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Abstract: Two-level quantum systems are building blocks of quantum technologies, where the qubit
is the basic unit of quantum information. The ability to design driving fields that produce prespecified
evolutions of relevant physical observables is crucial to the development of such technologies. Using
vector algebra and recently developed strategies for generating solvable two-level Hamiltonians,
we construct the general solution to the inverse problem for a spin in a time-dependent magnetic
field and its extension to any two-level system associated with fictitious spin and field. We provide a
general expression for the field that drives the dynamics of the system so as to realize prescribed time
evolutions of the expectation values of the Pauli operators and the autocorrelation of the Pauli vector.
The analysis is applied to two-state charge transfer systems, showing that the charge transfer process
can be seen as a motion of the state of the associated fictitious qubit on the Bloch sphere, and that the
expectation values of the related Pauli operators describe the interference between the two differently
localized electronic states and their population difference. Our formulation is proposed as a basic step
towards potential uses of charge transfer in quantum computing and quantum information transfer.

Keywords: inverse problem; spin in time-dependent magnetic field; two-level model; charge transfer;
electronic coupling; Bloch sphere

1. Introduction

Realizations of coherent quantum dynamics are the subject of ever-growing interest in
fields of investigation ranging from charge and excitation dynamics in biochemical and
biophysical systems [1–12] to carbon (nano)materials [13–15], nanotechnology [11,16–18],
and novel quantum technologies [18–22]. In all these research fields, the most basic building
block of systems that involve (at least partial) coherent quantum dynamics is the qubit, and
the control of its dynamics by appropriate driving fields plays a central role in new quantum
technologies [22–24], including quantum information processing (where charge, spin, or
more generally quantum state transfer is usually involved) [10,11,21,24–31], quantum
computing [22,23,32–36], quantum metrology [21,29,37], and sensing [21,38–41].

Apart from the spin qubit, which consists of a spin in a magnetic field, a charge qubit
can be realized, e.g., by the two charging states of a superconducting island characterized
by the absence/presence of an excess Cooper pair [42], or by two electronic wave functions
of a quantum dot (which can also correspond to different charging states of the quantum
dot) [43], or by a molecule in an optical microcavity [17], or still by a charge-transfer
(CT) system [8]. Rapid technological advances are increasingly enabling the construction,
robustness, control, and measurability of qubits [14,17,43].
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The use of quantum two-level systems [14,22,44] requires their precise initializa-
tion and measurement [20], as well as the ability to control their time evolution (espe-
cially at avoided crossings in the case of spin, charge, excitation, and information trans-
fer) [8,19,45–52]. Individual spins in generally variable magnetic fields and CT systems that
satisfy the two-state approximation offer many relevant opportunities for the implementa-
tion of two-level systems and the observation of coherent quantum dynamics: the former
thanks to their generally weak coupling to the environment, which can also allow the
persistence of quantum coherence at room temperature [15]; the latter due to their ubiquity
in biochemical and biophysical systems, and the possibility of using avoided crossing to
control their dynamics [1,2,7,8,47,52–54]. Furthermore, as long recognized [55], any two-
level system that does not involve a ½-spin particle can still be described as a fictitious spin
in a fictitious field, which allows the application to CT [8] of methods initially (implicitly or
explicitly) conceived for studying ½ spins in time-dependent magnetic fields [56–61].

The above considerations stress the relevance of theoretical models in which the
two-level system driven by a generally variable field or interaction is described by a
time-dependent Hamiltonian. The field can be externally applied or be expression of the
interaction of the given qubit with other qubits or other components of the surrounding
environment [45,49,62–69]. Time-dependent parameters determine the evolution of two-
level or multi-level systems related to CT [8,70], spin population transfer and dynamics
in general [60,71,72], quantum computing [23,34,36,73], quantum information process-
ing [74–78], NMR spectroscopy [79], quantum plasmonics [80], and so forth.

The study of (two-level) systems described by time-dependent Hamiltonians is rele-
vant in terms of both direct and inverse problems [81]. In the first case, the aim is to find
the exact time evolution of a system described by a known Hamiltonian (e.g., a spin subject
to an external field with known time dependence). This has stimulated the search for
conditions under which a time-dependent Hamiltonian problem can be exactly solved ana-
lytically [82]. In the second case, the goal is finding the time-dependent field that produces
a desired unitary transformation of the system, i.e., a prespecified dynamic evolution. For
example, this is a typical problem in quantum computing, where quantum gates are used to
evolve qubits to final objective states and coherent control of the qubit evolution is crucial
to implement reliable and reproducible computations. The quantum computing machinery
must work whatever the input, producing the appropriate unitary transformation of any
given initial set of qubit states [34,83]. In these contexts, apart from the central role of qubits
as units of information, one-qubit models are often implemented; for example, they are
exploited in Ref. [84], where the time evolution of spin chains periodically driven by light
is simulated on quantum computers.

In a more general context, which also includes machine learning techniques (e.g.,
used to learn quantum states [85,86]), expectation values of physical observables and
possibly their correlations are obtained from experiments and represent the starting point
of an inverse problem. In the specific case of quantum state learning, the problem is to
estimate an unknown quantum system, starting from measurements of observables on the
system [85], but in many other situations the accent is on the evolution of the system, i.e.,
on how to obtain the desired dynamic evolutions of the measured quantities by suitably
engineering the system, namely, the Hamiltonian that represents the system (in particular,
dynamical invariants can also be used for the engineering purpose [87]). When the reverse
engineering concerns spins in variable magnetic fields, the expectation values of the Pauli
matrices, or the corresponding spin operators, play the most significant role in describing
the dynamics [88]. Their importance holds for other types of two-level systems, since they
can be formulated in terms of a fictitious spin, as is shown below.

