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Abstract: In a context of increased environmental awareness, the Internet of Things has allowed
individuals or entities to build their own connected devices to share data about the environment.
These data are often obtained from widely available low-cost sensors. Some companies are also
selling low-cost sensing kits for in-house or outdoor use. The work described in this paper evaluated,
in the short term, the performance of a set of low-cost sensors for temperature, relative humidity,
atmospheric pressure and carbon dioxide, commonly used in these platforms. The research challenge
addressed with this work was assessing how trustable the raw data obtained from these sensors
are. The experiments made use of 18 climatic sensors from six different models, and they were
evaluated in a controlled climatic chamber that reproduced controlled situations for temperature
and humidity. Four CO2 sensors from two different models were analysed through exposure to
different gas concentrations in an indoor environment. Our results revealed temperature sensors
with a very high positive coefficient of determination (r2

≥ 0.99), as well as the presence of bias
and almost zero random error; the humidity sensors demonstrated a very high positive correlation
(r2
≥ 0.98), significant bias and small-yet-relevant random error; the atmospheric pressure sensors

presented good reproducibility, but further studies are required to evaluate their accuracy and
precision. For carbon dioxide, the non-dispersive infra-red sensors demonstrated very satisfactory
results (r2

≥ 0.97, with a minimum root mean squared error (RMSE) value of 26 ppm); the metal
oxide sensors, despite their moderate results (minimum RMSE equal to 40 ppm and r2 of 0.8–0.96),
presented hysteresis, environmental dependence and even positioning interference. The results
suggest that most of the evaluated low-cost sensors can provide a good sense of reality at a very good
cost–benefit ratio in certain situations.
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1. Introduction

During the last years, collaborative sensing, a concept well described by the authors in [1–3],
has been used in several application fields due to paradigm-breaking features such as decentralization,
the possibility of enhancing the space-time granularity of a sensing system, reduced costs, and its
capability of giving users the power to be a node and become part of a solution to a shared concern
or common problem. In short, the main point in collaborative sensing is the use of low-cost devices
handled by “non-professional” individuals—citizen scientists—in large quantities to overcome costs
and to increase the density of nodes, forming a dense, and even pervasive, monitoring system.
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The Internet of things, in turn, contributes by providing a resourceful framework to allow participatory
sensing to take place [4,5].

As the cost is a constraint to densifying environmental monitoring networks, the Internet of Things
and Collaborative Sensing triggered the creation of complementary techniques to assist environmental
monitoring in a creative manner. For example, the authors in [6] proposed a sensing campaign to
elaborate a noise map of an urban area based on volunteers collecting data using their own smartphones,
with a high granularity in space and time, instead of using conventional decibel meters. They obtained
very positive results, even if comparing the results to traditional methods. Merging weather observation
with the mobile sensing perspective, the authors in [7] proposed a model to estimate the air temperature
by applying a mathematical model that used the inner temperature of a smartphone battery as input.
They achieved a good overall result while also identifying the need for improvements to enhance the
accuracy. The authors in [8] investigated the potential role of smartphones embedded with weather
sensors, such as sensors of temperature, humidity and pressure, as mobile nodes in an environmental
sensing campaign. They found that the smartphone can act reliably as a node for temperature and
pressure only when idle, which requires an application for context detection. In the same context,
the author in [9] also proposed a new model to enhance the quality of the data for temperature
estimation in smartphones, but the use of smartphones for this purpose still requires an extended
field test.

Expanding the considerations regarding the low-cost, technologically capable alternatives that
address traditional problems through new approaches, it is worth mentioning the “CanSat” concept.
Its main objectives include an increase in environmental awareness and the dissemination of the
concepts and objectives involved in space studies among students, enthusiasts and citizen scientists.
The CanSat relies on very small aerial probes, with the hardware built inside small cylinders (cans or
bottles) to collect data during low-altitude launches by rockets or balloons [10,11]. These devices often
carry connected low-cost environmental sensors inside, such as temperature, humidity and atmospheric
pressure sensors commonly used in Internet of Things environmental instrumentation [12,13].

Another area of interest in environmental monitoring is the investigation, and monitoring, of urban
areas to identify phenomena that may affect people’s health and welfare. A common climatic effect
in dense urban centres is the heat island, a localized environment overheating that can increase
temperature perception by individuals by up to 10 degrees Celsius [14]. Several studies highlight the
importance of continuous temperature monitoring in urban centres to help the investigation of heat
island phenomena and corresponding mitigation actions [14–16]. This task can also be achieved using
low-cost sensors, as reported by the authors in [17].

In addition to the climate, air pollution in urban centres is also an important concern that attracts
the attention of researchers, with projects based on low-cost sensing and the Internet of Things.
For example, the authors in [18] developed an evaluation framework to classify a city’s air “health” in
terms of the concentration of pollutants through a score model system using sensory data as input.
This model could be fed by low-cost sensor systems such as the one reported by the authors in [19],
which proposed a mobile node to collect data about the air quality in Sydney, Australia, using a
low-cost platform boarded in public transportation vehicles, such as taxis and buses, or the IoT sensor
for particulate matter described in [20].

The Internet of Things also has a close relationship with smart buildings, providing ways to
optimize heating, ventilating and air conditioning (HVAC) systems with connected sensors measuring
indoor air quality. Although CO2 is mostly known to be related to the greenhouse gas effect, not being
treated as a pollutant, it is considered one of the main indicators of indoor air quality. Moreover,
the application field for these sensors is not limited to air-quality monitoring alone. Once humans expel
CO2 during breathing, the use of CO2 sensors—associated with proper data analysis, such as machine
learning, for example—can detect room occupancy as well [21,22], which can assist in decision-making
regarding energy efficiency actions. On the outside of smart buildings, green walls (or living walls) are
a common asset used by modern architecture in order to mitigate heat absorption and reflection in
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buildings, helping to meet energy efficiency requirements and even soothe the heat island effects in the
vicinity [23]. In this context, the authors in [24] proposed a solution for the automation of a green wall
irrigation system using Internet of Things technologies in conjunction with low-cost environmental
sensors and satisfactorily achieved a higher data density for the involved parameters, both in space
and time, at the same price of a single system with implied superior quality.

