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Abstract: This paper explores the optical approach to simplifying complex concepts in general
relativity (GR) and nonlinear vacuum electrodynamics. The focus is on using optical analogies
to simplify the understanding of spacetime curvature and interactions in strong gravitational and
magnetic fields. We demonstrate how applying concepts of effective refractive index can facilitate the
teaching and comprehension of GR optical effects, such as gravitational lensing and the behavior of
light around massive objects. Additionally, the paper covers the application of optical analogies in
the context of nonlinear vacuum electrodynamics, showing how strong magnetic fields affect light
propagation. This interdisciplinary approach provides a more natural understanding and modeling
of complex physical phenomena, making them better accessible for study and teaching.
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1. Introduction

Studying the effects of general relativity (GR), particularly its optical effects, presents
a challenging task, primarily due to the need to explain spacetime curvature and utilize ad-
vanced mathematical tools [1]. It is possible to accurately describe the physical phenomena
of spacetime using the field equations of GR. However, these equations possess a complex
mathematical structure, and even the simplest geodesic equations generally lack analytical
solutions. These complexities often become significant barriers in the educational process,
especially when lacking enough knowledge in higher mathematics.

However, despite these challenges, there is a growing interest in including GR in
school and university curricula, given its importance in modern physics and its practical ap-
plications in areas such as GPS (Global Positioning System) technology and astronomy [2].
Recent studies indicate that even high school students can develop a qualitative under-
standing of key GR concepts, provided the students have access to appropriate educational
resources and support from the teachers [3,4].

There are various methods for teaching GR, including the use of numerical modeling
and computer simulations [1,5]. However, many of these approaches remain challeng-
ing to grasp at a natural level, which limits their effectiveness for educational purposes.
Research suggests that using more visual methods, such as optical analogies, can signifi-
cantly enhance students’ understanding of complex GR concepts by making them more
accessible [6].

The purpose of using optical analogies, such as the refractive index, in the context of
GR was first proposed by Igor Tamm [7], then by Nándor Balazs [8], and has been further
developed in subsequent research [9–15]. Building on this studies, we demonstrate how
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the concept of an effective refractive index can be applied to model GR effects, such as
the behavior of light near stationary and rotating massive objects, as well as in the case of
nonlinear vacuum electrodynamics [16,17]. This underscores the value of this approach for
modeling and teaching complex physical phenomena.

We show that using these analogies not only makes it more straightforward to under-
stand complex GR concepts but also makes those concepts more accessible for teaching,
potentially simplifying the learning process and increasing student interest in the topics.
To this end, in this paper, we demonstrate how the examples and methods compiled can
facilitate the educational process and make complex theoretical concepts more accessible to
students and young researchers.

The current paper is organized as follows. Section 2 reviews the concept of the optical
medium approach in the GR theory. In Section 3, we consider the effective refractive index
in the case of spherical symmetric gravitational field. In Section 4, we study the refractive
index and deflection angle for the rotating compact objects. In Section 5, we calculate
the effective refractive index in nonlinear vacuum electrodynamics. The application of
the considered method to magnetars is shown in Section 6. Finally, Section 7 contains a
summary of the results.

2. The Concept of the Optical Medium Approach

The concept of the optical medium approach involves discarding some of the internal
paradigms of a given theory and replacing them with a medium that has a corresponding
refractive index n [18]. The refractive index can reproduce the optical effects derived from
the theory. This concept allows for natural and visual representation of complex physical
phenomena, making them more accessible for understanding and analysis.

In the case of GR, the internal paradigm is the curvature of spacetime. The curvature
caused by massive objects affects the trajectories of light and matter, creating effects such
as the behavior of light near massive objects; see Figure 1, right. In the optical medium
approach, one can represent this curved geometry as a medium with a variable refractive
index, which often depends on mass and distance [19]; see Figure 1, left. This allows using
of optical analogies to understand and model the effects of GR without delving into the
complex mathematical aspects of the theory. Many studies have been conducted using the
optical medium approach, which enables the study of motion with high accuracy without
the need to solve geodesic equations [9,11]. This method applies not only to homogeneous
media in spherically symmetric spacetime but also to the various scenarios of gravitational
fields of compact objects with quadrupole moments [14,15,20,21].