In this study, we entirely solve the inverse problem concerning two-level systems
for an input that consists of the time-dependent expectation values of the Pauli operators
and one of their possible correlations. First, through a convenient parameterization of
the time evolution operator, we formulate the expression for the driving magnetic field
that generates a prescribed unitary evolution (Section 2). After that, we solve the inverse
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problem of finding the time-dependent field that produces any prescribed evolution of
the expectation values of the Pauli operators and the time autocorrelation of the Pauli
vector (its real part is sufficient indeed). The analysis also affords the expressions for the
matrix elements of the evolution operator in terms of such quantities, thus also completely
solving the dynamical problem for the engineered Hamiltonian (Section 3). The mapping
of a generic two-level system to a fictitious spin in a fictitious magnetic field is used in
Section 4 to highlight the applicability of the approach to any two-level system, such as
the fundamental two-state CT system investigated in Section 5. The analysis (i) clarifies
the meaning and significance of the chosen observable expectation values in the case of
CT processes and (ii) transparently interprets the CT as the motion of a point representing
a qubit state on the Bloch sphere, with relevance to potential quantum information and
quantum computing uses of CT processes, and opportunities for generalizations briefly
discussed in the conclusive Section 6.

2. Spin in a Variable Magnetic Field: Solving the Inverse Problem

Using Pauli matrices σ = (σ1, σ2, σ3), the Hamiltonian H(t) of a spin-1/2 particle in
an arbitrary time-dependent magnetic field B(t) is given by

H(t)
ℏ = B(t) ·σ =

(
B3 B1 − iB2

B1 + iB2 −B3

)
, (1)

where the simplifying notation B(t) = − 2
γ B(t) is used, γ is the gyromagnetic ratio of the

system, and h̄ is the reduced Planck constant. More generally, and also in our application
below, this Hamiltonian model represents a fictitious spin in a fictitious magnetic field [8,55].

The time-evolution operator for H(t) belongs to SU(2) and, e.g. exploiting Cayley–
Klein parameters, its common parameterization reads [59,89,90]

U(t) ≡ U(t, 0) =
(

a(t) b(t)
−b ∗ (t) a ∗ (t)

)
, (2)

where |a(t)|2 + |b(t)|2 = 1 and, since U(0) = 1 (i.e., the identity operator, or its matrix
representation), then a(0) = 1 and b(0) = 0.

Here, we introduce the following further parameterization:

U(t) = u0(t)1 − i u(t) ·σ. (3)

In Equation (3), (u0, u) are four real functions of time (where there is no ambiguity, the
time dependence of the quantities is not explicitly shown to simplify the notation) related
to a and b by the relations

a = u0 − i u3, b = −i (u1 − i u2) = −u2 − i u1. (4)

Furthermore, the unitarity of U imposes the constraint

u2
0 + u2 = 1 (5)

on the norm of (u0, u), with u denoting the modulus of u.
The field B is related to (u0, u) by (see Appendix A)

u′
0 = −B · u, u’ = u0B + B × u, (6)

where Lagrange notation is used for derivatives. From Equations (5) and (6), we derive the
following expression for B in terms of (u0, u) (Appendix A):

B = u0u’ − u′
0u + u × u’. (7)
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Equation (7) solves the inverse problem of finding a time-dependent field that gener-
ates a prescribed unitary evolution in the case of a single spin, which is the prototypical
qubit, with relevance to fields of investigation ranging from control theory [23,46,83,91,92]
to quantum computing, especially where the implementation of quantum gates is in-
volved [20,32,46,83,93]. However, in Section 3 we will solve the inverse problem in the
most practicable experimental way, that is, starting from a desired evolution of the expecta-
tion values of observables amenable to measurement.

3. Finding (Engineering) the Field That Produces the Desired Observable Evolution

Since the system under study is a (pseudo)spin, Pauli matrices represent the funda-
mental observables of interest. In this section, we determine the time-dependent magnetic
field that makes their expectation values and correlations evolve in a prefixed way.

The expectation values of Pauli matrices σ1, σ2, and σ3 are compactly written as

vt ≡ v(t) ≡ ⟨σ⟩(t) = Tr
[
σU(t)ρ0U†(t)

]
, (8)

where ρ0 ≡ ρ(0) is the density matrix that describes the initial state of the qubit. In
particular,

v0 ≡ v(0) = Tr[σρ0]. (9)

vt depends on v0 and the time evolution operator. Using Equations (3) and (8), we obtain
(Appendix B)

vt = v0 + 2u0 u × v0 + 2u × (u × v0). (10)

It is worth noting that scalar multiplication of Equation (10) by u readily gives

u · vt = u · v0, (11)

i.e., the displacement of vt is always orthogonal to u. Also, as expected (Appendix B),

v2
t = v2

0. (12)

Part of the dependence of B on vt results from the relationship between the expectation
values of the Pauli operators and the components of B. This relation leads to

v’
t = 2B × vt, (13)

which is the analogue of the macroscopic Bloch equations in our single spin model. Vector
multiplication of Equation (13) by vt on the right, together with the use of Equations (A6)
and (12), gives

B =
1

2v2
0

[
vt × v’

t + 2(B · vt)vt

]
. (14)

Equation (13) shows that the component of the variable magnetic field B parallel
to vt does not influence the first time derivative of vt. However, this component must
also be constrained to achieve a specific time evolution of the system, as described, for
example, by a given U(t) relevant for quantum computing tasks or as required to produce
desired correlations of some (at least one: vide infra) physical quantities. From Equation
(13) it is easily realized that for a time-dependent field the component of B parallel to
vt (which is named B∥ in the following) influences the evolution of vt. For example, the
derivation of Equation (13) with respect to t, the subsequent substitution of the expression
(13) for v’

t, and the use of Equation (A6) give v”
t = 2B’ × vt + 4B∥vtB− 4B2vt, with evident

contributions from B∥. Note that also the first term in this expression is generally nonzero.
This is understood considering that, since B∥(t) is parallel to vt at any t by definition and
v’

t⊥vt, B’
∥(t) also has a component which, being parallel to v’

t, is orthogonal to vt and
therefore contributes to v”

t.
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According to Equation (7), the solution of the inverse problem starting from the
assignment of vt (and in particular of v0) requires finding the expression of (u0, u) as a
function of vt and v0. However, in general, the relation between (u0, u) and vt cannot be
fully disentangled. In Appendix C we show that