Data quality is a challenge in environmental sensing with low-cost sensors. There is yet no
consensus about the use of these cheap, largely available, and ready-to-use sensors as trustworthy
devices, since many factors can affect the data quality of a given sensing system [25]. This is precisely
what this paper proposes to address. In terms of accuracy, for example, even conventional methods can
provide erroneous data [26]. Aware of these obstacles, the authors in [27] proposed a general model to
help in evaluating the overall data quality in urban monitoring as a function of its “urban resolution”—a
concept that they define as an analogy to “image resolution”, with sensing nodes being related to
pixels. The challenge of deploying air-quality monitoring using low-cost sensors and obtaining high
data quality at the same time was also observed by the authors in [28], which reported the use of these
sensors as promising, but they acknowledge the difficulties in that task due to the technical details
involved, such as electronic wiring, sensor calibration and data post-processing. Still regarding data
quality enhancement, the authors in [29] presented a robust protocol for overcoming the presence of
bad-quality data (e.g., outliers) in non-specific participatory sensing, where individual users may play
active roles in the model improvement. The authors in [30] investigated a set of low-cost air-quality
sensors from a specific manufacturer and compared their results to those of a reference instrument to
check if they can contribute to air-quality measurements. They found that those sensors can achieve
excellent results when used in the lab, but their performance decreases when they are placed in outdoor
environments. This observation is corroborated by the reports of Borrego et al. [31].

Accuracy enhancement is a possibility to improve the data quality of a sensing system. In this
context, the authors in [32] state that the placement of low-cost sensors around professional stations
can provide useful resources for calibration and, then, overcoming the problem of data quality for
NO2 sensors. The authors in [33] tried different machine-learning algorithms to improve the data
quality from low-cost sensors deployed in the field and obtained very good results with the Random
Forests algorithm. With similar objectives, the authors in [34] used official datasets generated from
professional stations to correct eventual errors in low-cost temperature measurements using Artificial
Neural Networks, and managed to correct the mean absolute error by more than 50%, regardless of
the many interfering factors inherent to environmental monitoring. The authors in [35] managed to
enhance the accuracy of low-cost atmospheric pressure sensors by more than 90% using the Extremely
Randomized Trees algorithm.

All these studies can be related, in different ways, to the Internet of Things. Concerning the topic
of environmental monitoring, it can be noted that it is imperative that the devices used for collecting
environmental data are not only distributed and connected, but also providing accurate data in order
to obtain useful information.

Commercially speaking, the expansion of the Internet of Things market, coupled with an
increase in environmental awareness, has also contributed to attracting interest in the construction
and use of low-cost devices in personal weather stations or even as a supplement to conventional
environmental monitoring, which is very reliable but is centralized and significantly more expensive
to deploy on a large scale (e.g., in urban centres). Thus, the widespread use of these low-cost
environmental sensors in Internet of Things applications, while proving to be a convenient and
inexpensive solution, also highlights the need for a close investigation on how these sensors behave
under “Do It Yourself” conditions.

The contribution of this paper is to provide a closer look into the raw data of a group of “off-the-shelf”
low-cost environmental sensors, subjected to experiments and assessed through objective metrics such
as precision, accuracy and trueness. In other words, it is intended to provide information regarding the
performance these sensors can achieve in practice when handled by non-specialist individuals building
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their own “IoT weather station” (such sensors are often sold as “do-it-yourself weather stations” by
well-known online vendors) without any further refined data processing, such as machine learning.
It is important to highlight that the sensors used in this study were chosen without commercial bias,
trying to include a good diversity of brands and models. The tested environmental sensors include
temperature and relative humidity sensors, evaluated in controlled conditions, and air pressure and
carbon dioxide sensors, evaluated in natural conditions. The performance indicators were obtained by
statistically analysing the sensor readings against reference readings, for temperature, humidity and
carbon dioxide, and between sensor pairs, for the atmospheric pressure sensors.

2. Materials and Methods

The research approach included a procedure for selecting the sensors for analysis, the planning of
the experiments, data collection, data analysis and the discussion of the obtained results, as discussed
in the following sections.

2.1. Sensors

The sensors were selected using criteria that an individual would have when engaging in an
environmental monitoring project on the Internet of Things. The sensors were chosen considering
availability (available in known vendor websites; reachable by a simple internet search), price, ease of
use (sensors built in ready-to-use interface boards for Arduino) and nominal parameters suitable for
urban spaces with no extreme conditions (trying to cover an “average” situation). In addition to these
criteria, the selection of sensors did not favour any specific commercial brand. The selected sensors for
climatic variables (temperature, humidity and pressure) are presented in Table 1. The selected sensors
for carbon dioxide are presented in Table 2. Three units of each climatic sensor were used, as well as
two units of each carbon dioxide sensor.

Table 1. Selected low-cost sensors for climatic variables.

Sensor Parameters 1 Brand Approximated Price (EUR) 2

DS18B20 T Maxim 4.00
AM2302 T, H Aosong 8.00
HTU21D T, H MEAS Sensors 12.00
BMP180 T, P Bosch Sensortech 10.00
BME280 T, H, P Bosch Sensortech 20.00

MPL3115A2 T, P NXP 10.00
1 T—Temperature; H—Humidity; P—Pressure. 2 Prices as seen in 2nd half of 2020.

Table 2. Selected low-cost sensors for carbon dioxide.

Sensor Parameters Brand Approximated Price (EUR) 3

MH-Z16 CO2 Winsen 56.00
MG-811 CO2 Henan HanWei 47.00

3 Prices as seen in 2nd half of 2020.

The climatic sensors the carbon dioxide sensors used in this study are illustrated in Figure 1.
The reference sensor used for temperature and humidity was the Lascar Electronics EL-USB-2, with a
certificate of calibration available in [36]. The reference sensor used for carbon dioxide was the Vaisala
GM70 with a CO2 probe. Both reference instruments are illustrated in Figure 2.
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BMP180, BME280 and MPL3115A2. (b) Carbon dioxide sensors used in this study. From left to right: 
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Figure 2. Reference instruments used in this study for (a) temperature and humidity and (b) carbon 
dioxide. 