Figure 1. Demonstration of the refraction of light by a gravitational field. Left: representation by
spacetime curvature. The red ball shows the massive body, the blue and green arrows show the light
direction as indicated. Right: representation by an optical medium. The blue arrow shows the light
direction. The numbers indicate the layers (in red).

Similarly, in the case of the nonlinear theory of vacuum electrodynamics, the internal
paradigm involves the formation of electron–positron pairs in the presence of a strong
magnetic field [22]. In this context, the optical medium approach allows us to represent the
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vacuum as a nonlinear medium with a refractive index that depends on the intensity of the
magnetic field [17]. This helps us straightforwardly understand how strong fields affect the
properties of the vacuum and particle interactions.

One of the key advantages of the optical medium approach is the ability to simulate
gravitational fields in laboratory conditions using optically non-uniform media. This
allows for the visual reproduction of effects similar to those described by the theory of
gravitational lensing.

In Ref. [23], methods for forming a spherical layered structure through the adjustment
of the temperature regime of a metal sphere placed in a gas environment are proposed.
Since the refractive index of the gas changes with temperature, heating or cooling the sphere
allows for the creation of the needed temperature distribution and the achievement of the
necessary refractive index profile n(r), with r denoting the distance. However, the main
challenge of this model lies in accurately reproducing the required temperature distribution
in the gas.

Instead of gas, it is more convenient to use a transparent solid material with a pro-
nounced temperature dependence of the refractive index; see Figure 2. For example, in
Ref. [24], plexiglass was used. Using such a material is more straightforward than gas
environments; however, even in this case, only a qualitative reproduction of the optical
characteristics of gravitational lenses can be achieved, as it is complicated to ensure an accu-
rate temperature distribution throughout the volume of the lens. These complications can
be overcomed by avoiding the creation of a non-uniform medium and instead reproducing
only the required deflection angle, θ(r), using a lens made of homogeneous transparent
material with a specially designed surface geometry, the shape of which was calculated in
Refs. [23,24].

Figure 2. Cross-section of a gravitational lens model of plexiglass on the xy-plane. The green arrow
indicates the light coming from the left at a distance b from the x-axis. N denotes the surface normal,
n is the refractive index, θ is the deflection angle, dx and dy are the projections of the light path along
the x and y axes, respectively, associated with the angle α.

The shape of a lens that provides a specified refraction law θ(y) , where y is the
parameter that associated to the impact parameter b. For simplicity, one of the lens surfaces
is made flat, allowing rays traveling parallel to the x-axis to pass through the entry surface
without deviation. The shape of the refracting (exit) surface x = xS(y) is determined based
on Snell’s law: n sin α = sin β, where the angles α and β are measured relative to the surface
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normal N. Given that β = α + θ(y) and tan α = dxS/dy, the wanted equation for the
surface can be obtained as

xS(y) = x0 −
∫ y

0

sin θ(y
′
)

n − cos θ(y′)
dy

′
. (1)

Expression (1) remains valid not only in the case of axial symmetry, but also in the
case when the deflection angle θ depends not just on the impact parameter y, but on
the azimuthal angle ϕ as well. However, in that case, the refractive surface of the lens
x = xS(y, ϕ) is no longer a surface of revolution.

In what follows, we analytically consider the methods for calculating the effective
refractive index and deflection angle for some cases, as these quantities play a key role in
conducting demonstrative experiments.

3. The Effective Refractive Index in the Case of the Schwarzschild Solution

The solution to the Einstein field equation for a static and spherically symmetric
gravitational field, known as the Schwarzschild solution [25], has the following form:

ds2 =
(
1 − rg/r

)
c2dt2 − r2

(
sin2 θdϕ2 + dθ2

)
− dr2

1 − rg/r
, (2)

where rg = 2GM/c2 is the so-called Schwarzschild radius with G the Newtonian grav-
itational constant, M the object mass, and c the speed of light, and t denotes the time.
Throughout the paper, the da2 denotes the differential squared, (da)2, not the differen-
tial of the squared variable. The line element (2) can be expressed in isotropic form
ds2 = f (ρ)dt2 − dρ2 by introducing a new radius coordinate ρ using the transformation

r = ρ

(
1 +

rg

4ρ

)2
(3)

since in the isotropic form, the metric has the same coefficient for all spatial coordinates
(ρ, θ, φ) [14,25].