ũ ≡ u
u0

=
w(v0 + vt) + v0 × vt

v2
0 + v0 · vt

(15)

with

w ≡ ũ · v0 = ±

√
v2

0 + v0 · vt

2u2
0

− v2
0. (16)

Then, using the equality u’ = u′
0ũ + u0ũ’ to rewrite Equation (7) as

B = u2
0

(
ũ’ + ũ × ũ’

)
, (17)

after lengthy vector algebra (Appendix C), one obtains:

B =
1

2v2
0

vt × v’
t + B∥, (18)

with

B∥ =

[
2u2

0w′ − v0 · (vt × v’
t)

2v2
0

]
vt

v2
0 + v0 · vt

. (19)

Equations (18) and (19) are consistent with the general expectation from Equation (14)
and manifests an incomplete disentanglement of (u0, u) and vt through the presence of
u0. Note that B depends on the initial condition, since there is only one specific field
(and hence Hamiltonian) that produces the desired evolution starting from a given initial
spin state.

We can complete our definition of the inverse problem and arrive at a full recipe for
finding the required field B by complementing the initial knowledge of vt with that of
one correlation of Pauli operators. In the present analysis, we mostly focus on the time
autocorrelation of the Pauli vector σ, which can be written in the form (the derivation is
presented in Appendix D)

C(t) ≡ Tr[σ(t) ·σρ0] = Tr
[
U†(t)σU(t) ·σρ0

]
= 4u2

0 − 1 + 4iu0u · v0. (20)

Moreover, since observables are usually related to the real or imaginary part of a correlation
function, and the strategies for measuring the real parts of correlations of observables
are easier to devise than those for their imaginary parts [94,95], we limit ourselves to
considering the real part of the correlation function:

ReC(t) = 4u2
0(t)− 1. (21)

Note that Equation (21) readily follows from Equation (20), since u and v0 are both real
by construction. Since U(0) = 1 ⇒ u0(0) = 1 , it is C(0) = Tr

[
σ2ρ0

]
= 3 and the acceptable

solution for u0(t) from Equation (21) is

u0(t) =
1
2

√
1 + ReC(t). (22)

Equations (18), (19) and (22) solve the inverse problem of determining the magnetic field B
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that produces the desired time evolution of vt and ReC(t) starting from the initial conditions
v0 and C(0) = 3. Furthermore, using Equations (15) and (22) yields (Appendix D)

u(t) = 1
v2

0+v0·vt

{
1
2

√
1 + ReC(t)v0 × vt

±
√

v2
0+v0·vt

2 − v2
0

4 [1 + ReC(t)](v0 + vt)

}
,

(23)

where the use of the + or − sign depends on the values of the quantities vt and ReC(t),
which are preassigned in the inverse problem.

For systems with unitary evolution, inserting (22) and (23) into Equation (3) gives the
evolution operator U(t), thus providing the complete description of the dynamics of the
spin in the time-dependent magnetic field. Different expressions for U(t) would result from
using a different correlation, for example ImC(t) or any of the fundamental two-observable
correlations (Appendix E), whose real parts satisfy the relation

1
2

ReCnp(t) ≡ ReTr
[
σn(t)σpρ0

]
=

(
u2

0 −
1
2

)
δnp − u0

3

∑
j=1

ujε jnp + unup. (24)

4. The Inverse Problem for a General Two-Level System

As pointed out in Section 2, the above analysis can generally be referred to a fictitious
spin in a fictitious field B, thus being applicable to any two-level system (which can also
represent a qubit). Without loss of generality [59], the Hamiltonian matrix can be written
as [8,55,59]

H(t) =
(

Ω(t) V12(t)
V∗

12(t) −Ω(t)

)
≡
(

Ω(t) 1
2 ω0(t)e−iϕ(t)

1
2 ω0(t)eiϕ(t) −Ω(t)

)
(25)

on the basis of the eigenstates |1⟩ =
(

1
0

)
and |2⟩ =

(
0
1

)
of the unperturbed (or uncoupled)

Hamiltonian (V12 = 0). Here, Ω(t) is half the (time-dependent) energy separation between
these two states and V12(t) denotes their coupling, which has modulus ω0(t)/2 and phase
ϕ(t). One can also use the Pauli matrices and the matrices that represent the ladder
operators σ± = 1

2 (σ1 ± σ2) to recast the Hamiltonian matrix in the two equivalent forms (cf.
Refs. [55,96,97])

H(t) = Ω(t)σ3 +
ω0(t)

2 [cos ϕ(t) σ1 + sin ϕ(t) σ2]

= Ω(t)σ3 +
ω0(t)

2

[
e−iϕ(t)σ+ + eiϕ(t)σ−

]
.

(26)

In units such that ℏ = 1, the fictitious magnetic field is related to the matrix elements
of the Hamiltonian by the relations [8,55]

B1(t) = ReV12(t) =
ω0(t)

2 cos ϕ(t),
B2(t) = ImV12(t) =

ω0(t)
2 sin ϕ(t),

B3(t) = Ω(t).
(27)

Therefore, the modulus of the field projection onto the xy plane is equal to the modulus
of the coupling matrix element, while the field component orthogonal to the xy plane is half
the energy difference between the basis states. Furthermore, the phase of the coupling can
be derived from the ratio of B2 and B1. Equation (27) highlights that the role played by the
magnetic field in engineering the dynamics of a spin is played by the energy difference and
the coupling between the unperturbed states in the case of a general two-state system. One
still needs to find what vt and u0(t) translate into as the inverse problem is reformulated
for the general two-level system. This problem is addressed in Section 5, where its solution
is further clarified by a formulation for CT systems.
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We conclude this section noting that for all cases in which the phase of the coupling
satisfies the condition

