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Abstract: The method of the adhered cantilever, borrowed from microtechnology, can help in gaining
fundamental knowledge about dispersion forces acting at distances of about 10 nm, which are
problematic to access in the usual Casimir-type experiments. A recently presented setup measures the
shape of cantilevers with high precision, which is needed for analyzing the involved forces. The first
measurements reveal several nonidealities crucial for the data analysis. In this paper, a generalized
formula is deduced that relates the parameters of a cantilever to the adhesion energy. The application
of the formula is demonstrated using the first test result from the setup, where a silicon cantilever
adhered to a substrate sputters with ruthenium. Detailed information of the roughness of interacting
surfaces, which deviates significantly from the normal distribution, is emphasized. Although not
crucial, the electrostatic contribution can be significant due to the slight twisting of the cantilever.
The theoretical prediction of the adhesion energy is based on Lifshitz theory. Comparing theory
and experiment yields a contact distance of 45 nm and an adhesion energy of 1.3 µJ/m2, resulting
from the Casimir–Lifshitz forces. Significant uncertainties arise from the uncontrolled electrostatic
contribution. Factors that need to be addressed to measure weak adhesion between rough surfaces
are highlighted.

Keywords: Casimir–Lifshitz forces; adhered cantilever; adhesion energy; forces at short distances;
surface roughness

1. Introduction

Casimir–Lifshitz forces [1–3] are omnipresent because they originate from the quantum
(and thermal) fluctuations of the electromagnetic field, which cannot be turned off. These
forces begin to act at separation distances around h = 100 nm [4–6], where the forces
have been precisely measured between 3D (three-dimensional) objects [7–12]. These forces
depend on the distance as h−α, with the exponent α spanning 3 to 4 [3]. Near the lower
limit, the retardation effect can be neglected, but near the upper limit, it must be fully
considered. Historically, forces near the lower limit have been called van der Waals
forces [13]. However, here, the term “dispersion forces” (DFs) is used to refer to these
fluctuation-induced forces at all separation distances. Although forces decrease rapidly
at distances greater than 100 nm, several measurements have been successful even at
distances exceeding 1 µm [14,15]. In contrast, only a few measurements have been made at
short separations below 50 nm [16–19], and the precision of these measurements has been
relatively low. Two major factors complicate measurements at close distances [6]. First,
when the distance between objects is quite small, systems with elastic suspensions, such as
the cantilever in an atomic force microscope (AFM) [8] or the torsional rod [9,10], can lose
stability and cause objects to jump into contact. Second, the gap between objects can only
be measured with limited precision, typically of the order of 1 nm. Therefore, the closer the
objects are, the greater the effective uncertainty in the measured force.
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Casimir–Lifshitz forces begin to play a significant role in modern microelectrome-
chanical systems (MEMSs) [6,20–24], as the distances involved are quite small, but the
area of interaction is large. Therefore, it is not surprising that these forces are measured
using various types of MEMS devices. Recently, a new method has been proposed [25] for
simultaneously measuring the force and adhesion energy at small distances. This method
does not suffer from instability at small separations between objects. The method originates
from the stiction problem in MEMS manufacturing [26–31]. The final step in the fabrica-
tion process involves rinsing. As the liquid dries, strong capillary forces draw the soft
elements of the MEMS together. After complete drying, the elements remain locked [32,33].
The cause of this adhesion is the unavoidable dispersion interaction between the surfaces
that are in contact. Stiction can occur not only during the fabrication but also during the
operation of the device, resulting in device malfunction. The issue of stiction has received
great attention because of its high practical significance [34,35].

The so-called “adhered cantilever” (see Figure 1) has been used as a model system
to investigate the stiction phenomenon [26,32,33,33,34,36–39]. This is an elastic beam that
has one end fixed at a certain height above a substrate, and the other end is adhered to
the substrate. The length of the unadhered part of the beam provides information about
the adhesion energy per unit area between the beam and the substrate at the adhered
location [36,40]. On the other hand, the precise shape of the adhered cantilever depends
on the forces acting on it outside of the adhered area. The intentional application of the
electrostatic forces to the cantilever outside the adhesion region has been discussed [37],
and the influence of the DF near the adhered end on the shape of the cantilever has been
demonstrated [41] on a measurable level. Microfabricated surfaces always have some level
of roughness, so the contacting surfaces are separated by an average distance h0, at which
the attractive forces are balanced by the repulsive forces from the elastic deformation of
the asperities. Outside the adhered area, the attractive forces also operate, but they are
balanced by the additional bending of the beam, which contributes to the overall shape of
the cantilever. The adhered cantilever remains in equilibrium and maintains its stability
at any given distance h0. However, forces acting between the beam and the substrate can
cause the unadhered length s to change.

Figure 1. Schematic view of the adhered cantilever. The average contact distance due to roughness
is h0, and the height of the cantilever above the substrate is h0 + v(x). The choice of the coordinate
system is shown, where the y-axis runs along the width of the cantilever.

