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Abstract: Inspired by recent proposals for detecting gravitational waves by using Bose–Einstein
condensates (BECs), we investigated the interplay between these two phenomena. A gravitational
wave induces a phase shift in the fidelity amplitude of the many-body quantum state. We investigated
the enhancement of the phase shift in the case of Bose condensates confined by an anisotropic
harmonic potential, considering both ideal and interacting BECs.
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1. Introduction

The connection between general relativity and Bose–Einstein condensates (BECs)
is gaining increasing importance, both for the possibility of detecting events such as
gravitational waves (GWs) and for investigating still obscure aspects of Einstein’s theory. A
recent development in this field is a theory known as emergent gravity, whose prime point
is that gravity is not a fundamental interaction and that spacetime is a composite object
behaving approximately like a superfluid. It is thus possible to study certain cosmological
phenomena in analogy with BECs [1,2], and to perform simulations of the effects of GWs
on BECs [3]. A further application of BECs on cosmological research is the possibility
to exploit them for GW detection, in order to develop a more compact tool than today’s
interferometers (such as LIGO (Laser Interferometer Gravitational Wave Observatory) and
Virgo [4,5]) to investigate multimessanger astronomy. As shown in Refs. [6–8], the GW
constitutes a source term for the phonons of the condensate, and the intrinsic coherence
of the latter provides an enhancement mechanism which can, generally, compensate for
the exceptionally small magnitude of the GW, which is of the order of 10−20. For a
comprehensive review about the interaction between macroscopic quantum systems and
gravity see, e.g., Ref. [9].

In this paper, we begin by deriving the GW equation and its solution in vacuum from
the Einstein field equations in Section 2. Subsequently, after providing a brief overview
of an established description of a BEC in a flat spacetime (Section 3), we extend the
analysis to a more general curved spacetime and generalize the Gross–Pitaevskii equation in
Section 4. Finally, in Section 5, we explore the interaction between GWs and BECs, assessing
its detectability across various interaction strengths between the atoms constituting the
condensate. To achieve this, it is necessary to combine two theoretical frameworks: general
relativity and quantum mechanics, which are complementary but still have few common
points. For this purpose, the GW is considered classically as a geometric background on
which all physical phenomena described by quantum field theory (QFT) occur. In general,
an approach can involve quantizing the gravitational field and, consequently, treating
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both the gravitational and matter fields within a quantum-mechanical framework. This
approach has been pursued in various, including Ref. [10], which propose using BECs as a
medium to detect gravitons originating from a stochastic GW background. While this line
of inquiry is indeed intriguing, it lies beyond the scope of the present study.

2. Gravitational Waves

GWs are a perturbation of the metric of the spacetime and the equation that describes
them is obtained from the Einstein field equations [11]

Rµν −
1
2

R gµν =
8πG

c4 Tµν (1)

and imposing the weak field condition gµν = ηµν + hµν, where ηµν = diag(−1,+1,+1,+1)
is the Minkowski metric and |hµν| ≪ 1. Rµν represents the Ricci curvature tensor, Tµν is the
energy-momentum tensor, the Greek letter indices take values 0 (time, t), 1, 2, and 3 (space:
x, y, and z, correpondingly), G is the Newtonian constant of gravitation, and c denotes the
speed of light in vacuum. Proceeding with the calculations and choosing the Donder gauge
∂µhµν − 1

2 ∂νhα
α = 0, with denoting coordinate derivatives: ∂ν ≡ ∂/∂xν, and the TT-gauge

(transverse-traceless gauge), which implies hα
α = 0, one obtains the following result:(

1
c2 ∂2

t −∇2
)

hµν =
16πG

c4 Tµν (2)

which are indeed the equations of the GWs, with ∇2 = ∂2
x + ∂2

y + ∂2
z .

Equation (2) is not straightforwardly solvable analytically, primarily due to the expres-
sion of the tensor Tµν. Therefore, let us consider the most simple solution, namely that in

vacuum. In this case, the solution is a plane wave hµν = Re
{

Aµνeikσxσ
}

, where kαkα = 0,
with kα the wave vector, and

Aµν

(TT) =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 , (3)

where the subscript symbols denote the two possible polarizations, namely the plus polar-
ization (“+”) and the cross polarization (“×”).