ϕ′(t) = 2Ω(t)− µω0(t) (28)

the evolution operator for the system described by the Hamiltonian (25) is already known
and has the matrix form [8,59]

U(t) =


√

µ2+cos2 Φ(µ;t)
1+µ2 e−i[ ϕ(t)

2 +ϑ(µ;t)] −i sin Φ(µ;t)√
1+µ2

e−i ϕ(t)
2

−i sin Φ(µ;t)√
1+µ2

ei ϕ(t)
2

√
µ2+cos2 Φ(µ;t)

1+µ2 ei[ ϕ(t)
2 +ϑ(µ;t)]

, (29)

where

Φ(µ; t) =
√

1 + µ2κ(t) , κ(t) =
1
2

∫ t

0
ω0(t′)dt′ (30)

and [8]

ϑ(µ; t) =

arctan
[

µ√
1+µ2

tan Φ(µ; t)
]

for t ̸= t(2n−1)π/2(µ)

(2n − 1)π
2 for t = t(2n−1)π/2(µ)

(n ∈ N). (31)

In Equations (29)–(31), t = tπ/2(µ), t3π/2(µ), . . . are the times at which Φ(µ; t) = π
2 ,

3π
2 , . . ., and µ is a positive real parameter. If µ = 0, Equation (31) is replaced by [8]

ϑ(0; t) =

{
0 for t(− 1

2+2n)π ≤ t < t( 1
2+2n)π

π for t( 1
2+2n)π ≤ t < t( 3

2+2n)π
(n ∈ Z). (32)

The comparison between Equations (3) and (29) provides the expressions for the
parameters (u0, u) in terms of the Hamiltonian parameters. The specific functional forms of
(u0, u) (and therefore of the related Hamiltonian parameters) that correspond to the desired
vt and u0(t) are given by Equations (22) and (23). In Section 5, the inverse problem for the
two-level system is attacked head-on, after some considerations that then enable a back
comparison with the known matrix form (29) of the evolution operator when condition (28)
is satisfied.

5. Inverse Charge-Transfer Problem: Controlling the Charge Dynamics

In the framework of CT, |1⟩ and |2⟩ are diabatic electronic states that describe the
localization of the excess, transferring charge before and after the CT process. As shown by
some of us in a recent study [8], condition (28) can be implemented through a (physical)
rotation of the charge donor in a frame where the charge acceptor is fixed, or conversely.
After solving the inverse problem proposed hereafter, we will show that it corresponds to
physical situations described by µ = 0 in Ref. [8].

Our main purpose in this section is to analyze the meaning and use of the inverse
problem solution in the framework of CT, which will also highlight the mapping of CT
to the motion of the corresponding qubit on its Bloch sphere in a transparent way. It is
worth noting that the states of the system are often denoted |1⟩ and |2⟩ in CT studies and
correspond to |+⟩ = |0⟩ and |−⟩ = |1⟩, respectively, in the usual qubit notation.

The Hamiltonian of the CT system has the general form (25). For a given energy
difference 2 Ω(t) between the diabatic electronic states, the modulus of their electronic
coupling, ω0(t)/2, is the determinant of the CT rate when free energy factors are not
at play, as we assume here. The electronic state evolution essentially occurs near an
avoided crossing, where 2 Ω(t) becomes small compared to the coupling (Figure 1a).
In addition, cases where the charge dynamics involves degenerate localized states are
also encountered. For example, CT between two defects in a solid state-like matrix, over
suitable temperature ranges, may meet both this condition and the neglect of free energy
reorganization. Furthermore, also in this case, the CT dynamics can either be periodic (as
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in the Rabi oscillation) or not, depending on the time dependence of the electronic coupling
between the initial and final states [8].
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time-dependent parameter (such as the amplitude of an applied electric field in a driven CT sys-
tem [98]) Q(t) describing the system along the CT reaction path [1,8,98]. All quantities in the
Hamiltonian matrix (25) depend on time through this parameter; e.g., Ω(t) = f (Q(t)), where f is
a suitable function of Q. The dashed lines describe the energies of the diabatic states (that is, the
diagonal terms of the Hamiltonian) at varying Q(t) and hence t. The solid lines describe the energies
of the adiabatic states, which split near the transition state coordinate, where the diabatic levels
cross. Their minimum separation at this coordinate is twice the modulus of the coupling between
the diabatic states |1⟩ and |2⟩. Near the transition state, where the charge transition can more easily
occur, the diabatic energy difference is negligible compared to the coupling. The inset shows the
potential energy profile seen by the transferring charge (e.g., an electron) along its coordinate q,
at the transition nuclear coordinate, where the two localized electronic states are degenerate (the
corresponding wave functions are schematized in purple). The tunneling probability is determined
by the electronic coupling matrix element. (b) A coherent CT process can be seen as a motion of the
representative point of the system state on a great circle of the Bloch sphere of the fictitious spin asso-
ciated with the two-level system through Equation (27). If the charge transition probability reaches
unity, the corresponding point on the Bloch sphere moves from the north pole to the south pole (red
dashed line).

In what follows, we consider degenerate states, and therefore Ω(t) = 0. We also
use ϕ = 0. These parameter choices do not affect our main conclusions, while further
simplifying the analysis and maximizing the transparency of the description of a CT process
as a motion on the Bloch sphere.

We write the state of the system at a generic time t as

|ψ(t)⟩ = C1(t)|1⟩+ C2(t)|2⟩, (33)

and the initial conditions are C1(0) = 1, C2(0) = 0, which correspond to a density matrix

ρ0 =

(
1 0
0 0

)
. (34)

If the charge is finally localized as in state |2⟩, the final state is described by Equation
(33) with C1 = 0, C2 = 1. Then, in terms of the associated qubit, the initial and final states
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are located at the poles of the Bloch sphere (Figure 1b). Inserting the matrix expression (2)
for the evolution operator into the matrix equation

C(t) = U(t)C(0), (35)

where C is the column vector of C1 and C2, for the above initial conditions we obtain:

U(t) =
(

C1(t) −C∗
2 (t)

C2(t) C∗
1 (t)

)
. (36)

Note that C1(t) and C2(t) satisfy the normalization condition |C1(t)|2 + |C2(t)|2 = 1
at any t. Furthermore, since a global phase factor of the state vector can be disregarded,
C1(t) is chosen to be real. In general, this may require the inclusion of an additional phase
factor in C2(t), and the same could be done for phase ϕ if it were nonzero.