Thus, the adhered cantilever can be used to measure the adhesion energy simultane-
ously with the DF acting near the adhered end, as was proposed in a new experiment [25].
To obtain the necessary information, one has to precisely measure the shape of the adhered
cantilever. In this paper, the DFs outside of the adhered area are discussed only briefly,
since more experimental and theoretical efforts are needed to separate the DFs against the
background (electrostatics and nonidealities of the cantilever). The main focus here is on
the adhesion energy. This energy is defined as the work per unit area required to detach
and separate two surfaces over an infinite distance. In the case of the adhered cantilever,
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this energy is related to the geometrical and mechanical characteristics of the cantilever as
follows [36,40]:

Γ0 =
3Et3H2

2s4 , (1)

where E is Young’s modulus of the beam material, t is the thickness of the beam, and
H is the height of the fixed end above the substrate.The classic shape of a cantilever,
by definition, is understood as the shape when no external forces are applied to the
cantilever in the unadhered region. Dispersion forces, which operate close enough to
the adhered region, provide a deviation from the classic shape on a 1% level and can be
neglected in the calculation of the adhesion energy in the first approximation. The classic
shape, represented by the gap v(x) (see Figure 1), is described by the following function:

v(x) = H
{

2(x/s)3 − 3(x/s)2 + 1, x ≤ s,
0, x > s.

(2)

Originally, it was proposed to measure the shape of the adhered cantilever using
interferometric methods [36,40]. In the most advanced experiment [20], the adhesion
energy between the micromachined surfaces of polysilicon and silicon was measured.
Although the errors in the measured Γ0 were significant, it was still possible to establish a
correlation between the measured values and the van der Waals forces.

An advanced interferometric system [42] based on the Nomarski differential interference
contrast method [43] has been recently presented. This system scans along the cantilever
to determine its shape with a precision of 1 nm in the range of heights up to 10 µm.
The minicantilevers used in this system are fabricated using microtechnology methods.
They have a length of 12 mm, a width of 200 µm, and a thickness of 10 µm. These
dimensions are one order of magnitude larger in all three directions than in a previous
similar system [20].

The first measurements revealed deviations in the cantilever from the ideal case. In par-
ticular, the beam at the fixed end was always tilted at an angle relative to the substrate. This
effect, previously observed for microcantilevers and attributed to the finite compliance of
the beam support [44], is now believed to be caused by the presence of external particles be-
tween the substrate and the wafer containing the cantilever. Additionally, longer cantilevers
may be slightly twisted, with one side adhering to the substrate and the other hanging over
it. Due to their length and thickness, compared to microcantilevers, gravity can influence
both the shape and the measured value of the adhesion energy of these cantilevers.

In this paper, it is shown that the observed nonidiealities are significant for analysing
minicantilevers. A new expression for the adhesion energy is derived. One specific set
of data from Ref. [42] is used to demonstrate how the adhered cantilever method can be
applied to obtain information on the DF acting between the cantilever and the substrate in
the adhered area.

2. Adhered Cantilever
2.1. Ideal Case

Figure 1 shows a cantilever with a length L, thickness t, width w, and an unadhered
segment of length s. The adhered segment is parallel to the substrate and has an equilibrium
distance of h0, which is not known a priori. The roughness of the contacting surfaces
determines this distance, and gravity is assumed to have a negligible effect. Various theories
are used to calculate this equilibrium distance under the influence of the DF [24,45–47].
These theories differ mainly in how they treat roughness, forces, and material plasticity. It
is assumed that the cantilever is parallel to the substrate at its fixed end and subjected to no
external forces. The shape of the cantilever obeys an equation from elasticity theory:

d4v
dx4 = 0. (3)
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Equation (3) needs to be solved with the following boundary conditions:

v(0) = H, v′(0) = 0; v(s) = 0, v′(s) = 0, (4)

where the prime indicates the x-derivative. The solution to this problem is given by
Equation (2).

The adhesion energy per unit area Γ can be found (see, e.g., [36]) by minimizing the
total energy of the adhered cantilever with respect to s. The total energy is

Etot = U(s)− Γw(L − s), (5)

where w denotes the width of the cantilever. The first term U(s) in Equation (5) is the
elastic energy of the deformed part of the beam, and the second term is the surface energy.
The elastic energy as a functional of the shape of the cantilever is expressed as

U(s) =
wD

2

∫ s

0
dx

(
d2v
dx2

)2

, D =
Et3

12
(6)

where D is the flexural rigidity. The minimization of the total energy (5) in s results in
Γ = Γ0, where Γ0 is given by Equation (1).

2.2. Shape of the Minicantilever in a Realistic Case
2.2.1. Nonzero Gravity and Slope

In contrast to microcantilevers used for the analysis of adhesion in MEMSs [20,34,37],
where planar microtechnology has been used, the minicantilevers designed for measure-
ments of the DF [25,42] are fabricated in a different process. First, the cantilevers are
produced from silicon-on-insulator (SOI) wafer, where the top Si laye, 10 µm thick, is
separated from the base Si by a thin (1 µm) SiO2 layer. The bearing plate is an ordinary Si
wafer on which a separating layer with a nominal thickness of 5 µm is spin-coated and
patterned by photolithography. The measuring chip consists of a stack of two wafers, one
with cantilevers and one with a bearing plate, as shown schematically in Figure 2.