Upon the transformation (3), the metric reads

ds2 =

(
1 − rg/(4ρ)

1 + rg/(4ρ)

)2

c2dt2 −
(

1 +
rg

4ρ

)4(
dρ2 + ρ2(sin2 θdϕ2 + dθ2)

)
, (4)

where dρ2 + ρ2(sin2 θdϕ2 + dθ2) has the dimension of the square of the infinitesimal length
vector, dρ2. The speed of light in isotropic coordinates can be determined as follows:

v(ρ) =
∣∣∣∣ d⃗ρ

dt

∣∣∣∣ =
(
1 − rg/(4ρ)

)
c(

1 + rg/(4ρ)
)3 . (5)

Using inverse coordinate transformation, ρ = 1
2

(
(r − rg/2) +

√
r(r − rg)

)
, building

on the work of [14] one can express the velocity of light as a function of r:

v(r) = v(ρ)
dr
dρ

=
c(r − rg)

r
. (6)

Defining n(r) = c/v(r), the resulting equation provides the effective refractive index
for light in a Schwarzschild gravitational field:

n(r) =
r

r − rg
. (7)
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The effective refractive index n(r) (7) from the Schwarzschild solution reveals how
gravitational fields influence light propagation. As r approaches the Schwarzschild radius
rg, n(r) increases dramatically, indicating stronger gravitational effects. Under the far-field
approximation, the expression (7) can be expressed as

n(r) = 1 + rg/r. (8)

Using the effective refractive index, one can derive characteristics of GR effects, such
as the deflection angle, straightforwardly compared to solving geodesic equations, as
demonstrated in Appendix A.

Having established the effective refractive index in the Schwarzschild metric, one can
extend this approach to other solutions of the Einstein field equations.

4. The Effective Refractive Index in the Case of a Rotating Object

For practical purposes, the linearized Kerr metric [26] satisfactorily describes the
gravitational field around a rotating star or planet. To simplify the problem, one can
consider the deflection in the equatorial plane using this linearized Kerr metric:

ds2 ≈ −
[(

1 −
rg

r

)
+

2rga
r

dφ

cdt

]
c2dt2 +

1
(1 − rg/r)

dr2 + r2(dθ2 + dφ2), (9)

where a = J/m represents the spin parameter of the rotating object, which is a measure
of the angular momentum per unit mass m. The multiplier dφ/(c · dt) denotes a frame-
dragging parameter due to the rotating body.

By using the same transformation (3) to convert to the isotropic form and performing
the same operations as in the case of the Schwarzschild solution, one derives expressions
for the effective refractive index in the case of a rotating object [10]:

n(r, θ) =
r

r − rg
·
[

1 +
a
c

rg

r − rg

dφ

dt

]−1/2
. (10)

The frame-dragging parameter for a slowly rotating mass in the equatorial plane (at
θ = π/2) can be obtained by applying the principle of conservation of momentum and
energy for photons. These conserved quantities can be expressed in terms of the covariant
components of the metric gµν (with the Greek letter indices taking the time and space
coordinates):

E = −gtt
dt
dλ

− gtφ
dφ

dλ
, (11)

L = gφφ
dφ

dλ
+ gtφ

dt
dλ

. (12)

where λ is the parameter by which the trajectory of light is parametrized. Expressing
dφ/dλ and dt/dλ from Equations (11) and (12), one derives the relationship

dφ

dt
=

gtφE + gttL
gφφE + gtφL

. (13)

By utilizing the relationship between E and L through the impact parameter b = L/E,
and substituting the components of the Kerr metric, one obtains expressions for the frame-
dragging parameter:

dφ

dt
=

rga + (r − rg)b
r3 − rgab

c. (14)

Then, up to the first order in a, the refractive index in the equatorial plane becomes

n(r) = 1 +
rg

r
+

rgab
r3 . (15)
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The result (15) shows that the refractive index depends on the spin parameter a. When
a = 0, it implies that the central gravitational body is non-rotating. In such a scenario, the
refractive index reduces to the Schwarzschild form (8). Comparing Equations (8) and (15),
one deduces that

n(r) = nSch(r) · [1 + δnrot(r)], (16)

where nSch(r) = 1 + rg/r is the main term corresponding to the static gravitational field,
and δnrot(r) = ab/

[
r2(1 + r/rg

)]
is the correction taking into account the influence of

angular momentum within the weak field. The angle of gravitational light deflection
corresponding to this refractive index is provided in Appendix B.