The insertion of Equations (33), (34) and (36) into Equation (8) readily gives

vt = 2C1(t)ReC2(t)x̂ + 2C1(t)ImC2(t)ŷ +
[
C2

1(t)− |C2(t)|2
]
ẑ. (37)

It can be verified that vt satisfies the necessary condition v2
t = 1 at all times.

The fastest dynamic evolution is expected along a great circle arc from the north pole
to the south pole of the Bloch sphere [26]. This is compatible with the expression (37) for vt
if C2(t) is set as a pure imaginary quantity. Since U(dt) = 1 − iH(0)dt implies that

C2(dt) = −i
ω(0)

2
dt, (38)

we write C2(t) = −i|C2(t)| and Equation (35) becomes

vt = 2C1(t)|C2(t)|ŷ +
[
C2

1(t)− |C2(t)|2
]
ẑ. (39)

Similarly to the expression (33) for the state of the system, Equation (39) goes beyond
the case of CT process. The cross term of the vt component along ŷ expresses the interference
between the two electronic states necessary to build up the final populations. The vt
component along ẑ is the population difference between the two diabatic states. By using
the normalization condition on the expansion coefficients of the state vector, this component
can be rewritten as 2C2

1(t)− 1. Considering this expression from the point of view of the
occupation of the donor site, rather than from a CT perspective, the ẑ component of vt is
strictly related to the average charge on the donor molecular site (the same consideration
can be applied to the acceptor site), similarly to what is found for charge qubits that
correspond to the occupation and de-occupation of a superconducting island by an excess
Cooper pair [42].

In CT processes, the cross term describes the transient delocalization of the charge. If
the charge finally localizes with unit probability on the acceptor site, this term returns to
its initial zero value as the transfer is completed. Accordingly, the population difference
passes from 1 (charge initially on the donor site) to −1 (charge finally on the acceptor site).

vt describes the aforementioned rotation on the Bloch sphere by setting{
C1(t) = cos κ(t) = u0(t),
C2(t) = −i sin κ(t),

(40)

which implies
vt = − sin 2κ(t)ŷ + cos 2κ(t)ẑ. (41)

Indeed, one can easily see that Equation (40) is the solution of the Schrödinger equation
in matrix form for the generic Hamiltonian (25) simplified by choosing Ω(t) = 0 and ϕ = 0,
once κ(t) is defined as in Equation (30). The rotation on the Bloch sphere can reach the
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south pole depending on the form of κ(t), that is, on the time dependence of the electronic
coupling.

For t = 0, Equation (41) gives v0 = ẑ (and therefore v2
0 = 1, as expected for a pure

state that evolves coherently), which corresponds to the initial CT state, that is, to the north
pole on the Bloch sphere. At this point it is readily seen that

vt × v’
t = 2κ′x̂ (42)

and {
w = 0
v0 ·

(
vt × v’

t
)
= 0

→ B∥ = 0. (43)

Finally, using the expression (30) for κ(t), one obtains

B =
1
2

ω0(t) x̂ ≡ V12(t) x̂. (44)

This result can be read in two equivalent ways. In the case considered, the CT corresponds
to a rotation on a great circle of the Bloch sphere that is generated by a fictitious magnetic
field perpendicular to the orbit whatever the initial point on the sphere, the arc length
run, and the travel speed. All these features depend on the specific time-dependent
functional form of B. In terms of the Hamiltonian (25), as the states are degenerate and
the coupling is real, the state of the system is subject to a rotation which amounts to a
changing localization of the charge. In physical–mathematical terms, in cases where the
system evolution is unitary and B∥ = 0, Equation (18) becomes B =

(
vt × v’

t
)
/2 and

provides the general solution to the dynamical problem, irrespective of the functional form
(i.e., whatever the specific initial value and time dependence) of vt. A specific choice of
electronic coupling modulus produces a specific CT dynamics within the general form (40)
or (41). For example, ω0(t) = 2νsech(νt) leads to a smooth increase in the population of
the final state, as described by the transition probability P1→2(t) = |C2(t)|2 = tanh2(νt) [8],
and the CT rate clearly depends on the coupling.

Now, one can use the formalism in Section 3 to calculate directly the evolution operator.
With u0(t) from Equation (40) and v2

0 + v0 · vt = 1 + cos 2κ(t) = 2 cos2 κ(t), Equation (23)
gives

u(t) =
v0 × vt

2 cos κ(t)
=

sin 2κ(t)
2 cos κ(t)

x̂ = sin κ(t)x̂, (45)

which can be replaced into Equation (3) to obtain

U(t) =
(

cos κ(t) −i sin κ(t)
−i sin κ(t) cos κ(t)

)
, (46)

consistent with the known result provided by Equation (29) for the present case, as shown
in ref. [8]. Note, as a backward comparison, that the system evolution chosen in the inverse
problem satisfies Equation (28) with Ω(t) = 0 and µ = 0; ϕ is therefore a constant, which is
zero in the above.

6. Concluding Remarks

In this study, we present a general solution to the inverse problem for two-level
systems. A sensible point of our theoretical approach is that it starts from expectation
values of observables, as is required by experimental measurements.

In the case of a spin-1/2 particle, the magnetic field specifies the Hamiltonian, namely,
the system, and therefore its evolution for any given initial conditions. Equation (19) reflects
the fact that having two different expectation values of the Pauli operators at times t ̸= 0
when starting from the same values v0 at t = 0 requires two different driving fields.