Figure 2. (a) Cross-section of the measuring chip. The SOI wafer with cantilevers is placed on top of
the bearing wafer that contains a separating SU-8 layer. (b) Negative slope at the fixed end due to an
external particle between the wafers. (c) Positive slope due to a particle.
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In the ideal case, the two wafers are completely parallel to each other, and the slope
of the cantilever at the fixed end is zero. However, the area of contact between the SOI
wafer and the separating layer is estimated as 123 mm2 (the exact dimensions of the chip
are presented in Ref. [42]). In this large area, it is complicated to exclude a dust particle
between the wafers. Such a particle may result in a nonzero slope of the fixed end of the
cantilever with respect to the bearing substrate. Given the particle position, the slope can be
negative or positive, as shown in Figure 2b,c. This is realized as demonstrated in Ref. [42].
Therefore, one has to modify boundary condition (4) at x = 0 as follows:

v(0) = H, v′(0) = ϑ, (7)

where |ϑ| ≪ 1 is the angle of the slope. The height H is also an a priori parameter that has
to be found from the measured shape of the cantilever v(x) because the nominal thickness
of the SU-8 layer does not coincide with the exact height. Interstingly, in planar microtech-
nology, the same mechanism for the slope formation is not possible and, nevertheless,
the slope exists in this case too due to finite compliance of the support [37,44].

An additional difference between micro- and minicantilevers is related to the influence
of gravity, which can be neglected in the case of microcantilevers but not in the case of
minicantilevers. As a result, the equation describing the shape of the cantilever now reads:

D
d4v
dx4 = −ρgt, (8)

where ρ is the mass density of the beam material, and g is the free-fall acceleration. There-
fore, the gravity contributes to the shape v(x). By introducing normalized variables

ξ = x/s, ζ(ξ) = v(x)/H, (9)

and normalized parameters

a =
ϑs
H

, γ =
ρgs4

2Et2H
> 0, (10)

one finds the solution of Equation (8) under boundary condition (7) as follows:

ζ(ξ) = −γξ4 + A3ξ3 + A2ξ2 + A1ξ + 1, (11)

where
A3 = 2 + a + 2γ, A2 = −3 − 2a − γ, A1 = a. (12)

Let us note that in the experimental conditions [42], a∼1 and γ∼1.

2.2.2. Factor of Twisting

The first experiments with adhered minicantilevers revealed an additional deviation
from the ideal case [42]. It was found that the beam is slightly twisted along its length as the
cross-section in Figure 3, right, shows. Due to the twisting, the adhered end is not exactly
parallel to the substrate. In this area, one side of the beam, for example, the left side, is in
direct contact with the substrate, but the other side hangs above the substrate at a certain
height. Thus, the adhered part of the cantilever is tilted to some angle φ in the direction of
the y-axis (along the width of the beam). The gap v(x, y) is now a function of two variables,
but since the twisting is relatively small, the dependence of φ(x) on x is assumed to be
linear. Let v(x) describe the left edge of the beam; then, v(x, y) = v(x) + φ(x)(w/2 + y),
where y changes in the range −w/2 ≤ y ≤ w/2. At x = 0 and x = s, one has φ(0) = 0 and
φ(s) = ∆v/w, and the transition between these two values is linear in x. Here, ∆v is the
absolute value of the height difference between the left and right wings of the cantilever at
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x = s. This value can be directly measured interferometrically. Therefore, for 0 ≤ x ≤ s,
one finds:

v(x, y) = v(x) + ∆v
( x

s

)(1
2
+

y
w

)
. (13)

Figure 3. Left: adhered cantilever with the indicated position of the cross-section. Right: cross-section
where v(x, y) is the gap.

The second term in Equation (13) is related to the twisting of the cantilever. The ex-
periment, as shown in Section 4.1 below, demonstrates that the linear dependence of the
twisting term on x continues close to the point of adhesion x = s. In this case, the boundary
conditions for the function v(x, y) can be obtained from Equation (13):

v(0, y) = H, v′(0, y) = ϑ +
∆v
s

(
1
2
+

y
w

)
;

v(s, y) = ∆v
(

1
2
+

y
w

)
, v′(s, y) =

∆v
s

(
1
2
+

y
w

)
. (14)

where ϑ is the slope of the left edge of the cantilever. In the normalized form, the twisting
changes only the coefficients A1 in Equation (11), which becomes now a function of the
normalized variable η = y/w:

A1 = a + b(1/2 + η), b = ∆v/H, (15)

where b is an additional parameter with a typical value b ∼10−2. In the conditions of the
experiment, the angle ϑ is typically 10−3 − 10−4, while the ratio ∆v/s that characterizes the
correction to the beam slope is in the order of 10−5. Therefore, the twisting only slightly
disturbs the derivative, but is essential for the function v(x, y).