2.2. Performance Metrics 

The sensors were evaluated considering three main metrics: accuracy, precision and trueness 
[37]. The accuracy assessment of the sensors was performed by the analysis of the mean error (ME) 
and the root mean squared error (RMSE) at different measurand levels. While the mean error 
provides information regarding the sensor bias, the root mean square error provides a more 
comprehensive view regarding the sensor accuracy. 

As the precision is defined by the statistical dispersion of the measurements of a quantity in 
similar conditions, the standard deviation computed from each sensor’s readings at stable and 
reproductible levels was used as a precision metric. Additionally, to illustrate the impact of this 
dispersion at each stable level, the signal-to-noise ratio (SNR, or the inverse of the variation 
coefficient, cv−1) was also considered. This parameter, in turn, was computed from the averaged 
readings of a sensor divided by its standard deviation at that measurand level. A precise sensor 
would present a standard deviation near to zero and a very high numerical value for the SNR (cv−1). 

The information regarding the trueness of the sensors was obtained in terms of the 
determination coefficient (r2) and the analysis of the residuals in the linear relationship between all 
the observed and expected values during the quantity variations. The expected output for a 
hypothetical ideal sensor would be a straight line from the bottom-left to top-right corner, with a y = 
x relationship. To estimate this metric, we applied a residuals calculation to the linear relationships. 
For convenience, this metric is referred to as the dynamic residuals (DR) hereafter, and is defined by 
Equation (1) (with the boundaries determined by the temperature experimental limits): 

𝐷𝑅 = ඩ 1𝛥𝑇 න ሾ𝑦ො(𝑥) − 𝑦(𝑥)ሿଶ்೑
்೔  (1) 

where 𝑦ො(x) is the averaged linear model output of a given sensor; y(x) is the expected, or ideal, output 
(y = x); Tf is the final temperature; Ti is the initial temperature; and ΔT is the temperature variation. 

Figure 1. (a) Climatic sensors used in this study. From left to right: DS18B20, AM2302, HTU21D,
BMP180, BME280 and MPL3115A2. (b) Carbon dioxide sensors used in this study. From left to right:
MG-811 and MH-Z16.
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Figure 2. Reference instruments used in this study for (a) temperature and humidity and
(b) carbon dioxide.

2.2. Performance Metrics

The sensors were evaluated considering three main metrics: accuracy, precision and trueness [37].
The accuracy assessment of the sensors was performed by the analysis of the mean error (ME) and
the root mean squared error (RMSE) at different measurand levels. While the mean error provides
information regarding the sensor bias, the root mean square error provides a more comprehensive
view regarding the sensor accuracy.

As the precision is defined by the statistical dispersion of the measurements of a quantity in similar
conditions, the standard deviation computed from each sensor’s readings at stable and reproductible
levels was used as a precision metric. Additionally, to illustrate the impact of this dispersion at each
stable level, the signal-to-noise ratio (SNR, or the inverse of the variation coefficient, cv−1) was also
considered. This parameter, in turn, was computed from the averaged readings of a sensor divided by
its standard deviation at that measurand level. A precise sensor would present a standard deviation
near to zero and a very high numerical value for the SNR (cv−1).

The information regarding the trueness of the sensors was obtained in terms of the determination
coefficient (r2) and the analysis of the residuals in the linear relationship between all the observed and
expected values during the quantity variations. The expected output for a hypothetical ideal sensor
would be a straight line from the bottom-left to top-right corner, with a y = x relationship. To estimate
this metric, we applied a residuals calculation to the linear relationships. For convenience, this metric is
referred to as the dynamic residuals (DR) hereafter, and is defined by Equation (1) (with the boundaries
determined by the temperature experimental limits):

DR =

√√√√√√√√ 1
∆T

T f∫
Ti

[ŷ(x) − y(x)]2 (1)
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where ŷ(x) is the averaged linear model output of a given sensor; y(x) is the expected, or ideal, output
(y = x); Tf is the final temperature; Ti is the initial temperature; and ∆T is the temperature variation.
The interpretation of this parameter is trivial: it is the root mean squared distance between two
lines in a defined range, and the closer to 0.0 the value of DR, the better the performance of the
corresponding sensor.

2.3. Experimental Protocol

A brief description of the experiments for each group of sensors and equipment used, as well
as the reference instruments and expected outcomes, is presented in the following subsections.
This description is provided here mostly to enable the reproducibility of these experiments.
The experiments were conducted in two stages: one for climatic sensors (Section 2.3.1) and another
one for carbon dioxide sensors (Section 2.3.2).

2.3.1. Climatic Sensor Experiment

The experiment for climatic sensors was conducted inside a controlled climatic chamber (Aralab©
Fitoclima®) reproducing combinations of temperature and humidity. Two experimental profiles were
planned. The first experimental profile had four temperature stages—−5, 10, 25 and 40 ◦C—and three
humidity levels applied in each stable temperature stage: 30%, 50% and 80%. Each temperature stage
lasted for eleven hours in stability, and one hour in transition to the next level. Considering that the
chamber was unable to control humidity below 0 ◦C, the second profile was programmed only with
positive temperatures—each one with three humidity levels: 30%, 50% and 80%. Each combination of
temperature and humidity lasted for five hours after stabilization, each humidity level change lasted
for thirty minutes, and the temperature level changes lasted for one hour. Both experimental profiles
were executed three times, containing two sets of sensors at a time.

Each sensor group was formed by six different sensor units and was wired into an Arduino Uno
device, powered by an external and independent power supply. The Arduino device also had an
SD shield attached to it for data logging, and the RTC (Real-Time Clock) service available for time
synchronization. The sampling rate was set to one sample per minute. Figure 3 shows a group of
climatic sensors (temperature, relative humidity and atmospheric pressure) wired into an Arduino
outside and inside the climatic chamber.
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Figure 3. (a) One set of climatic sensors wired into the Arduino device. (b) Two groups of climatic
sensors, together with a reference sensor, placed inside the controlled chamber.

Between executions, the generated data were extracted from the SD cards, and one set of sensors
was replaced (one set was kept at the end of each execution). Considering 3 sets of sensors, denominated
as “A”, “B” and “C”, the pairs subjected to the experiment were made by combinations of two out of



IoT 2020, 1 292

three, resulting in three executions to which each set of sensors was subjected twice. The same logic
applied to the experimental profile focused on the humidity sensors.