5. The Effective Refractive Index in Nonlinear Vacuum Electrodynamics

In classical electrodynamics, the propagation of light through a vacuum is unaffected
by external magnetic fields. This is due to the linear nature of Maxwell’s equations [27],
which do not predict any interaction between the electromagnetic waves (light) and a
static magnetic field. However, when considering the nonlinear electrodynamics of vac-
uum [16,17,28–41], the interaction between propagating light and external magnetic fields
becomes possible due to higher-order corrections, leading to novel phenomena such as
vacuum birefringence. Nonlinear electrodynamics extends the classical theory by incorpo-
rating higher-order corrections that become significant in strong electromagnetic fields. One
such framework is generalized Born–Infeld (BI) electrodynamics [17,35], which introduces
nonlinear terms in the Lagrangian to account for these effects. This theory predicts that
the vacuum behaves like a nonlinear optical medium with properties dependent on the
external field strength.

To understand how light propagates in such a nonlinear medium, consider the La-
grangian density of let us generalized BI electrodynamics:

L = ξ2

(
1 −

√
1 +

2S
ξ2 − P2

ξ2η2

)
, (17)

where S = 1
4 FµνFµν and P = 1

4 Fµν F̃µν with Fµν the electromagnetic tensor. The parameters
ξ and η are constants characterizing the nonlinear properties of the vacuum. Specifically, ξ
is related to the maximum possible field strength in BI electrodynamics, while η influences
the birefringence effect in the presence of an external magnetic field.

In further calculations, we consider the background magnetic field B0 caused by a
magnetic dipole. We focus on a simplified case when the light ray travels through the
equatorial plane of the magnetic dipole, as illustrated in Figure 3.

Figure 3. A schematic representation of a light ray traversing a magnetic dipole field. The red bold
arrow indicates the dipole direction, while the dashed lines represent the magnetic field B0, ui and u f
denote the initial and final position vectors along the photon’s trajectory, µ represents the magnetic
moment, and ∆θ denotes the bending angle formed between the initial and final position vectors.
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The refractive indices for two polarization modes (perpendicular and parallel to
the background magnetic field) were derived in Ref. [17] from the eigenvalues of the
polarization tensors:

n⊥ =
√

1 + B2
0/ξ2, (18)

n∥ =
√

1 + B2
0/η2. (19)

For relatively small values of the parameters B2
0/ξ2 and B2

0/η2, the effective refractive
indices can be approximated as

n⊥ ≈ 1 +
B2

0
2ξ2 , (20)

n∥ ≈ 1 +
B2

0
2η2 . (21)

The components of effective refractive indices , n⊥ and n∥, derived from the nonlinear
electrodynamics of vacuum illustrate how strong magnetic fields can alter light propagation.
These indices show that the vacuum behaves as a nonlinear optical medium, leading to
phenomena such as light deflection in Appendix C.

This approach not only transparentizes complex electromagnetic interactions in ex-
treme conditions but also aligns with the broader purpose of using optical analogies to
model and comprehend various physical phenomena.

6. Application on Magnetars

Magnetars are a type of neutron star known for their extremely strong magnetic fields,
which can reach up to 1011T on their surface [42,43]. Such fields are sufficient to exhibit
the effects predicted by the nonlinear theory of vacuum electrodynamics. In addition to
their intense gravitational fields, magnetars present a unique environment where both
gravitational and electromagnetic influences must be considered to fully understand the
behavior of light in the vicinity of magnetars [44]. The strong magnetic fields of magnetars
are capable of inducing significant light bending, birefringence, and other nonlinear optical
effects in the vacuum surrounding them. That is, the propagation of light near a magnetar
is affected not only by the curvature of spacetime due to gravity but by the nonlinear
interactions with the magnetic field as well [32].

By applying the optical medium approach, one can represent the effective refractive
index around a magnetar as a combination of contributions from gravity and nonlinear
electrodynamics [35]. Specifically, the total effective refractive index neff near the surface
of a magnetar on the equatorial plane can be expressed as a product of the gravitational
influence ngr, and a correction factor δnmag [33] as:

neff(r) = ngr(r) · [1 + δnmag(r)], (22)

where ngr = 1 + rg/r corresponds to the Schwarzschild refractive index and δnmag =[
1 + B2

0/(2ξ2)
]
r/(r + rg) is the correction factor due to the magnetic field. This form em-

phasizes the non-additive nature of the refractive index while providing a comprehensive
view of light propagation near magnetars, considering both spacetime curvature and strong
magnetic field effects.