The methodology lends itself to applications within more complex systems and gener-
alizations. For example, it was shown that the dynamics of two coupled spin-1/2 systems
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subject to two different magnetic fields can be reduced to two independent sub-dynamics
of the spins [99] that can be exactly solved by appropriate choice of the fields. Therefore,
it would be interesting and practically relevant to combine the present approach with
that in Ref. [99] to engineer the composite system. This can be particularly useful for
applications in quantum computing, where generally a set of qubits is steered from an
initial condition to a desired final one. Other generalizations may also be easily enabled,
e.g., by the treatment of multilevel spin dynamics as a sequence of two-level transitions
at avoided crossings [100]. Finally, the consideration of the spin system in contact with a
thermal bath is of clear relevance to the comparison with many experiments and worthy
of future analysis. However, it is also worth noting that the charge-transfer model em-
ployed describes the single passage through an avoided crossing within the diabatic state
framework for a system generally at a nonzero temperature.

We show the meaning and application of the inverse problem solution to CT systems,
where the time evolution of the expectation values of the Pauli (or the corresponding
spin) operators translates into the interference between the two localized-charge states and
their population difference. We emphasize the formal equivalence of the spin in magnetic
field and CT systems through the visualization of a CT process on the Bloch sphere. This
type of picture has also been used for the coherent excitation of two-level systems, with
a different meaning of the physical quantities involved [3,101], and can be useful for
quantum information handling purposes, for example to help conceive of information
transfer processes that can be accomplished through a given two-state physical system.

We conclude noting that, apart from possible useful extensions, the stand-alone impor-
tance of the proposed method is enhanced by the need for coherent control of individual
qubits in many quantum technologies [102].
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Appendix A

In this appendix we demonstrate the relationship between B and (u0, u) described by
Equations (6) and (7). Using the Hamiltonian in Equation (1), the parameterization of the
evolution operator in Equation (3), and the definition of the Pauli matrices, we obtain

H
ℏ U =

(
B3 B1 − iB2

B1 + iB2 −B3

)(
u0 − iu3 −u2 − iu1
u2 − iu1 u0 + iu3

)
=

(
M11 M12
M21 M22

)
, (A1)

where

M11 = B3(u0 − iu3) + (B1 − iB2) (u2 − iu1) = B3u0 + B1u2 − B2u1 − i B · u
= B3u0 + (B × u)3 − i B · u ,

(A2)

M12 = −B3(u2 + iu1) + (B1 − iB2) (u0 + iu3)
= B1u0 + B2u3 − B3u2 − i(B2u0 + B3u1 − B1u3)
= B1u0 + (B × u)1 − i[B2u0 + (B × u)2] ,

(A3)

M21 = (B1 + B2)(u0 − iu3)− B3(u2 − iu1)
= B1u0 + B2u3 − B3u2 + i(B2u0 + B3u1 − B1u3)
= B1u0 + (B × u)1 + i[B2u0 + (B × u)2] ,

(A4)

M22 = −(B1 + iB2)(u2 + iu1)− B3(u0 + iu3) = −B3u0 − (B1u2 − B2u1)− i B · u
= −B3u0 − (B × u)3 − i B · u .

. (A5)

Inserting the above quantities and the parameterized expression for U(t) into the
Schrödinger equation for the evolution operator, iℏU′ = HU, it is immediately seen that
Equation (6) is satisfied. Then, using the vector identity

a × (b × c) = b(a · c)− c(a · b), (A6)

vector multiplication of the second Equation (6) by u from the left yields

u × u’ = u0u × B + u × (B × u) = u0u × B + u2B − (u · B)u. (A7)

Inserting Equation (5) and the second equality (6) into Equation (A7), we obtain

u × u’ = u0

(
u0B − u’

)
+ u2B + u′

0u = B + u′
0u − u0u’ → B = u0u’ − u′

0u + u × u’, (A8)

which is Equation (6).
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Appendix B

Inserting Equation (3) for the evolution operator into Equation (8), using the commu-

tators of the Pauli matrices, the relation σjσk = δjk1 + i
3
∑

l=1
ε jklσl (which is readily obtained

by adding the commutator to the anticommutator of the Pauli matrices, and making use
of the Kronecker delta and Levi-Civita symbol), the invariance of the trace of a product
of operators with respect to cyclic permutations of the operators, and Equation (A6), one
obtains Equation (10):

vt = Tr[σ(u01 − i u ·σ)ρ0(u01 + i u ·σ)]
= Tr[σ(u0ρ0u0 + iu0ρ0u ·σ− i u ·σρ0u0 + u ·σρ0u ·σ)]
= u2

0Tr[σρ0] + iu0Tr[(u ·σ)σρ0 −σ(u ·σ)ρ0] + Tr[(u ·σ)σ(u ·σ)ρ0]

= u2
0v0 + iu0Tr

[
uj
(
σjσk − σkσj

)
ĉkρ0

]
+ Tr

[
ujσjĉkσkulσlρ0

]
= u2

0v0 − 2u0Tr
[
ε jkl ĉkσluj ρ0

]
+ ĉkujulTr

[
σjσkσlρ0

]
= u2

0v0 − 2u0εkljĉkujTr[σl ρ0] + ĉkujulTr
[(

δjk1 + iε jkm σm

)
σlρ0

]
= u2

0v0 − 2u0εkljĉkv0luj + ĉkukulTr[σlρ0] + iĉkujulε jkmTr[σmσlρ0]

=
(
1 − u2)v0 + 2u0 u × v0 + ĉkukulv0l + iĉkujulε jkl + εkjmĉkujεmlnulv0n

= v0 + 2u0 u × v0 + u(u · v0)− v0u2 + u × (u × v0)

= v0 + 2u0 u × v0 + 2u × (u × v0)

(A9)

where Einstein’s notation is used for the repeated indices. Using Equation (A6), Equation
(A9) is rewritten in the form

vt − v0 = 2u0 u × v0 + 2(u · v0)u − 2u2v0. (A10)

and, using Equation (5),

vt + v0 = 2u2
0v0 + 2u0 u × v0 + 2(u · v0)u. (A11)

By performing the scalar multiplication of (A10) and (A11) side by side, using the prop-
erties of the scalar triple product, and denoting θ the angle between u and v0,
one obtains

v2
t − v2

0 = 4u2
0u2v2

0 sin2 θ + 4u2
0u2v2

0 cos2 θ

+ 4u4v2
0 cos2 θ − 4u2

0u2v2
0 − 4u4v2

0 cos2 θ = 0 ,
(A12)

namely, Equation (12). In particular, for a pure state, it is straightforwardly seen using
Equation (9) that v2

t = v2
0 = 1.