Regarding the atmospheric pressure sensors, their readings reported the natural external conditions
during the experiments, since the used chamber did not control its internal pressure, nor was it
hermetically sealed.

The evaluated sensors do not differ in terms of the transduction principle for each measurand.

2.3.2. Carbon Dioxide Experiment

Due to the lack of equipment able to control CO2 levels in a controlled chamber, the experiment to
assess these sensors was designed to take advantage of the natural conditions in indoor environments
with known human occupancy. The experimental plan for carbon dioxide was to place the sensors
together with the reference instrument into these environments. Two different indoor environments
were planned: an office room with ventilation control during working hours, an approximated volume
of 125 m3 and random occupancy during the daytime (a minimum of one person and maximum
of 10 people at the same time); a bedroom during the night time, without ventilation, and with an
approximated volume of 30 m2 and two occupants during the night time.

The first situation was planned to verify random variations, as people might enter and leave
the room at any time. The second situation was planned to verify the sensor response to higher
concentrations, since the CO2 can accumulate over time, especially in the absence of ventilation systems
(which is a common situation in many residential buildings), as assessed by the authors in [38]. Figure 4
illustrates one unit of each of the tested sensors and the reference instrument.
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Figure 4. A single unit of each carbon dioxide sensor placed in the office room (MG-811 sensor in the
bottom of the image and MH-Z16 sensor in the middle), and the reference sensor (in the top of the
image) for calibration purposes.

It is relevant to mention that the carbon dioxide sensors in question use different transduction
principles: while the MG-811 is a metal oxide semiconductor (MOS) sensor that needs to heat its
sensitive layer, the MH-Z16 uses non-dispersive infra-red (NDIR) to measure the quantity of energy
absorbed by CO2 in a specific wavelength. Those sensing mechanisms may imply different performance
expectations, as reported in [39,40].

3. Results and Analysis

3.1. Temperature Sensors

An example of one (out of six) experimental output from the temperature sensors is presented in
Figure 5. Both accuracy and precision analysis were performed separately for each stable temperature
level for all experiments, and considering all sensor units, by using data slices in the regions of interest.
The accuracy metrics obtained by averaging all the execution results for the temperature sensors are
presented in Table 3.



IoT 2020, 1 293
IoT 2019, 2 FOR PEER REVIEW  8 

 

 
Figure 5. Temperature readings obtained from one experimental execution inside the controlled 
climatic chamber. 

Table 3. Summary of averaged accuracy indicators for temperature sensors (all values in °C). 

Sensor Model 
Mean Error at 𝜎ொ 

Root Mean Squared Error at 
−5 °C 10 °C 25 °C 40 °C −5 °C 10 °C 25 °C 40 °C 

DS18B20 0.59 0.67 0.43 0.16 0.49 0.61 0.70 0.45 0.46 
AM2302 0.44 0.26 −0.13 −0.59 0.49 0.45 0.34 0.28 0.61 
HTU21D −0.04 0.29 0.21 0.01 0.25 0.20 0.35 0.25 0.25 
BMP180 −1.08 −0.40 −0.33 −0.40 0.32 1.08 0.43 0.34 0.42 
BME280 1.50 1.89 1.66 1.50 0.36 1.67 1.90 1.66 1.51 

MPL3115A2 −1.40 −1.03 −1.08 −1.25 0.21 1.39 1.05 1.08 1.26 

The farther away from zero these values are, the lower the accuracy of the respective sensor is. 
These numbers demonstrate that HTU21D presented the lowest overall mean error, whilst the 
BME280 presented the highest. However, variations in the mean error for different temperature levels 
may indicate a heterogeneous accuracy along the evaluated temperature range. As the exposed 
values were averaged from individual sensor unit readings from all the executions, the consistency 
of the error is represented by the standard deviation of the observed mean errors (σME), for which 
lower values represent more homogeneous mean errors from different sensor units in different 
experimental executions (e.g., a constant error from all units of a sensor model would result in σME = 
0—in other words, an error purely systematic). On this, it can be noted that the most consistent sensor 
model was the MPL3115A2, followed by HTU21D. The least consistent sensor models were the 
DS18B20 and the AM2302. 

Expanding the considerations to professional requirements, the World Meteorological 
Organization (WMO) points out an ideal accuracy of ±0.5 °C in its guidelines for conventional 
methods for weather observation [41]. Despite all the manufacturer statements, the only model that 
would meet this requirement, in a “plug-and-play” condition, was the HTU21D. Nevertheless, all the 
other sensor units would meet the mentioned requirement without greater efforts when using some 
form of data adjustment. 

The computed data about the precision of the temperature sensors are presented in Table 4. 

Table 4. Summary of averaged precision indicators for temperature sensors. 

Sensor Model 
Standard Deviation (°C) at Signal–Noise Ratio at 
−5 °C 10 °C 25 °C 40 °C −5 °C 10 °C 25 °C 40 °C 

DS18B20 0.08 0.07 0.06 0.12 64.7 167.8 416.8 342.1 
AM2302 0.06 0.07 0.08 0.13 77.6 160.1 317.7 367.2 
HTU21D 0.07 0.06 0.06 0.14 82.2 185.8 424.5 309.5 
BMP180 0.07 0.07 0.07 0.16 106.9 147.8 373.5 265.3 
BME280 0.06 0.09 0.07 0.16 64.1 165.5 401.5 266.2 

MPL3115A2 0.06 0.07 0.07 0.15 115.0 131.1 334.8 261.1 

The highest standard deviation was observed at the 40 °C level, where all the sensors exceeded 
the 0.1 °C mark. This occurrence may be explained by the thermal noise, intrinsically related to the 

-10
-5
0
5

10
15
20
25
30
35
40
45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Te
m

pe
ra

tu
re

 (°
C

)

Elapsed time (h)

DB12B20(T)
AM2302(T)
HTU21D(T)
BMP180(T)
BME280(T)
MPL3115A2(T)
Reference

Figure 5. Temperature readings obtained from one experimental execution inside the controlled
climatic chamber.

Table 3. Summary of averaged accuracy indicators for temperature sensors (all values in ◦C).