2.3. Adhesion Energy
2.3.1. General Formula

In the gravitational field, an additional contribution appears in the energy of the
deformed beam. Instead of using Equation (6) to model the energy, the energy is as follows:

U(s) =
∫ w/2

w/2
dy

∫ s

0
dx

[
D
2

(
d2v
dx2

)2

+ ρgtv

]
. (16)

Here, the second term in square brackets is the potential energy of the deformed beam
in the gravitational field if the zero potential is taken at z = 0. The minimization of the total
energy (5) on s provides the expression for the adhesion energy:

Γ = − 1
w

dU
ds

. (17)

The energy U(s) can be calculated using the shape function v(x, y) defined by Equation (11)
with the y-dependent coefficient A1 (15).
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To simplify the analysis, consider first the case of b = 0 (no twisting). Calculating the
energy U(s) with v(x), one can find the expression for Γ after lengthy algebra. The final
result is, however, rather compact:

Γ = Γ0

(
1 − γ − a

3

)2
. (18)

This result needs to be understood. When γ − a = 0, the adhesion energy is equal to
Γ0. With the increase in this parameter, Γ decreases and becomes zero at γ − a = 3. This
is because gravity and a negative slope both cause the beam to approach the substrate,
regardless of the forces acting in the adhered area. As the parameter γ − a > 3 increases
further, the adhesion energy increases again, but this region cannot be reached in a realistic
system. To see this, let us present the normalized shape (11) in the equivalent form:

ζ(ξ) = −(1 − ξ)2
[
γξ2 − (2 + a)ξ − 1

]
(19)

where the factor (1 − ξ)2 reflects the boundary conditions at ξ = 1. The polynomial in
square brackets can have a root within the interval 0 < ξ < 1. This root appears when
γ − a > 3, and its existence means that the gap becomes negative inside the interval
0 < ξ < 1. Any physical solution cannot go below the stiff substrate. This means that the
lengths s that can be realized must satisfy the condition γ − a < 3.

In the case of nonzero twisting (b ̸= 0), the expression for Γ has the following form:

Γ = Γ0

[(
1 − γ − a

3

)2
− γb

3

]
. (20)

Since b = ∆v/H is always small in comparison with a and γ, the term with b is the
correction made to the main result (18).

2.3.2. Universality of the Solution

The initial assumptions about the adhered cantilever do not include whatever nonzero
slope at the fixed end. The expressions (1) for the adhesion energy and (2) for the shape also
do not contain the slope [37]. However, the experimental circumstances may differ signifi-
cantly from the ideal case, as Figures 2 and 3 illustrate. In real-world conditions, the fixed
end may hang above the support, and the actual point of support may be in a completely
different location. Now, the following question arises: whether the expressions (11) for the
shape and (18) or (20) for the adhesion energy are applicable for all possible configurations.

The cantilever is firmly fixed to the base layer of the SOI wafer. The contact with
the supporting SU-8 layer can be compliant, but it is not significant since the height is
determined experimentally. The most general case is shown in Figure 4. One can imagine
three different situations when the information on the shape of the cantilever is collected
starting from each four-pointed star to the adhered end. Point 1 corresponds to a positive
slope ϑ1 > 0, point 2 is for zero slope ϑ2 = 0, and point 3 corresponds to a negative slope
ϑ3 < 0. The shape of the beam is described by the same Equation (8) but with different
boundary conditions (no twisting is assumed for simplicity):

v(0) = Hi, v′(0) = ϑi;

v(si) = 0, v′(si) = 0, (21)

where i = 1, 2, 3. The parameters entering here Hi, ϑi, and si are determined from the same
experimental interferogram. Certainly, all three solutions are the parts of the same curve,
but it is not that apparent that the adhesion energy is given by the same Equation (18) for
the ith set of the parameters. In other words, is Equation (18) universal?
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Figure 4. General case of the adhered cantilever. The experimental data are collected between
locations 1, 2, or 3 and the adhered end.

To prove the universality, let the referent case be case 1: H = H1, s = s1, ϑ = ϑ1. Then,
from Equation (11), one finds the height Hi and the angle ϑi (i ̸= 1):

Hi = Hr2
[
−γr2 − (2 + a − 2γ)r + (3 + a − γ)

]
,

ϑi =
Hr
s

[
4γr2 + 3(2 + a − 2γ)r − 2(3 + a − γ)

]
, (22)

where r = si/s. Using these relations, one can express the adhesion energy for the ith case
via the parameters of case 1. After some transformations, one finds:

Γi = Γ0i

(
1 − γi − ai

3

)2
≡ Γ0

(
1 − γ − a

3

)2
, (23)

where for the ith case, the parameters are

Γ0i = Γ0
H2

i
H2r4 , γi = γ

Hr4

Hi
, ai =

ϑisi
Hi

.

The universality means that any segment of the bent cantilever that includes the
adhered end can be used to determine the adhesion energy.