From now onward, we only consider GWs propagating along the z-axis with plus po-
larization, for which the metric perturbation takes the form hµν = diag(0, h,−h, 0) resulting
in the modification of the infinitesimal line element:

ds2 = gµνdxµdxν = −c2dt2 + (1 + h)dx2 + (1 − h)dy2 + dz2 , (4)

where h = h(z, t).

3. Bose–Einstein Condensates

The QFT Hamiltonian for identical non-relativistic particles of mass m in a flat space-
time is given by [12]

Ĥflat =
∫

d3r ψ̂+ (⃗r, t)
[
− ℏ2

2m
∇2 + U(⃗r)

]
ψ̂(⃗r, t)

+
1
2

∫
d3r d3r′ ψ̂+ (⃗r, t)ψ̂+ (⃗r′, t)V (⃗r, r⃗′)ψ̂(⃗r′, t)ψ̂(⃗r, t) , (5)

where ψ̂(⃗r, t) is the quantum field operator, U(⃗r) is the trapping potential, V (⃗r, r⃗′) the
inter-particle potential of the interaction between particles, r⃗ is the particle radius-vector, h̄
is the reduced Planck constant, and the superscript “+” denotes the Hermitian conjugate.
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In order to describe a bosonic field, it is necessary to impose the following equal-time
commutation rule:

[ψ̂(⃗r, t), ψ̂+ (⃗r′, t)] = δ(⃗r − r⃗′) , (6)

where [Â, B̂] = ÂB̂ − B̂Â and δ(·) is the Dirac delta function. When bosonic particles are
cooled below the critical temperature Tc (which depends on the particle density and is on
the order of nK), they lose their individuality and form a single entity where all particles
occupy the same state. This phenomenon is known as a Bose–Einstein condensate, which
is one of the few quantum phenomena observable on a macroscopic scale. In the case
where N ≫ 1, with N number of particles, and T ≪ Tc, the field ψ̂(⃗r, t) acquires significant
’classical’ relevance, and it is possible to exploit the many-body coherent states (cs) |Ψcs⟩,
introduced by Roy Glauber [13] and George Sudarshan [14] in the 1960s, such that

ψ̂(⃗r, t)|Ψcs⟩ = ψ(⃗r, t)|Ψcs⟩ . (7)

This method allows us to study the condensate through the use of the complex bosonic
scalar field ψ(⃗r, t). In this way, one can circumvent the formalism of QFT and return to
the more familiar quantum-mechanical description by studying the wave function ψ(⃗r, t),
while keeping in mind that ψ(⃗r, t) represents a complex bosonic scalar field. For ultracold
and dilute atoms, one can safely impose a binary contact interaction:

V (⃗r, r⃗′) = γ δ(⃗r − r⃗′) , (8)

where γ = 4πℏ2as/m with as as the scattering (s) length. In this way, one obtains the
following Hamiltonian:

Ĥflat =
∫

d3r
{

ψ̂+ (⃗r, t)
[
− ℏ2

2m
∇2 + U(⃗r)

]
ψ̂(⃗r, t) +

γ

2
ψ̂+ (⃗r, t)2ψ̂(⃗r, t)2

}
(9)

from which, exploiting coherent states, the Gross–Pitaevskii equation (GPE) derives

iℏ ∂tψ(⃗r, t) =
[
− ℏ2

2m
∇2 + U(⃗r) + γ|ψ(⃗r, t)|2

]
ψ(⃗r, t) . (10)

Equation (10) obtained independently by Eugene Gross [15,16] and Lev Pitaevskii [17] is a
nonlinear Schrödinger equation and it describes exceptionally accurately the BEC dynamics
of the experiments with alkali-metal atoms.

4. Bose–Einstein Condensates in Curved Spacetime

In order to describe comprehensively the BECs in a curved spacetime, one has to start
from a Lorentz-invariant action, i.e., the Klein–Gordon one, to which the quartic term is
added. Since the condensate is obtained at considerably low temperatures, which results
in relatively low thermal speeds, it is necessary to perform the non-relativistic limit. That
is, one obtains the GPE in curved spacetime (see, e.g., Refs. [6,18]) that corresponds to
mboxEquation (10), where the Laplace operator ∇2 is replaced by ∇2

g, the latter being the
Laplace operator in the curved spacetime.