Sensor Model
Mean Error at

σME
Root Mean Squared Error at

−5 ◦C 10 ◦C 25 ◦C 40 ◦C −5 ◦C 10 ◦C 25 ◦C 40 ◦C

DS18B20 0.59 0.67 0.43 0.16 0.49 0.61 0.70 0.45 0.46
AM2302 0.44 0.26 −0.13 −0.59 0.49 0.45 0.34 0.28 0.61
HTU21D −0.04 0.29 0.21 0.01 0.25 0.20 0.35 0.25 0.25
BMP180 −1.08 −0.40 −0.33 −0.40 0.32 1.08 0.43 0.34 0.42
BME280 1.50 1.89 1.66 1.50 0.36 1.67 1.90 1.66 1.51

MPL3115A2 −1.40 −1.03 −1.08 −1.25 0.21 1.39 1.05 1.08 1.26

The farther away from zero these values are, the lower the accuracy of the respective sensor is.
These numbers demonstrate that HTU21D presented the lowest overall mean error, whilst the BME280
presented the highest. However, variations in the mean error for different temperature levels may
indicate a heterogeneous accuracy along the evaluated temperature range. As the exposed values
were averaged from individual sensor unit readings from all the executions, the consistency of the
error is represented by the standard deviation of the observed mean errors (σME), for which lower
values represent more homogeneous mean errors from different sensor units in different experimental
executions (e.g., a constant error from all units of a sensor model would result in σME = 0—in other
words, an error purely systematic). On this, it can be noted that the most consistent sensor model was
the MPL3115A2, followed by HTU21D. The least consistent sensor models were the DS18B20 and
the AM2302.

Expanding the considerations to professional requirements, the World Meteorological Organization
(WMO) points out an ideal accuracy of ±0.5 ◦C in its guidelines for conventional methods for weather
observation [41]. Despite all the manufacturer statements, the only model that would meet this
requirement, in a “plug-and-play” condition, was the HTU21D. Nevertheless, all the other sensor
units would meet the mentioned requirement without greater efforts when using some form of
data adjustment.

The computed data about the precision of the temperature sensors are presented in Table 4.
The highest standard deviation was observed at the 40 ◦C level, where all the sensors exceeded

the 0.1 ◦C mark. This occurrence may be explained by the thermal noise, intrinsically related to the
semiconductors. The WMO, regarding precision, recommends a value of 0.2 ◦C for temperature
measurements. It can be concluded that although the precision of the investigated sensors decreases
with increasing temperature, they can meet the WMO’s requirement at moderate temperatures.
An interesting fact that can be observed in these data is that the sensors do not significantly differ in
the values of the standard deviations, as they showed very similar values along the investigated range.
This suggests that all the sensor models were affected by noise with similar intensity.
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Table 4. Summary of averaged precision indicators for temperature sensors.

Sensor Model
Standard Deviation (◦C) at Signal–Noise Ratio at

−5 ◦C 10 ◦C 25 ◦C 40 ◦C −5 ◦C 10 ◦C 25 ◦C 40 ◦C

DS18B20 0.08 0.07 0.06 0.12 64.7 167.8 416.8 342.1
AM2302 0.06 0.07 0.08 0.13 77.6 160.1 317.7 367.2
HTU21D 0.07 0.06 0.06 0.14 82.2 185.8 424.5 309.5
BMP180 0.07 0.07 0.07 0.16 106.9 147.8 373.5 265.3
BME280 0.06 0.09 0.07 0.16 64.1 165.5 401.5 266.2

MPL3115A2 0.06 0.07 0.07 0.15 115.0 131.1 334.8 261.1

The information presented so far considered the static behaviour of the sensors. However,
the performance of the sensors during the temperature variations is also of interest. Scatter plots
generated with datapoints during temperature changes are presented in Figure 6, with aggregated
data separated by sensor model.
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Figure 6. Scatter plot for temperature reference sensor (x axis) and evaluated sensor (y axis): (a) DS18B20;
(b) AM2302; (c) HTU21D; (d) BMP180; (e) BME280; (f) MPL3115A2. Grey points refer to all individual
datasets aggregated in the same plot, and coloured points refer to the corresponding averaged data.

All sensors presented the expected linearity with no anomalies. However, the obtained
relationships, which were also used to obtain the dynamic residuals (DR) of all the sensor units
(see Table 5; the r2 values were suppressed, since they all exceeded the value of 0.99), demonstrate that
some sensor models had a subtle difference—although not critical—in slope and in the intercept point,
if compared to the ideal behaviour (y = x).
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Table 5. Averaged linear models for each sensor model and its respective dynamic residuals
(DR) indicator.

Sensor Averaged Linear Model DR (◦C)

DS18B20 ŷ(x) = 0.980x + 1.315 1.007
AM2302 ŷ(x) = 0.970x + 0.658 0.414
HTU21D ŷ(x) = 0.987t + 0.770 0.567
BMP180 ŷ(x) = 0.999t− 0.228 0.250
BME280 ŷ(x) = 0.978t + 2.260 1.901

MPL3115A2 ŷ(x) = 0.990t− 0.767 0.943

It is important to emphasize that this metric, if analysed alone, has no descriptive value, as some
situations may lead to low DR values, such as—for example—a combination of positive bias and
response delay. The DR values were considered as very satisfactory for the AM2302 and BMP180
sensor units. The DR value for HTU21D can also be considered satisfactory, but marginal. The DR
value from the other sensor models exceeded 1.0 ◦C. In terms of sensitivity, it is related to the slope of
the averaged linear model. The obtained slopes were near to 1.0 for all the sensor models (minimum of
0.970, for AM2302; maximum of 0.999, for BMP180). In this respect, it can be asserted that these sensors
do not present issues regarding their sensitivity.

3.2. Relative Humidity Sensors

The analysis of the humidity sensors required additional attention since their data are more
segmented, as diverse combinations of temperature and humidity levels were programmed. Figure 7
illustrates the readings from the humidity sensors inside the controlled chamber during a run of the
second experimental profile.
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Figure 7. Relative humidity readings obtained from one experimental execution inside the controlled
climatic chamber.