3. Interaction Energy
3.1. Parallel Plates

In the adhered area, the equilibrium distance between the surfaces in contact is
h0 ≳ 10 nm due to the roughness of microfabricated surfaces. If capillary forces can
be excluded by the humidity control, only dispersion and electrostatic forces contribute to
the interaction energy W (h0). In the area of direct contact, additional surface forces
can contribute, but this area is too small to significantly influence W (h0), as was
demonstrated previously [46,48].

Let P(h) be the force per unit area acting between parallel flat plates. The interaction
energy between parallel plates is

W(h) =
∫ ∞

h
dxP(x). (24)

To calculate the interaction energy between rough surfaces W(h), one has to know the
density distribution function f (z), where z is the height of asperities with respect to the
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average plane position of the rough surface. If f (z) is known, then W(h0) can be presented
in the following form:

W(h0) ≈
∫ h0−hc

−∞
dz f (z)W(h0 − z), (25)

where hc ≈ 0.2 nm is the smallest possible distance between the surfaces in contact due to
short-range repulsion forces. Here, the approximate equality means the following. First,
the contribution from the area of direct contact is neglected because the interaction energy
at contact is about 0.1 J/m2, but the relative area of direct contact is approximately of
10−6. The resulting contribution to W(h0) is then rather small, namely of about 0.1 µJ/m2.
Second, the exact value of hc is determined by the balance of attractive and repulsive
(elastic) forces, but if one takes hc = 0.2 nm, the error W(h0) is again of the order of
0.1 µJ/m2. The exact form of Equation (25) is given in Ref. [46].

If one can neglect the contact contribution to the force, then only the dispersion
and electrostatic forces are significant. The Casimir–Lifshitz force (or DF) is described in a
general case by Lifshitz theory [2,3]. In this theory, the force cannot be presented analytically
as a function of distance. For discussion purposes, let us use a simplified representation:

PCL(h) = PCL(h0)

(
h0

h

)α

. (26)

Here, the exponent 3 < α < 4 is a slowly varying function of the distance h and can
be treated as a constant within a finite range of distances. However, for all numerical
calculations, the entire Lifshitz theory is employed.

An additional contribution to the total force P(h) originates from the electrostatic force.
Even if both contacting bodies are grounded, a residual potential difference exists due to
the differences in the work functions of the materials. The electrostatic force acting between
flat parallel plates is

Pel(h) = − ε0V2

2h2 (27)

where ε0 is the permittivity of the vacuum, and V is the potential difference between the
contacting plates. The force here is chosen to be negative since it is attractive. A typical
value for the potential difference is V ∼100 mV.

For example, at h0 = 20 nm, the DF between Si and Ru is PCL(h0) = −1191 Pa, and
the exponent in the range near 20 nm is α = 3.30. These values have been found using
Lifshitz theory with the optical data in a wide range of frequencies taken from Ref. [49]
for Ru and from Ref. [50] for Si. The force value can be compared with the electrostatic
force at the same distance, that is, Pel(h0) = −111 Pa, where the potential difference is
taken to be V = 100 mV. This relation between the electrostatic and dispersion forces
demonstrates a general tendency that the electrostatic force becomes less significant at
a smaller separation compared to the distances h∼100 nm [8,10]. For the interaction
energy between flat surfaces, it was found that WCL(h0) = −9.86 µJ/m2 for the dispersion
contribution and Wel(h0) = −2.21 µJ/m2 for the electrostatic one. The roughness effect
makes increasing the magnitude of both these values (see below), but WCL is affected more,
as soon as it increases faster with a decreasing distance than Wel does.

The measured value of the adhesion energy Γexp determined according Equation (18)
has to correspond to the theoretically predicted value: Γth = −W(h0). The equality is real-
ized at some average equilibrium distance between the surfaces h0. To stress is that one can
use this relation in the opposite direction. Namely, it is possible to determine the unknown
distance h0 from the measured value Γexp = Γth(h0) as was proposed earlier [46,48].

3.2. Tilted Plates

Equation (18) defines the adhesion energy where the parameters ϑ, H, and s are
determined from the measured shape v(x). The value of Γexp measured in this way is
expected be smaller than that from the theory because the adhered part can be tilted with
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respect to the substrate. For a comparison between the theory and experiment, one has to
take into account the theoretical calculations of the tilting angle due to twisting.

Let W(h) be the interaction energy per unit area between two rough parallel plates
separated by the distance h. If there is a tilting angle between the plates φ = ∆v/w, the ef-
fective energy between the plates can be calculated using Derjaguin’s approximation [51]
(proximity force approximation (PFA)). This approximation works well because the angle
φ ∼10−4 is quite small. The effective interaction energy is

Weff(h0) =
1
w

∫ w/2

−w/2
dyW(h0 + ∆v(1/2 + y/w)), (28)

where h0 is the equilibrium distance between the surfaces in contact. Since the adhesion
energy is the work needed to separate the surfaces, one finds for the effective value that

Γeff = −Weff(h0) = − 1
∆v

∫ h0+∆v

h0

dhW(h). (29)

If the energy between parallel plates W(h) is assumed to be known, then one can find
the effective adhesion energy that can be compared with the experimental result defined by
Equation (20).