7. Discussion

This paper has demonstrated the utility of the optical medium approach for un-
derstanding complex physical phenomena in Einstein’s theory of gravity and nonlinear
vacuum electrodynamics. Using optical analogies simplifies the representation and analysis
of these phenomena, making them more accessible for understanding and teaching. Addi-
tionally, the use of materials such as plexiglass to model gravitational fields in laboratory
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conditions allows for a qualitative reproduction of gravitational lensing effects making this
approach particularly useful for demonstrative experiments.

The optical medium approach is particularly useful for explaining the behavior of
light around magnetars, which possess strong magnetic fields. Magnetars create unique
conditions where both gravitational and electromagnetic effects are at play. Representing
spacetime curvature and nonlinear vacuum effects through refractive indices provides
a straightforward description of light behavior in such extreme environments. This ap-
proach enhances the understanding of magnetar physics and serves as an effective tool for
educating students and young researchers.
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Appendix A

The trajectory of light in the equatorial plane can be described by the general expression
for the refractive index [10,11,45]:

∆θ = 2
∫ ∞

b

dr

r

√(
n(r)·r
n(b)·b

)2
− 1

− π. (A1)

Here, b is the impact parameter.
Let us rewrite the integral in Equation (A1) as follows (see Equation (7)):

I ≡
∫ ∞

b

dr

r

√(
n(r)·r
n(b)·b

)2
− 1

= n(b) · b
∫ ∞

b

dr

r2
√

1
(1−rg/r)2 − b2r−2

(1−rg/b)2

. (A2)

Introducing q = rg/r and p = rg/b, the expression (A2) reads (here and in what
follows, nb ≡ n(b)),

I =
nbb
rg

∫ p

0

(1 − q)dq

q

√
1 −

(
q(1−q)
p(1−p)

)2
. (A3)

Returning to p = rg/b, the quantity 1/(p(1 − p)) can be represented as

D ≡ b2

rg(b − rg)
. (A4)

Then, one can represent the integral I (A2) as the sum of two integrals:

I =

(
nbb
rg

)[∫ 0

p

(1 − 2q)dq√
1 − D2q2(1 − q)2

+
∫ 1

0

qdq√
1 − D2q2(1 − q)2

]
(A5)

=

(
nbb
rg

)
I1 +

(
nbb
rg

)
I2.
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It is straightforward to identify

nbb
rg

=
1

p(1 − p)
= D. (A6)

The first term in Equation (A6) can be calculated by changing q to w = Dq(1 − q), so
that dw = D(1 − 2q)dq. Consequently, the upper and lower limits, q = 0 and q = p, change
to w = 0 and w = Dp

(
1 − rg/b

)
= 1

p(1−p) p(1 − p) = 1, respectively. That is,

(
nbb
rg

)
I1 =

∫ p

0

(1 − 2q)dq√
1 − D2q2(1 − q)2

=
∫ 1

0

dw√
1 − w2

= [sin−1 w]10 = π/2. (A7)

Thus, based on Equation (A1), the deflection angle reads

∆θ = 2
∫ ∞

b

dr

r

√(
n(r)·r
n(b)·b

)2
− 1

− π

= 2
(

nbb
rg

)
I1 + 2

(
nbb
rg

)
I2 − π

= π + 2
(

nbb
rg

)
I2 − π

= 2
(

nbb
rg

) ∫ p

0

qdq√
1 − D2q2(1 − q)2

. (A8)

Further assuming a weak-field approximation, the refractive index is given as n(r) = 1+ p.
Under these conditions, one can approximate 1/D = p(1 − p) ≈ p and q(1 − q) ≈ q, as-
suming q ≪ 1 and p ≪ 1. Then,

∆θ = 2D
∫ p

0

qdq√
1 − D2q2(1 − q)2

≈ 2
∫ p

0

qdq√
p2 − q2

= 2p = 2
rg

b
=

4GM
c2b

. (A9)

For a more detailed derivation of the gravitational light deflection angle, see [11].