The expected humidity levels were 30%, 50% and 80%. However, it can be noted—from
Figure 7—that the reference sensor provided different values at certain moments (e.g., 37% at Hour 28).
This reveals that humidity control with different temperature levels is a complex task, even for
certified devices.

The accuracy indicators were obtained for each combination of humidity and temperature.
The results for the ME and for error consistency (σME) are presented in Table 6, and the obtained results
for the RMSE, with individualized information, are presented as a colourmap in Figure 8.
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Table 6. Summary of mean errors obtained for humidity sensors in different climatic combinations
(all values as percentual relative humidity).

Sensor Model

Mean Error (ME) in

σMEH = 30% H = 50% H = 80%

10 ◦C 25 ◦C 40 ◦C 10 ◦C 25 ◦C 40 ◦C 10 ◦C 25 ◦C 40 ◦C

AM2302 −4.4 −4.6 −4.2 −2.5 −4.2 −3.3 1.5 0.0 0.7 2.7
HTU21D −7.5 −7.5 −8.3 −6.0 −7.3 −7.9 −3.5 −5.6 −6.9 1.8
BME280 −3.9 −2.2 −1.4 −3.0 −2.5 −1.2 0.7 1.4 2.2 2.1
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models: (a) AM2302; (b) HTU21D; (c) BME280. The individual sensor unit (A, B or C) with its respective
experimental execution (1 or 2) is illustrated on the top edge.

Regarding the mean error, the higher overall agreement (lower ME) between each sensor model
and the reference was observed for the humidity level of 80%. Considering the WMO accuracy
recommendations—1% at higher values of relative humidity (80% or more) and 5% at moderate values
of relative humidity [41]—the evaluated sensor models reached different levels: the AM2302 met the
requirements at all levels, except at 80% at 10 ◦C, where it exceeded the value of 1%; the HTU21D did
not meet the accuracy requirement at any point analysed; the BME280 met the requirement at 30%
and 50% levels but, at 80%, only met it at the temperature level of 10 ◦C. Regarding the error scatter,
the lowest value of σME was observed for the HTU21D sensor (1.8%), and the highest value for the
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AM2302 (2.7%). These values were not considered critical but should not be ignored either, since they
are indicative of random error (used for precision metrics).

The precision metrics of the humidity sensor are presented in Table 7, which contains the standard
deviations averaged from all sensor units’ outputs.

Table 7. Summary of precision indicators obtained for humidity sensors (all values in percentual
relative humidity).

Sensor Model

Average Standard Deviation in

H = 30% H = 50% H = 80%

10 ◦C 25 ◦C 40 ◦C 10 ◦C 25 ◦C 40 ◦C 10 ◦C 25 ◦C 40 ◦C

AM2302 0.63 0.27 0.16 0.33 0.09 0.07 0.15 0.12 0.17
HTU21D 0.68 0.27 0.15 0.29 0.08 0.05 0.12 0.10 0.10
BME280 0.57 0.27 0.17 0.32 0.13 0.10 0.21 0.12 0.23

The overall precision exhibited very satisfactory results, even if compared with the WMO’s
requirements (5% at mid-range humidity).

The trueness of the humidity sensors during relative humidity variations was also assessed.
Figure 9 contains the scatter plots, with all the datasets from reference and the sensor readings (in grey,
all individual readings; in colour, the averages). The respective averaged linear models are presented
in Table 8, which also presents the calculated values for the DR.
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Figure 9. Scatter plot for humidity reference sensor (x axis) and the evaluated sensor (y axis): (a) AM2302;
(b) HTU21D; (c) BME280.

Table 8. Averaged linear models obtained for humidity sensors and their respective DR indicators.

Sensor Model Average Linear Model DR

AM2302 ŷ = 1.118h− 9.626 3.5
HTU21D ŷ = 1.061h− 10.38 7.1
BME280 ŷ = 1.084h− 6.333 2.3

The grey points scattered around the averaged dataset, in Figure 9, indicate that these sensors
were more susceptible to noise during the quantity variations. Regarding the sensitivity, all the sensors
presented slope values above 1.0. However, a more significant case is observed for the AM2302 sensor,
whose slope exceeded the ideal value by 12%, suggesting that this sensor is more affected by errors
than the other models since it was overestimating the relative humidity variations. The DR values
agreed with the mean error values observed in static conditions (see Table 6), pointing out—thus—that
there was no difference, in terms of overall error magnitude, if these sensors were reading static or
dynamic values of relative humidity.
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Despite all the observed issues regarding the accuracy of these sensors, either in dynamic or static
conditions, there was no evidence that a linear calibration would not produce satisfactory outcomes in
a data quality enhancement stage.

3.3. Atmospheric Pressure Sensors

The evaluation of the atmospheric pressure sensors relied on an inter-comparison between
the sensor units. Figure 10 contains the atmospheric pressure sensor readings during one
experimental execution.
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Figure 10. Atmospheric pressure reading sample obtained from one experimental execution inside the
controlled climatic chamber.

To assess the reproducibility of the barometric sensors, the readings from all the experimental
executions were grouped into a single dataset. The comparison was then made between different units
of the same sensor model that were used at the same time and under the same experimental conditions
(two units, out of three, at a time). The outcomes for these sensors are presented in Figure 11, which
illustrates the obtained scatter plot for individual sensor models, and in Table 9, which presents the
numerical results of the inter-comparison (the r2 values exceeded 0.99).
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Figure 11. Scatter plots for reproducibility verification of pressure sensors from experimental runs.
(a) BMP180; (b) BME280; (c) MPL3115A2.

In terms of inter-correlation, the linear regression closest to the ideal (1:1) was observed between
Units A and B for the BMP180 sensor, the A and B sensor units for the BME280, and between A and C
for the MPL3115A2 sensor. However, the RMSE complements this analysis, since its value denotes
how good the presented regressions are to describe the pairs of datasets. In this case, both the lowest
and highest RMSE values occurred for the BME280 sensor: the lowest value between Units A and C,
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and the highest value between Units A and B. The observed values point out that the reproducibility of
the pressure sensors may be considered moderate to satisfactory for applications where the uncertainty
is not critical.

Table 9. RMSE calculated between sensor pairs of the same model in same experimental conditions.