Appendix C

To find the necessary relations between (u0, u) and vt, and then the expression for the
field, we first use Equations (10), (A6) and (A11) to write the vector product

v0 × vt = 2u0v0 × (u × v0) + 2v0 × [u × (u × v0)]

= 2
[
u0v2

0u − u0(u · v0)v0 − (u · v0) (u × v0)
]

= 2u0v2
0u − u·v0

u0
(2u2

0v0 + 2u0u × v0)

= 2u0v2
0u − u·v0

u0
[vt + v0 − 2(u · v0)u]

(A13)

whence

u =
(u · v0)(v0 + vt) + u0v0 × vt

2
[
u2

0v2
0 + (u · v0)

2
] . (A14)
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Equation (15) is clearly obtained by dividing both sides of Equation (A14) by u0, while
the scalar multiplication by v0 produces the following:

u · v0 =
(u·v0)(v2

0+v0·vt)

2
[
u2

0v2
0+(u·v0)

2
] → 2

[
u2

0v2
0 + (u · v0)

2
]
= v2

0 + v0 · vt

→ w ≡ ũ · v0 = u·v0
u0

= ±
√

v2
0+v0·vt

2u2
0

− v2
0 .

(A15)

Equation (16) is thus demonstrated.
Next, we use the vector identity (A6), Equation (12), and the property vt · v’

t = 0 that
results from Equation (13) to write the following expression for B:

B
u2

0
= û’ + û × û’

= − v0·v’
t [w(v0+vt)+v0×vt ]

(v2
0+v0·vt)

2 + w′(v0+vt)+wv’
t+v0×v’

t
v2

0+v0·vt

+w(v0+vt)+v0×vt
v2

0+v0·vt
×
{

w′(v0+vt)+wv’
t+v0×v’

t
v2

0+v0·vt

− v0·v’
t [w(v0+vt)+v0×vt ]

(v2
0+v0·vt)

2

}
= − v0·v’

t [w(v0+vt)+v0×vt ]

(v2
0+v0·vt)

2 + w′(v0+vt)+wv’
t+v0×v’

t
v2

0+v0·vt

+ 1
(v2

0+v0·vt)
2

[
w(v0 + vt)× (wv’

t + v0 × v’
t)

+(v0 × vt)× (w′v0 + w′vt + wv’
t) + (v0 × vt)× (v0 × v’

t)
]

= 1
(v2

0+v0·vt)
2

{
−(v0 · v’

t)v0 × vt + w2(v0 + vt)× v’
t

+(w′vt − wv’
t − w′v0)(v2

0 + v0 · vt) +
[
(vt × v’

t) · v0
]
v0
}

+w′(v0+vt)+wv’
t+v0×v’

t
v2

0+v0·vt
= v0·(vt×v’

t)

(v2
0+v0·vt)

2 v0 − v0·v’
t

(v2
0+v0·vt)

2 v0 × vt

+ 1
v2

0+v0·vt

[
2w′vt +

(
1 + w2

v2
0+v0·vt

)
v0 × v’

t

]
+ w2vt×v’

t

(v2
0+v0·vt)

2 .

(A16)

Singling out the term proportional to vt × v’
t in Equation (18), we obtain

B∥
u2

0
= v0·(vt×v’

t)

(v2
0+v0·vt)

2 v0 − v0·v’
t

(v2
0+v0·vt)

2 v0 × vt

+ 1
v2

0+v0·vt

[
2w′vt +

(
1 + w2

v2
0+v0·vt

)
v0 × v’

t

]
+

[
w2

(v2
0+v0·vt)

2 − 1
2u2

0v2
0

]
vt × v’

t

= 2w′vt
v2

0+v0·vt
+

v0·(vt×v’
t)v0−(v0·v’

t)v0×vt+(v0·vt)v0×v’
t−v2

0vt×v’
t

(v2
0+v0·vt)

2

+
v2

0v0×v’
t−(v0·vt)vt×v’

t

2u2
0v2

0(v
2
0+v0·vt)

.

(A17)

At this point, using the Jacobi identity for the cross product,

0 = v0 ×
[
v0 × (vt × v’

t) + vt × (v’
t × v0) + v’

t × (v0 × vt)
]

= v0 · (vt × v’
t)v0 − v2

0vt × v’
t + (v0 · vt)v0 × v’

t − (v0 · v’
t)v0 × vt ,

(A18)

the expression for B∥ reduces to

B∥ =
2u2

0w′vt

v2
0 + v0 · vt

+
v2

0v0 × v’
t − (v0 · vt)vt × v’

t

2v2
0(v

2
0 + v0 · vt)

, (A19)
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which is evidently orthogonal to v’
t, since vt⊥v’

t. Furthermore, it is B∥⊥vt × v’
t. In fact,

using the vector identity

(a × b) · (c × d) = (a · c)(b · d)− (a · d)(b · c) (A20)

and Equation (12), it is obtained:[
v2

0(v0 × v’
t)− (v0 · vt)(vt × v’

t)
]
· (v × v’

t) = v2
0(v0 · vt)v′t

2 − (v0 · vt)v2
t v′t

2
= 0. (A21)

Since B∥⊥
{

v’
t, vt × v’

t
}

, it is very easy to see geometrically that B∥ is parallel to vt. To
show this analytically, we make use of the expansion of v0 on the orthogonal vector basis{

vt, v’
t, vt × v’

t
}

, which, using Equation (12) and the fact that vt⊥v’
t, is written

v0 =
v0 · vt

v2
0

vt +
v0 · v’

t

v′2t
v’

t +
v0 · (vt × v’

t)

v2
0v′2t

vt × v’
t. (A22)

Inserting this expression into the product v0 × v’
t of Equation (A19) gives

B∥ =
2u2

0w′vt

v2
0+v0·vt

− v0·(vt×v’
t)

2v2
0v′2t (v2

0+v0·vt)
v’

t × (vt × v’
t)

=

[
2u2

0w′

v2
0+v0·vt

− v0·(vt×v’
t)

2v2
0(v

2
0+v0·vt)

]
vt,

(A23)

namely, Equation (19).