Imposing the arrival of a GW propagating in the z-direction with the plus polarization
(i.e., gµν = ηµν + hµν with hµν = diag(0, h,−h, 0)) through the BEC, one obtains the
following equation:

iℏ ∂tψ(⃗r, t) =
[
− ℏ2

2m

(
∇2 + h(∂2

x − ∂2
y)
)
+ U(⃗r) + γ|ψ(⃗r, t)|2

]
ψ(⃗r, t) . (11)

Equation (11) represents one of the main equations for the current investigation of the
interaction between GWs and BECs. This mean-field equation is reliable provided that the
nonlinear term is sufficiently small, namely for γ ≪ 1.
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The detection of GWs is a crucial experimental milestone, right due to the magnitude
of this phenomenon h of the order O(10−20). Interferometric techniques have made it
possible to overcome this hurdle thanks to the use of resonant cavities, managing to
gain the necessary orders of magnitude. The use of such large detectors, however, is not
straightforward, and in view of a larger-scale implementation of multimessenger astronomy,
other possibilities are being considered. Here, therefore, we examine why BECs represent
an opportunity in this regard.

5. Quantum Fidelity and Enhanced Phase Shift

Equation (11) suggests that the QFT Hamiltonian of the bosonic scalar field interacting
with a GW propagating along the z-axis with the plus polarization can be expressed as

Ĥ = Ĥflat + Ĥint , (12)

where Ĥflat is the Hamiltonian (9) of the bosonic field in flat spacetime, while Ĥint is
defined as

Ĥint =
∫

ψ̂+ (⃗r, t)
(
− ℏ2

2m
h(z, t)(∂2

x − ∂2
y)

)
ψ̂(⃗r, t) d3r . (13)

At this point, let us exploit a characteristic property of BECs which are BECs’ coherent
states |Ψcs⟩ (of unit norm) satisfying the eigenvalue equation,

ψ̂(⃗r, t)|Ψcs⟩ = ψ(⃗r, t)|Ψcs⟩ =
√

N ϕgs (⃗r) e−
i
h̄ µt|Ψcs⟩ , (14)

where the wavefunction ψ(⃗r, t) is normalized to the enhancement factor N, while the
wavefunction ϕgs (⃗r), that is instead normalized to one, represents the ground-state (gs) of
the BEC in flat spacetime with chemical potential µ. Explicitly, ϕgs (⃗r) satisfies the stationary
GPE equation [

− ℏ2

2m
∇2 + U(⃗r) + γN|ϕgs (⃗r)|2

]
ϕgs (⃗r) = µ ϕgs (⃗r) . (15)

One can now define the time evolution operator Ûint(t) associated with the interaction
of the GW:

Ûint(t) = exp
(
− i
ℏ

∫ t

0
Ĥint(t′) dt′

)
. (16)

Let us also introduce the fidelity amplitude, F (t), a complex number which quantifies
of how much the many-body quantum state remains unchanged over time:

F (t) = ⟨Ψcs|Ûint(t)|Ψcs⟩ . (17)

Notice that F(t) = |F (t)|2 is instead the familiar fidelity, that is, a non-negative real
number. Certainly, F (t) = 1 points to no change while F (t) = 0 signals a complete change,
i.e., zero fidelity. From a theoretical point of view, the GW alters the coherent state by
shifting the value of F away from 1 being appropriate since quantum mechanics allows
for the definite distinction of only orthogonal states. By expanding the exponential in a
Taylor series in Nh, one obtains

F (t) = 1 − iN ξ(t) +O(N2h2) , (18)

where

N ξ(t) = N
ℏ

2m

∫ t

0
dt′
∫

d3r h(z, t′)ϕ∗
gs (⃗r)(∂

2
y − ∂2

x)ϕgs (⃗r) . (19)

Notice that the enhancement factor N comes from the substitution reported in Equation (14),
since ξ(t) depends only on the single-particle time-independent wavefunction ϕgs(⃗r). Let us
stress that ξ(t), being proportional to h, is of the order O(10−20). However, as shown by
Equation (18), the time-dependent relative phase between the two many-body quantum
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states scales as Nξ(t). The main reason to favor the detection of GWs through BECs is the
possibility to make use of this enhancement mechanism proportional to the number of
particles N, which, generally can compensate for the relatively small magnitude of h.

Nonetheless, the experimental feasibility in creating condensates does not allow (to
date, where N ≈ 107) us to compensate over twenty orders of magnitude of the GW (i.e.,
hN ≈ 10−13), but new paths are opening wide towards the use of ultracold Helium, which
consists of considerably more particles (O(1020)), but on the other hand, just less than 10%
of them are under the condensation threshold.