Sensor Model
Units Evaluated

A × B A × C B × C

BMP180 0.82 0.55 0.36
BME280 1.15 0.15 0.59

MPL3115A2 0.61 0.36 0.87

3.4. Carbon Dioxide Sensors

Three experimental executions were performed, two of which took place in an office room (the
first and third ones), interspersed with one in a bedroom. The different environments create different
expectancies regarding the observed concentration of the gas in natural (non-controlled) conditions.

Whereas an additional step was necessary to extract information from the raw readings of the
metal oxide sensors, this section includes two subtopics: one that addresses the issues observed about
the calibration of the MOS sensor (Section 3.4.1), and another that presents the results (Section 3.4.2).

3.4.1. Metal-Oxide Sensor Calibration

A detail about the MOS sensor (MG-811) is that it did not provide its readings in values of
gas concentration (ppm) but rather in raw voltage values that needed to be converted into ppm.
The sensor manufacturer made available an approximated conversion equation, which we observed to
be significantly inaccurate. This led to the necessity of a post-conversion of individual sensor data using
the reference readings. Figure 12 depicts the nominal conversion curve and the observed calibration
curves using data from the first execution in the office room. Additionally, Unit A of the MOS sensor
presented a very compressed output, if compared to Unit B: 15 mV of signal excursion, against 40 mV.
This, associated with the different baseline values, resulted in very different calibration curves, where
the coefficients differed even by an order of magnitude. It was also found that the physical orientation
of the sensor affects both its baseline and its sensitivity (the standard orientation used was with the
sensitive layer horizontally positioned). Consequently, sudden movements may also affect its readings.
In advance, it can be concluded that this sensor model is not feasible for air-quality mobile sensing
platforms such as, for example, those boarded on public buses, bicycles, taxis, etc.
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Figure 12. Calibration curves of MG-811 sensor from first measurement: (a) nominal; (b) Unit A;
(c) Unit B.
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Moreover, the calibration of the MOS sensor was found to be very unstable, as each individual
sensor required a new conversion process each time it was powered on. This information can be
observed in Table 10, which contains the conversion equations obtained from each experiment (the first
and third occurred in the office room; the second, in the bedroom).

Table 10. Calibration curves for the metal oxide semiconductor (MOS) sensor MG-811 (x: input in
volts; Y: output in ppm).

Experiment
Unit A Unit B

Calibration Curve r2 Calibration Curve r2

1st execution Y = 3.63·10−8
·x−15.9 0.71 Y = 2.81·10−3

·x−12.1 0.90
2nd execution Y = 1.14·10−6

·x−13.8 0.77 Y = 11.5·10−3
·x−10.8 0.98

3rd execution Y = 6.36·10−16
·x−29.3 0.83 Y = 4.55·10−3

·x−14.6 0.91

3.4.2. Results

Figure 13 illustrates the timeseries from readings taken in the office room (first and third
executions, chronologically) with mixed occupancy and a ventilation system during the daytime.
Figure 14 illustrates the measurements obtained in the bedroom, where it is possible to notice two
regions with higher concentrations: the first, from Hour 6 to 18, which corresponded to the occupancy
of two persons during night and sleep time; the second region, after Hour 32, corresponded to mixed
occupancy with only one person staying during sleep time.
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Figure 13. Carbon dioxide sensor readings from measurements in an occupied office room. (a) First
overall execution; (b) third overall execution.
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Figure 14. Carbon dioxide sensor readings from the measurement in a bedroom with nightly occupancy
without ventilation.

It could be noticed in the data that both units of the MOS sensor had different convergence
times (even after the nominal warm-up time), which, in turn, we defined as the time required for the
sensor to enter at the first time—and stay—at a maximum distance of 100 ppm from the reference.
An example can be seen in Figure 13a, where Unit A of the MOS sensor (in blue) took about 20 h
to have its adjusted readings enter the stipulated margin of convergence, whilst Unit B (in green)
reached the convergence much earlier: after 4 h. The difference in performance between the metal
oxide sensor units might indicate a very poor reproducibility in terms of sensor manufacturing. In
terms of calibration, the assessed NDIR units had a straightforward one-button self-calibration process,
where the user presses the button while the sensor is exposed to fresh air for a few minutes (where the
average CO2 levels are, approximately, 400 ppm). The auto-calibration procedure for these units was
performed once before the experiments, in clean air, to verify its robustness (or persistence) over time
of use. The accuracy indicators of these sensors are presented in Table 11.

Table 11. Obtained RMSE for carbon dioxide sensors from described experiments.

Sensor Type and Unit
RMSE (in ppm) from

1st exp. 2nd exp. 3rd exp.

NDIR
A 58 150 23
B 38 557 164

MOS 4 A 100 857 59
B 54 204 40

4 This sensor model had fewer reading samples due to the larger stabilization time, as previously suggested by the
presented traces in Figures 15 and 16.
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Figure 15. Scatter plots for reference and CO2 sensors from measurements in the office room. From 
left to right: (a) MH-Z16[A]; (b) MH-Z16[B]; (c) MG-811[A]; (d) MG-811[B]. Datapoints in red 
correspond to the first measurement, and datapoints in blue correspond to the second. 

The NDIR sensors presented good linearity, with r2 values above 0.97 for all measurements. In 
terms of sensitivity, they showed a moderate behaviour, with an average slope of 1.11 (minimum of 
1.03 and maximum of 1.17). The subplot (b) in Figure 15 clearly depicts a monotonic drift of Unit B 
of the NDIR sensor, considering that the slope of this device was kept almost the same during the 
measurements and only the y-intercept point of the linear regression was increased. This 
phenomenon was also present but less evident in Unit A of the NDIR sensor model MH-Z16. 
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Figure 15. Scatter plots for reference and CO2 sensors from measurements in the office room. From left
to right: (a) MH-Z16[A]; (b) MH-Z16[B]; (c) MG-811[A]; (d) MG-811[B]. Datapoints in red correspond
to the first measurement, and datapoints in blue correspond to the second.
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Table 12. Correlation and linearity verification of carbon dioxide sensor readings. 