4. Experimental Example

A scanning interferometer that is able to determine the shape of cantilevers with a
precision of 1 nm has been demonstrated [42]. As a preliminary result, the shape of a
Si minicantilever with a thickness of 10 µm, a length of 12 mm, and a width of 200 µm
has been determined. In that study, the original interferogram was used to determine the
adhesion energy between Si (cantilever) and Ru (substrate).

4.1. Determination of Γexp

The setup worked as follows. Two laser beams from the interferometer scan along
the length of a cantilever, starting from the adhered end (see [42] for details). One beam
moves on the substrate, while the other one goes on the edge of the cantilever. The centers
of these two beams are separated by a distance of 35 µm. The reflected beams interfere and
the resulting intensity is recorded as the signal. The signals are collected separately for the
beams moving along the left or along the right edge of the cantilever.

The interferometer signal for the laser beams moving along the left side of the can-
tilever is shown in Figure 5a. The data between two red crosses are used to determine
the shape of the cantilever from the interferogram. The position of the left cross, which is
close to the fixed end, is chosen to exclude uncertainties in the signal that appear in the
transition region at x close to zero. If one takes the initial point closer to the transition
point, the error in the determination of the angle ϑ is considerably larger. The right cross
indicates the last point taken at the inflection point. The red stars show the extrema of
the interferogram. The blue dots in Figure 5b correspond to the height of the cantilever
h0 + v(x,−w/2) restored from the data in Figure 5a. The restoration is unique because it
is known that the function v(x,−w/2) cannot have more than one maximum. The brown
dots correspond to the height restored from the data collected from the scanning along the
right side of the cantilever. These data correspond to the function h0 + v(x,+w/2). As one
can see, the right side is not adhered and hangs above the substrate at a height of h0 + ∆v,
demonstrating the effect of the twisting of the cantilever, where ∆v = 352 nm.

The angle ϑ and the exact height H are determined from fitting the curve near the fixed
end by a fourth-order polynomial. The exact value of the unadhered length s is determined
from a similar fit at the adhered end. This procedure reduces the noise, which is the largest
at both ends of the interferogram. The quality of the fits is demonstrated in the insets. In this
way, it is found that ϑ = −0.223 × 10−3, H = 5.312 µm, and s = 9.978 mm. Young’s modu-



Physics 2024, 6 1214

lus for a single crystal Si wafer with orientation (100) is E = 169 GPa [52]. Using a cantilever
thickness of t = 10 µm, one can find the following with the help of Equations (1) and (10):

Γ0 = 0.72 µJ/m2, a = −0.419, γ = 1.262, b = 0.066, (30)

where the silicon mass density ρ = 2.33 × 103 kg/m3 has been taken. As one can see,
the parameters a and γ cannot be neglected in Equation (20). Using these parameters, one
can find the experimental value of the adhesion energy Γexp = 0.11 µJ/m2. The errors
on Γ are not discussed here in detail, but they cannot be larger than 5%, as statistical
analysis demonstrates. The adhesion energy is unexpectedly small. The reason for such a
small value is related to the twisting of the cantilever and the significant roughness of the
interacting surfaces.
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Figure 5. (a) Intensity signal recorded for two laser beams moving along the left side of the cantilever.
The red stars show the extrema positions, and the crosses indicate the first and the last point used
in calculations. (b) The shape of the adhered cantilever extracted from the interference signal as a
function of the x-coordinate. Blue dots present the data collected for the beams moving along the
left side, and brown dots are those for the right side. The inset on the left shows a zoomed-in view
near the fixed end. The inset on the right demonstrates the data near the adhered end. The magenta
curves fit the noisy data near the ends.

Figure 6a shows the height difference vR − vL between the right and left sides of the
cantilever as a function of x. It confirms the linear dependence that has been assumed in
Equation (13). Quite close to the adhesion point, the transition to a constant value occurs as
it should be for the adhered part. Since the transition region is narrow, a sharp transition
was assumed in Section 2.2.2 that resulted in boundary conditions (14). The adhesion
energy (16) can obtain an additional correction if the forces acting in the adhered region
contribute to the twisting. If in the adhered area, only the DF is involved, it produces the
following moment of force:
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MDF = (L − s)
∫ w

0
PCL(h0 + v(s, l − w/2))ldl

= (L − s)w2PCL(h0)I(∆v/h0),
(31)

where I(q) is defined as

I(q) =
∫ 1

0
(1 + qx)−αxdx. (32)
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Figure 6. (a) The height difference between the right and the left side of the cantilever as a function of
distance x. (b) Difference between the shapes measured experimentally and predicted theoretically.
The agreement is good since the deviation is not more than 1%.