5.1. Anisotropic Harmonic Confinement

In this Section, we calculate ξ(t), defined in Equation (19), for a Bose–Einstein conden-
sate trapped by an anisotropic harmonic potential:

U(⃗r) =
1
2

m(ω2
xx2 + ω2

yy2 + ω2
z z2) . (20)

By using the technique of Feshbach resonances [19–21], it is now possible [22] to vary
the interaction strength between the particles in a condensate, changing the scattering
length as even considering it as zero.

5.1.1. Non-Interacting Bosons

For non-interacting bosons in the condensate, the ground-state wavefunction is
given by

ϕgs (⃗r) =
1

(π3σ2
x σ2

y σ2
z )

1
4

exp

[
−
(

x2

2σ2
x
+

y2

2σ2
y
+

z2

2σ2
z

)]
, (21)

where

σi =

√
ℏ

mωi
with i = x, y, z. (22)

The choice of a Gaussian shape trial function is justified in the limit of weak interacting
bosons, due to the feature that the exact ground-state of the linear Schrödinger equation
with harmonic potential has this functional form. Let us now insert Equation (21) in
Equation (19), obtaining

ξ(t) =
ℏ

2m
σy − σx√
πσxσyσz

∫ t

0
dt′
∫ +∞

−∞
dz h(z, t′) e−(z/σz)2

. (23)

Note that even in this case, if the condensate is symmetric in the plane perpendicular
to the propagation direction of the GW, i.e., σx = σy, the GW does not produce observable
effects on it. Now, using the simplest possible expression for the GW, which is

h(t, z) = h0 cos(kgz − ωgt) (24)

with ωg = ckg, with ωg and kg denoting the GW angular frequency and wave vector,
respectively, and h0 the GW amplitude, one obtains

Nξ(t) = N
h0

2

√
ℏ
m
(√

ωx −
√

ωy
)

e−
ℏ

4mc2
ω2

g
ωz sin(ωgt) . (25)

Equation (25) gives the phase shift, due to a GW, on a non-interacting BEC subjected
to an anisotropic harmonic trapping potential. Note that the response of the condensate is
oscillatory, as one would expect for a wave phenomenon.

Figure 1 shows a two-dimensional plot depicting the amplitude of ξ(t), i.e.,
Nξ(t = π/(2ωg)), as a function of the confinement frequencies νx = ωx/(2π) and
νy = ωy/(2π), with ωs denoting the angular frequencies in the xy-plane. Figure 1 is
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obtained given a condensate consisting of non-interacting 87Rb atoms and keeping constant
the values of ωz = 2π × 150 Hz, h0 = 10−20 and N = 107. Figure 1 shows how the phase
amplitude induced by the GW and enhanced by the number of particles can reach the
magnitude of O(10−17), if the confinement frequencies perpendicular to the propagation
direction of the wave are appropriately chosen. This order of magnitude also confirms
the approximation made by expanding the time evolution operator in a series. It is also of
importance to stress that the amplitude of Nξ is independent of both the GW frequency and
the confinement frequency along the z direction, since the exponential term in Equation (25)
is close to 1. Any significant damping effect on the amplitude can only be observable for
values of ω2

g ≫ 4mc2ωz/h̄.

Figure 1. Phase shift Nξ(t) (25) first in Figs. at t = π/(2ωg) as a function of the confinement
frequencies in the xy plane, for non-interacting 87Rb atoms, with fixed values of νz = 150 Hz,
h0 = 10−20, and N = 107.

5.1.2. Interacting Bosons

The GPE (10) is not straightforwardly solvable analytically, but nevertheless, it is
possible to make use of approximate methods to also evaluate the interacting case with
γ ̸= 0. We remind that the GPE is reliable if the nonlinear term is sufficiently small.
In the case of harmonic confinement, this condition means that Nas/ℓH ≪ 1, where
ℓH is the geometric mean of the characteristic harmonic lengths in the three directions:

ℓH = (ℓxℓyℓz)1/3 with ℓx =
√

h̄/(mωX), ℓy =
√

h̄/(mωy), and ℓz =
√

m/(mωz). In
Ref. [23], a variational approach was used with a Gaussian trial function of the same form
of Equation (21), where σi are the variational parameters. In other words, σx, σy, and σz are
not set equal to the three characteristic harmonic lengths ℓx, ℓy, and ℓz. Instead, the three σi
are determined by minimizing the GPE energy functional. In Ref. [23], it is shown that, in
the strongly repulsive regime, the parameters σ∗

i that minimize the ground-state energy
have the following form:

