent waves does
not lead to contradictions with the measurement data. The contradiction between the
calculated and measured Casimir forces arises only when the Drude model is used to
describe the response of metals to the low-frequency evanescent waves with transverse
electric polarization.

It is common knowledge that the Drude model has numerous experimental confirma-
tions in the region of propagating waves. It has also been confirmed by special experiments
in the area of transverse magnetic evanescent waves [168]. As to the area of transverse elec-
tric evanescent waves, the Drude model lacks any reliable experimental confirmation. On
this basis, it was concluded [167] that the experiments on measuring the Casimir force inval-
idate the Drude model in the area of transverse electric evanescent waves. An alternative
experiment in the field of classical electrodynamics was proposed, which can independently
confirm this important conclusion [169,170]. Reference [171] of this Special Issue suggests
another experimental means of distinguishing between the Drude and plasma models,
which is based on measuring the Lorentz force originating from thermal fluctuations.

It is interesting that for the Casimir force between two graphene sheets considered
in Ref. [172] of this Special Issue, theory is in good agreement with the measurement
data. The reason for this is that the electromagnetic response of graphene is described
on the rigorous basis of quantum electrodynamics at non-zero temperature do not using
any phenomenological approach like the Drude model. This is reached by employing the
polarization tensor of graphene with any energy gap and the chemical potential found in
the framework of thermal quantum field theory [145–148].

Several papers belonging to this Special Issue are devoted to the investigation of the
Casimir effect in various specific configurations. Thus, in Ref. [173] the Casimir energy
in (2 + 1)-dimensional field theories is considered which is interesting in connection with
its application to novel two-dimensional materials, such as graphene, silicene, stanene,
phosphorene, and others [174–177]. The Casimir forces in conformal field theories with
defects and boundaries are discussed in Ref. [178]. The normal Casimir force for the
planes with isotropic conductivity in the state of lateral motion is found in Ref. [179]. In
Ref. [180], the Casimir–Lifshitz force of friction, which arises due to the relative motion of
interacting bodies, and resulting heating are considered in the framework of fluctuational
electrodynamics. Finally, it is explained in Ref. [181] how the Casimir force can be used
to stabilize the levitation of a graphene sheet lifted by the repulsive force arising in an
inhomogeneous magnetic field.

In a few papers included in this Special Issue, the Casimir effect is considered in
rather non-standard situations and using some alternative approaches. For instance, in
Ref. [182] the Casimir effect in axion electrodynamics is investigated where, due to the
presence of an additional pseudoscalar quantity, the relationship between the vectors
of the electric field, magnetic induction, electric displacement, and the magnetic field
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becomes more complicated than in the standard electrodynamics of continuous media.
This subject is closely related to new materials called topological insulators, which are of
great practical interest.

An interesting approach to the Casimir effect based on semi-classical electrodynamics
is discussed in Ref. [183] in this Special Issue. This paper includes a preface discussing
different concepts of intermolecular forces in the early history of physics. It is shown how
the semi-classical approach results in the familiar Lifshits formula for Casimir free energy.
One more study [184] is devoted to a derivation of the Casimir pressure between two
Chern–Simons boundary layers deposited on dielectric substrates. For this purpose, gauge-
invariant formalism was developed using the electric and magnetic Green functions. Two
more papers are devoted to the dynamical Casimir effect. One of them [185] considers an
analogy between the dynamical Casimir effect, black holes, and the radiation temperature
of an accelerated electron. The other one [186] investigates an asymmetric force acting on
a moving mirror modeled by the potential, which is equal to the difference between the
delta function and its derivative in two-dimensional space–time. We also list one more
paper published in this Special Issue which is devoted to the one-loop correction to the
mass of an electron in a homogeneous magnetic field [187]. This issue has been considered
by several authors but with somewhat differing results. Keeping in mind that the radiative
corrections are similar in their physical nature to the Casimir effect, it is necessary to resolve
all existing discrepancies.

As was discussed in Section 1, the Casimir effect arises not only in configurations
with material boundaries but also in spaces with non-trivial topology. Because of this, it
plays a significant role in gravitation and cosmology and in multi-dimensional theories
of elementary particle physics. Four papers in this Special Issue represent this scientific
direction in the field of Casimir physics. It is known that anti-de Sitter space–time plays
a significant role in cosmology. Generally speaking, the braneworld model contains the
fields propagating in the bulk or localized on the branes. The boundary conditions on the
branes induce Casimir-type contributions to the expectation values of physical observables.
In Ref. [188], the vacuum expectation of the surface stress–energy tensor for a scalar field is
calculated in the configuration of two parallel branes orthogonal to the boundary of anti-de
Sitter space–time.

Other objects of importance to cosmology are the so-called cosmic strings, i.e., the
topological defects which could have been created in the early Universe during cosmologi-
cal phase transitions. The Casimir interaction between two cosmic strings arising due to
vacuum fluctuations of the scalar field with minimal coupling is considered in Ref. [189] in
the cases both small and large separation distances, taking into account the transverse size
of a string.

Finally, the Casimir effect for two parallel plates in a weak gravitational field and
the wormholes determined by the Casimir energy densities of the Yang–Mills field are
discussed in Ref. [190]. The same paper studies the Casimir energy density in Euclidean
space–time with a non-trivial topology, equivalent to imposing the so-called helix
identification conditions.

3. Future Prospects

As has been demonstrated above, the Casimir effect is a wide research area, with
implications for practically all branches of modern physics. It is actively investigated both
theoretically and experimentally by many research groups working in many countries.
Over the last few years, a number of new breakthrough results have been obtained. Below,
we outline the most crucial problems in this research area to be solved in the future.

Although for metallic test bodies at separations below several micrometers, the Casimir
force was already measured with high precision, at larger separations, and for the test bodies
made of semiconductor and dielectric materials, new breakthrough experimental results
are expected in near future. Progress in precise force measurements can be stimulated using
the traditional and novel techniques (see Refs. [140,150] published in this Special Issue)



Physics 2024, 6 1076

and by compensating for the spurious electric forces [163–165]. The obtained results are
considered to be used for the creation of next-generation micro- and nanoelectromechanical
devices driven by the Casimir force (see Ref. [149] of this Special Issue, elaborating this
scientific direction).

One can expect that the problem of disagreement between experiment and theory,
taking into account the dissipation of conduction electrons by means of the Drude model
(this problem is often called the Casimir puzzle [32,34,75]), will be solved soon. In this
Special Issue, the problem has already been narrowed down to the inapplicability of the
Drude model in the region of transverse electric evanescent waves [167]. It has been
shown [191–193] that if to modify the Drude model in this area phenomenologically by
adding a spatially non-local contribution, the theoretical predictions come to an agree-
ment with the measurement data. It remains to put the phenomenology on a solid
fundamental basis as has already been made for the electromagnetic response of
graphene [77,78,145–148].

In near future, Casimir physics is going also to find new applications in modern theo-
retical approaches beyond the Standard Model, e.g., in the brane models, multi-dimensional
physics with compacted extra dimensions, the theory of topological defects, etc. It is to
be used for obtaining stronger constraints on the Yukawa-type corrections to Newtonian
gravity and the hypothetical particle constituents of dark matter and dark energy.

We hope that the papers published in this Special Issue, “75 Years of the Casimir
Effect: Advances and Prospects”, will be helpful by stimulating further developments in
this prospective field of physics.
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