Here, the simplified form (26) of the DF is used to estimate the force. From the
mechanical point of view, the moment MDF results in the twisting of the beam on the angle
φDF = ∆vDF/w according to the equation [53]: MDF = 0.333 t3G φDF, where G = 79.4 GPa
is the shear modulus of (100) Si [54]. If the ratio ∆vDF/∆v ≪ 1, the beam twisting is the
built-in effect, and twisting does not contribute to the energy (16). Calculations demonstrate
that the ratio ∆vDF/∆v decreases from 0.26 at h0 = 10 nm to 0.026 at h0 = 50 nm. In the
specific example considered here, the value of h0 is estimated (see below) as 45 nm, which
gives ∆vDF/∆v = 0.031. Therefore, the twisting can be neglected in the energy.

It is also necessary to see how good the measured shape of the cantilever is described
by the theoretical curve (11). The difference between the experimental and theoretical
curves vexp − vth as a function of x is shown in Figure 6b. One can see that the deviation
is negative as it should be if some external attractive force like dispersion or electrostatic
force is acting outside of the adhered area. The magnitude of the deviation is about 1% of
the height H in its maximum. The position of the maximum is shifted to the adhered end.
All these features have to be observed if the DF is acting between the cantilever and the
substrate outside of the adhered area [41]. However, it is too early to state that the observed
deviation is due to the DF. More theoretical and experimental studies need to be done to
support the statement.

4.2. Roughness

The roughness of the contacting surfaces is essential for the theoretical prediction of
the adhesion energy. Although the working surface of the cantilever is the polished side
of the SOI wafer, it becomes rough after oxidation with the following etching of the oxide.
The substrate is covered by a deposited material, which in this case is ruthenium. The AFM
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scans of both surfaces have been presented in Ref. [42]. The scanned area was 5 × 5 µm2,
recorded with a resolution of 1024 pixels per line. For each surface, three scans recorded in
different places have been performed. The roughness of both surfaces cannot be described
by the normal distribution, as one can see in Figure 7a,b. The deviation is well visible on
the logarithmic vertical scale. There are much more high peaks than those predicted by
the normal distribution. This effect was already stressed previously for the magnetron [55]
deposition of metals on a cold substrate without annealing.
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The interaction energy between two rough surfaces is equivalent to the interaction
between a flat surface and a rough surface with a combined roughness, which can be
presented as a sum of two AFM scans. The density distribution function shown in Figure 7c
is the average distribution function found from the different combined scans of the substrate
and the cantilever (nine combinations in total). Although the root mean square (RMS)
roughness is not large, σ = 2.14 ± 0.14 nm, exceptionally high peaks up to 25 nm can be
found on an area of 5×5 µm2. At z > 5σ, the curve can be described by the exponent
Be−z/Σ, as the solid black line demonstrates, where B = 6.87× 10−3 nm−1 and Σ = 3.41 nm
are the parameters. Note that Σ is larger than the RMS roughness (σ = 2.14 nm). This kind
of distribution has been observed previously, for example, for magnetron sputtered Cu [55].
The asymptotic behavior of f (z) is essential to relate the distance on contact h0 with the
interaction energy according to Equation (25).

4.3. Relation Between Γ and h0

If the distribution function f (z) is known, one can calculate the adhesion energy
Γth(h0) = −W(h0). The result is shown in Figure 8a, where the solid blue curve shows
the contribution of the DF in Γ, and the gray stripe demonstrates uncertainty due to the
electrostatic interaction with V ≤ 100 mV. However, it is not possible to compare this
curve directly with the experimental result Γexp = 0.11 µJ/m2 because the cantilever is
twisted. Instead, the effective value Γeff given by Equation (29) has to be compared with
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Γexp. The effective adhesion energy for pure dispersion interaction as a function of contact
distance h0 is shown in Figure 8b, where again the gray stripe demonstrates the uncertainty
due to the electrostatic interaction. For the effective energy, the electrostatic interaction is
crucial as soon as it decays slower with the increasing distance. The measured value of the
adhesion energy is shown by the thick horizontal dashed line.
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due to the electrostatic interaction with the potential difference V < 100 mV. The true value of the
adhesion energy due to pure dispersion interaction lies between the horizontal dashed lines. (b) The
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The thick dashed line corresponds to the measured adhesion energy Γexp that has to be compared
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42.0 < h0 < 48.1 nm and V < 13 mV. See text for details.