Appendix D

In this Appendix, we derive the expression (20) for the time autocorrelation of the
Pauli vector and the related Equation (23). Using the identity ε l jk εmjk = 2δlm, the properties
of the scalar triple product, and Equation (5), one obtains

C(t) = Tr[(u01 + i u ·σ)σ(u01 − i u ·σ) ·σρ0]

= u2
0Tr[σ ·σρ0] + iu0Tr{[(u ·σ)σ−σ(u ·σ)] ·σρ0}+ Tr{[(u ·σ)σ(u ·σ)] ·σρ0}

= 3u2
0Tr[ρ0] + iu0Tr

[
uj
(
σjσk − σkσj

)
σlδklρ0

]
+ Tr

[
ujσjσkulσlσmδkmρ0

]
= 3u2

0 − 2u0Tr
[
ujε jkm σmσkρ0

]
+ ujulTr

[
σjσk(σkσl + 2iε lkm σm)ρ0

]
= 3u2

0 − 2u0Tr
[
ujε jkm (δmk1 + iεmkn σn)ρ0

]
+ 3ujulTr

[
σjσlρ0

]
+2iujε lkm ulTr

[
σjσkσmρ0

]
= 3u2

0 + 2iu0Tr
[
ujε jkm εnkm σnρ0

]
+3ujukTr

[(
δjk1 + iε jkl σl

)
ρ0

]
+ 2iujε lkm ulTr

[
σj(δkm1 + iεkmn σn)ρ0

]
= 3u2

0 + 4iu0Tr
[
ujδjn σnρ0

]
+ 3u2 + 3iujε jkl ukv0l

−2ujulε lkm εnkm Tr
[(

δjn1 + iε jnp σp
)
ρ0
]

= 3u2
0 + 4iu0ujTr

[
σjρ0

]
+ 3u2 − 4ujulδlnδjn − 4iujulε jnp δlnTr

[
σpρ0

]
= 3u2

0 + 4iu0ujv0j + 3u2 − 4u2 − 4iujε jkl uk v0l = 4u2
0 − 1 + 4iu0(u · v0)

(A24)
where Einstein’s notation is used again for the summation over the repeated indices.
Equation (A24) gives Equation (20), whence (21) and (22).

To derive Equation (23), we first note that the insertion of Equation (22) into the third
equality (A15) gives

u · v0 = ±

√
v2

0 + v0 · vt

2
−

v2
0

4
[1 + ReC(t)]. (A25)
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Equation (23) readily results from using Equations (22) and (A25) in the numerator of
the expression (A14) for u and the second equality (A15) in its denominator.

Appendix E

Here, we derive the general expression (24) for the fundamental two-observable time
correlations of Pauli operators. Using Equation (5), Einstein’s notation for the repeated
indices, and the identity ε jklε jmn = δkmδln − δknδlm, one finds

Cnp(t) = Tr
[
(u01 + i u ·σ)σn(u01 − i u ·σ)σpρ0

]
= u2

0Tr
[
σnσpρ0

]
+ iu0Tr

{
[(u ·σ)σn − σn(u ·σ)]σpρ0

}
+Tr

{
[(u ·σ)σn(u ·σ)]σpρ0

}
= u2

0Tr
[(

δnp1 + iεnpq σq
)
ρ0
]
+ iu0Tr

[
uj
(
σjσn − σnσj

)
σpρ0

]
+Tr

[
ujσjσnulσlσpρ0

]
= u2

0δnp + iu2
0εnpqv0q − 2u0Tr

[
ujε jnk σkσpρ0

]
+ujulTr

[(
δjn1 + iε jnk σk

)(
δlp1 + iε lpm σm

)
ρ0

]
= u2

0
(
δnp + iεnpqv0q

)
−2u0Tr

[
ujε jnk

(
δkp1 + iεkpq σq

)
ρ0

]
+ unup + iujulε lpm δjnTr[σmρ0]

+iujulε jnk δlpTr[σkρ0]− ujulε jnkε lpmTr
[(

δkm1 + iεkmq σq

)
ρ0

]
= u2

0
(
δnp + iεnpqv0q

)
− 2u0uj

[
ε jnk δkp + i

(
δjpδnq − δjqδnp

)
v0q

]
+ unup

−iunεplm ulv0m − iupεnjk ujv0k − ujulε jnkε lpk − iujulε jnk

(
δlqδkp − δlpδkq

)
v0q

= u2
0
(
δnp + iεnpqv0q

)
+ 2u0(u × ĉp)n − 2iu0v0nup + 2iu0uqv0qδnp + unup

−iun(u × v0)p − iup(u × v0)n − ujul

(
δjlδnp − δjpδln

)
− iε jnpujuqv0q − iεnjqujv0qup

=
(
u2

0 + 2iu0u · v0 − u2)δnp + [2un − 2iu0v0n − i(u × v0)n]up

+
{[

(2u0 + iu · v0)u − iu2
0v0
]
× ĉp

}
n − iun(u × v0)p − iup(u × v0)n

= 2
(

u2
0 + iu0u · v0 − 1

2

)
δnp + 2[un − iu0v0n − i(u × v0)n]up

+
{[

(2u0 + iu · v0)u − iu2
0v0
]
× ĉp

}
n − iun(u × v0)p

(A26)
from which Equation (24) results.
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