σ∗
x =

(
Γℏ 3

5 ωyωz

mω4
x

) 1
5

, σ∗
y =

(
Γℏ 3

5 ωzωx

mω4
y

) 1
5

, σ∗
z =

(
Γℏ 3

5 ωxωy

mω4
z

) 1
5

, (26)

where
Γ = γ

N

(2π)
3
2

. (27)
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Given, as in Section 5.1.1, a Gaussian-type wave function, the procedure for calculating
Nξ(t) leads to

Nξ(t) = N
h0

2

(
ℏ 11

5

m2
√

Γωz

) 2
5

e
−

ω2
g

4c2

 Γℏ
3
5 ωxωy
mω4

z

 2
5(ω4

x
ωy

) 1
5

−
[

ω4
y

ωx

) 1
5
 sin(ωgt) . (28)

Figure 2 shows the amplitude of Nξ(t), for a condensate of interacting (red line) and
non-interacting (blue line) 87Rb atoms, as a function of the confinement frequency along
the y axis. Assuming a value of h0 = 10−20 for the GW and N = 107, the amplitude
of the interacting BEC is of the order of 10−13, which, in this case, also confirms the
approximation made by expanding the time evolution operator in a series. For typical
values of the scattering length of 87Rb, i.e., around 100 rB (with rB the Bohr radius), the
amplitude Nξ is four orders grater than that related to the non-interacting BEC. This
suggests that condensates of interacting atoms are preferable over the latter for future
GW detection.

Figure 2. Nξ(t) at t = π/(2ωg) (25) for a condensate of interacting 87Rb atoms as a function of the
confinement frequency along the y-axis, for the two values of the scattering length as, with rB the
Bohr radius. The parameters νz = 150 Hz, νx = 150 Hz, h0 = 10−20, and N = 107 are used.

Also let us note that, as verified in Section 5.1.1, the amplitude is independent of the
GW frequency, since the exponent of Equation (28) is of the order of O(10−36ω2

g).

6. Conclusions

We have discussed the interaction Hamiltonian between a gravitational wave and
Bose–Einstein condensate, as reported in Equation (13). We have then computed the fi-
delity amplitude at first-order with respect to hN, obtaining Equation (18), which shows
an enhancement mechanism of the phase that is proportional to the number of particles
constituting the condensate N. Therefore, the latter can, generally, serve as a potential mech-
anism for detecting gravitational waves. Building upon the existing literature, we evaluate
the magnitude of the interaction in the case of condensates confined by an anisotropic
harmonic potential across three different configurations: non-interacting bosons, leading to
Equation (25) and interacting particles, resulting in Equation (28). Additionally, as illus-
trated in Figure 2, we have demonstrated that the effect of the gravitational wave is better



Physics 2024, 6 1313

pronounced for condensates of interacting atoms. As suggested by Ralf Schützhold, in the
future, one can experimentally produce a NOON-like ((|N, 0⟩+ |0, N⟩)/

√
2) state [6]:

|NOON⟩(0) = |Ψcs⟩A |0⟩B + |0⟩A |Ψcs⟩B (29)

at time t = 0− (with the minus sign superscript denoting the limit as time approaches zero
from the left), that is a macroscopic superposition of the BEC in two different configurations
A and B. Then, if the GW interacts only with the BEC that is in the configuration A, at time
t, one has

|NOON⟩(t) = eiNξ(t)|Ψcs⟩A |0⟩B + |0⟩A |Ψcs⟩B . (30)

Thus, the NOON state acquires a relative phase that is exactly the one of the fidelity
amplitude, for a relatively small time interval. NOON states |N⟩A|0⟩B + |0⟩A|N⟩B with
up to N = 10 quanta were already produced with photons and phonons [24,25]; however,
their experimental realization with ultracold bosonic atoms is yet to be achieved.

In conclusion, the main message of this paper is that, at a fixed number N of atoms,
tuning the s-wave scattering length as of the inter-atomic interaction, one can increase by
several orders of magnitude the many-body phase Nξ(t) (25) which signals the arrival of a
gravitational wave.
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