The position of the cross-point between the dashed line and solid curve gives the equi-
librium value of the distance on contact h0 = 42.0 nm. This value has to be considered as the
lower limit on the equilibrium distance because it corresponds to the minimum potential
difference V = 0. On the other hand, one can find the absolute upper limit for h0. The ad-
hered part of the cantilever has to make contact with the substrate in at least three points.
The total number of pixels in the nominal adhered area is N = (L − s)w/Apx ≈ 1.68 × 1010,
where Apx = (5000 nm/1024)2 = 23.8 nm2 is the area of one pixel. The relative area of
direct contact that takes into account the twisting angle φ = ∆v/w is

R(h0) =
1
w

∫ w/2

−w/2
dy

∫ ∞

z0(y)
dz f (z), (33)

where z0(y) = h0 − hc + ∆v(1/2 + y/w) is the local height. In using the asymptotic
presentation for f (z) = Be−z/Σ at z > 5w, the contact area is

R(h0) ≈
Σ2B
∆v

e−(h0−hc)/Σ. (34)

From the condition NR(h0) > 3, one finds the upper limit h0 < 48.1 nm; thus,
the contact distance has to be in the interval 42.0 < h0 < 48.1 nm. Indeed, at exceptionally
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large z, the distribution function can decrease faster, but 48.1 nm can be taken as the
absolute upper limit.

The dark-gray curved triangle in Figure 8b demonstrates the allowed region of the
parameters in the (h0-V) space. The red dashed curve shows that the allowed poten-
tial difference is not more than 13 mV. The value of the adhesion energy ΓDF related to
pure dispersion interaction is between the ordinates of the blue curve in Figure 8a cor-
responding to the interval 42.0 < h0 < 48.1 nm. The value of ΓDF lies in the interval
1.09 < ΓDF < 1.56 µJ/m2.

4.4. Discussion

The analysis of the experimental example allows us to make several conclusions,
which are significant for actual experiments with adhered cantilevers. First, there is a
technological problem related to the twisting of the cantilever. It strongly reduces the
measured value Γexp and introduces uncertainties in the true value of the adhesion energy Γ.
Still, there is no complete understanding about the factors driving the twisting. The second
critical issue is the significant roughness of the interacting surfaces. It defines the minimal
distance between the surfaces in contact h0. The adhered cantilever method is designed
for h0∼10 nm, but in the example in Section 4.3, it is found to exceed 40 nm. For larger
h0, the DFs become weaker and the effect of the electrostatic forces is relatively stronger.
The crucial parameter in this case is not the RMS roughness but the excessive number of
high peaks in the distribution function. For the substrate covered with a metal, the issue,
however, is not of high importance. Indeed, one can sputter the metal on a hot substrate
to obtain normal distribution [55]. However, the roughness of the working surface of the
cantilever will stay significant. This effect is due to the fabrication steps related to the
oxidation of the SOI wafer with the following etching of the oxide. One has to look for
methods to reduce the roughness or even change the fabrication method for cantilevers.

From Figure 8b, one can conclude that at larger h0, the role of the electrostatic inter-
action increases. In all experiments where the Casimir–Lifshitz force has been measured,
the electrostatic force was minimized by applying a compensating potential. For the ad-
hered cantilever method, the effect of the electrostatic force is less critical but still necessary
to be minimized. This can be included in the technological process. If the electrostatic
interaction can be minimized, then, from Figure 8b, one can find a precise value of h0 and,
from Figure 8a , the true value of the adhesion energy induced by the DF.

On the other hand, the adhered cantilever method is highly attractive. The method
can be applied to different materials. The nominal interaction area is large in comparison
with all the other Casimir-type experiments, and for this reason, one may deal with much
stronger forces. Surely, the main advantage of the method is the possibility to measure the
dispersion interaction at quite short separations without the loss of stability.

5. Conclusions

This paper is devoted to the development of a new method to measure the Casimir–
Lifshtz forces or, more generally, the dispersion forces at distances in the order of 10 nm.
Standard methods to measure these forces fail at short separations due to loss of stability.
The adhered cantilever method is stable at any separation distance and can measure the
forces directly at the contact distance. To obtain information on the acting forces, one has to
know the precise shape of the cantilever in a considerably wide range of heights. An in-
terferometric setup that is able to collect this information has been presented recently [42].
The first application of the setup to minicantilevers produced using microfabrication meth-
ods revealed a number of nonidealities that do not allow one to use the standard relation
(1) between the adhesion energy and the parameters of the cantilever.

A new relation for the adhesion energy (20) is deduced in this paper and can be used
for slightly twisted cantilevers that have a nonzero angle at the fixed end and are subject to
gravity. The effects of nonideality significantly change the value of the adhesion energy
compared to the generally accepted relation (1).
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The new relation is applied to the first test result from the setup where a silicon
cantilever adhered to a substrate sputtered with ruthenium. The analysis of the data
revealed a significant role of the roughness of the surfaces in contact. An essential deviation
in high asperities from the normal distribution and large nominal contact area provide a
rather large contact distance in the range of 45 nm. Although the effect of the electrostatic
potential difference between the surfaces is not significant, the importance of unknown
electrostatics increases due to the twisting of the cantilever. The twisting also reduces the
measured adhesion energy to a small value of Γexp = 0.11 µJ/m2 as soon as only one side
of the cantilever is adhered and the other side hangs above the substrate. The recalculated
value corresponding to the parallel surfaces gives a true adhesion energy of 1.3 µJ/m2 with
uncertainty defined by the electrostatic contribution.

The analysis performed demonstrated some possible issues of the setup to be ad-
dressed before carrying out the measurements.
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