Appendix B

The deflection angle can be computed using Equation (A1). When considering the
rotational parameter a only to the first-order approximation, the linearized form of the
deflection angle reads

∆θ = ∆θ0 + ∆θ1, (A10)

where the total deflection angle is represented by

∆θ =

∞∫
b

[
F(r) + aF1(r)

]
dr, (A11)

In this context, ∆θ0 represents the deflection due to the Schwarzschild spacetime,
given by Equation (A9). The function F1(r) is defined as

F1(r) = −
4m
(
b2 + b r + r2)

b r2(b + r)
√

r2 − b2
. (A12)

In the special case with a = 0, the deflection angle corresponds to that of Schwarzschild
spacetime [11]. For the weak-field limit, assuming a slowly rotating object, we take
a2/r2 ≪ 1 and 1/a = 2m/R ≪ 1, where R represents the radius of the rotating body.
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By evaluating the integral given in Equation (A11), the deflection angle can be deter-
mined up to the first order in the rotational parameter a. The second term of the integral
contributes to the deflection due to the spacetime’s rotation, leading to the frame-dragging
effect captured by the term ∆θ1, which is induced by the rotational components of the
metric as seen in Equation (9). Consequently, the deflection angle becomes

∆θ =
4m
R

(
1 +

a
R

)
. (A13)

The same results were obtained within alternative approaches in Refs. [9,13,14].

Appendix C

Here, to compute the deflection angle of light induced by a strong magnetic field, we
will demonstrate another method based on the Gauss–Bonnet theorem (GBT) [46]. The GBT
connects the geometry and topology of a surface, stating that the total Gaussian curvature
of a compact, orientable 2- dimensional surface, combined with the geodesic curvature
of its boundary, is proportional to the surface’s Euler characteristic. As a consequence of
this theorem, the angle of deflection of light is reduced to the calculation of the following
integral [47]:

∆θ⊥ = −
∫∫

D
KdS . (A14)

The region D is characterized by its Gaussian curvature K, which corresponds to
a smoothly orientable curved surface S with an infinitesimal surface element dS . The
Gaussian optical curvature K is described in terms of the coordinates and refractive index:

K = −n(r) · n′′(r) · r − (n′(r))2 · r + n(r) · n′(r)
n4(r) · r

, (A15)

where the prime denotes differentiation with respect to the distance r.
Consider the background magnetic field caused by a magnetic dipole. In this case, the

magnetic field of a magnetic dipole with the magnetic dipole moment m, located at the
origin, is given by [48]

B =
3(m · r)r

r5 − m
r3 . (A16)

Unlike the isotropic electric field generated by a Coulomb charge, the magnetic field
of a dipole is inherently anisotropic. Consequently, the bending angle of light depends on
the orientation of the magnetic dipole relative to the incoming light ray. For simplicity, we
consider the case where the light ray propagates through the equatorial plane of the dipole,
and the magnetic dipole direction is aligned with the z axis, represented as m = µẑ, where
µ represents the magnetic moment and ẑ is a unit vector along the z-axis.

In the equatorial plane, Equation (A16) simplifies to

Bz = −µẑ
r3 , (A17)

where r =
√

x2 + y2. For the perpendicular mode (A14), using the effective refractive
index, the Gaussian curvature is obtained as

K =
18µ2

ξ2r8 , (A18)

where ξ is the parameter related to the maximum possible field strength in Born–Infeld (BI)
electrodynamics.
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Using the light-ray equation r = b/ sin φ, and applying both Equation (A18) and the
expression for the area element dS = n2(r)rdrdφ, one can now rewrite Equation (A14):

∆θ⊥ = −
∫ π

0

∫ ∞

b
sin φ

18µ2

ξ2r8

(
1 +

µ2

2ξ2r6

)2

rdrdφ ≈ −
∫ π

0

∫ ∞

b
sin φ

18µ2

ξ2r7 drdφ. (A19)

As a result, the expression for the bending angle in the framework of generalized BI
electrodynamics is given by

∆θ⊥ = −15π

16
µ2

ξ2b6 . (A20)

The expression (A20) incorporates a negative sign, reflecting the fact that the deflection
is oriented toward the magnetic dipole. This expression provides the bending angle of light
within the framework of generalized BI nonlinear electrodynamics, accurate to the order
of ξ−2.
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