Sensor Type 
and Unit 

Office Room (#1) Bedroom Office Room (#2) 
Linear Model r2 Linear Model r2 Linear Model r2 

NDIR 
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Summarizing the MOS sensor outcomes, Unit A presented inconsistent stabilization times, 
making it difficult to establish a linear relationship of its converted output with the reference (its 
scatter plots was formed with part of its output, only). Considering the stabilized readings, they 
demonstrated a satisfactory linearity, though. However, the outputs illustrated in Figures 15 and 16, 
associated with the linear relationships presented in Table 12, led us to assert that this sensor unit 
also presented issues regarding its sensitivity. 
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dynamic conditions was observed for the BMP180, which presented the lowest value for the DR 
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Figure 16. Scatter plots for reference and CO2 sensors from measurements in the bedroom. From left to
right: the NDIR sensors (a) MH-Z16 [A] and (b) MH-Z16 [B], and the MOS sensors (c) MG-811 [A] (this
subplot contains only some of the data, that converged after 18 h of the experiment) and (d) MG-811 [B].

The NDIR sensors presented the best overall accuracy, with very satisfactory results in the first
experiment (just after the calibration), and we consider—in advance—this specific model as suitable for
citizen science and IoT applications. However, they presented higher errors in subsequent experiments.
A more significant bias was found in the last measurement, which occurred in the same conditions as
the first measurement, but on different days. It suggests that this sensor unit (Unit B) may be affected
by monotonic drift with time (one-directional increasing bias). The MOS sensors presented satisfactory
results in the last measurement (the office room experiment repetition), but only with a limited time
window due to its stabilization time, which, in turn, is heterogeneous, and it is hard to predict its
length before the beginning of the sensor use.

The linearity of these sensors was also evaluated through scatter plots containing the datasets
from the sensors and reference. The plots are presented in Figures 15 and 16, for the measurements
inside the office room and in the bedroom, respectively. The data containing the linear relationship
between the sensors and the reference are presented in Table 12.

Table 12. Correlation and linearity verification of carbon dioxide sensor readings.

Sensor Type and Unit
Office Room (#1) Bedroom Office Room (#2)

Linear Model r2 Linear Model r2 Linear Model r2

NDIR
A y = 1.05x− 83.3 0.99 y = 1.03x + 55.2 0.99+ y = 1.12x− 75.7 0.99
B y = 1.14x− 91.1 0.99 y = 1.13x + 238.7 0.99+ y = 1.17x + 57.6 0.97

MOS
A y = 0.81x + 112.7 0.80 y = 1.80x− 595, 3 0.90 y = 0.76x + 121.5 0.96
B y = 0.91x + 40.6 0.94 y = 1.05x− 100.5 0.99 y = 0.98x + 80.0 0.90

The NDIR sensors presented good linearity, with r2 values above 0.97 for all measurements.
In terms of sensitivity, they showed a moderate behaviour, with an average slope of 1.11 (minimum
of 1.03 and maximum of 1.17). The subplot (b) in Figure 15 clearly depicts a monotonic drift of Unit
B of the NDIR sensor, considering that the slope of this device was kept almost the same during the
measurements and only the y-intercept point of the linear regression was increased. This phenomenon
was also present but less evident in Unit A of the NDIR sensor model MH-Z16.

Summarizing the MOS sensor outcomes, Unit A presented inconsistent stabilization times, making
it difficult to establish a linear relationship of its converted output with the reference (its scatter plots
was formed with part of its output, only). Considering the stabilized readings, they demonstrated a
satisfactory linearity, though. However, the outputs illustrated in Figures 15 and 16, associated with
the linear relationships presented in Table 12, led us to assert that this sensor unit also presented issues
regarding its sensitivity.
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4. Discussion

The evaluated low-cost climatic sensors, subjected to different scenarios inside a controlled
climatic chamber, presented a good cost–benefit ratio, considering that most sensors are very cheap
and yet present satisfactory performance indicators. However, in terms of accuracy, there was evidence
suggesting that these sensors are not calibrated in a full-range manner from the factory, and this
condition may mean they do not meet professional accuracy requirements for environmental monitoring,
if used in decentralized volunteer-based campaigns, for instance. On the other hand, polluted readings
or bad-quality data are not unique to low-cost sensing, as even professional monitoring may provide
erroneous or biased readings due to several factors, including the sensors themselves, as discussed by
the authors in [26] and in [42].

Regarding the temperature sensors, the best overall performance, in terms of both accuracy
and precision, was observed for the HTU21D, and the closest approximation to the reference during
dynamic conditions was observed for the BMP180, which presented the lowest value for the DR metric
(0.25 ◦C). The worst case for accuracy was observed for the BME280 and MPL3115A2 sensors, with the
error always above 1.0 ◦C, exceeding their nominal parameters (as stated in the datasheets). In dynamic
conditions, the worst performance was achieved by the BME280, with a DR value of 1.9 (perhaps due
to its bias), almost double that of the second-worst sensor—the DS18B20, with 1.0. Regarding the
precision of the temperature sensors, all the sensors were found to be very precise. In a more general
conclusion, we observed that temperature sensors are more likely to present systemic errors (bias) than
random errors (noise). Additionally, as the sensors presented good linearity and sensitivity (see the
slopes of the linear relationships presented in Table 5), they could detect, very satisfactorily, variations
in temperature.

The humidity sensors, in general, demonstrated moderate accuracy and precision. A good
linearity was observed, as well as a very strong correlation (trueness) between the sensors and the
reference instrument. The slopes of the linear models obtained from the data indicate that these sensors
can follow daily humidity variations of the same magnitude considering the experimental boundaries
of 30% and 80% air relative humidity. The best overall performance amongst the evaluated sensors was
achieved by the BME280 humidity module. These observations can be complemented by the results
reported by the author in [43], who found that low-cost humidity sensors using capacitive transduction
may present satisfactory results even in extreme conditions of very low temperatures and low vacuum.
However, these sensors can also present significantly biased data, as observed for the HTU21D sensor
model. Systematic errors can be easily corrected, but the challenge is to identify when the sensor
is biased or not. When the sensors are managed by lay individuals, this can be a hindering factor
for obtaining high-quality data in the context of citizen science. As a suggestion, when a reference
is unavailable for co-location, one can compare the readings from a sensor with the official weather
information of the local provider over time and check if the low-cost sensor is following the daily
pattern according to the official data. The presence of the random error (noise) was more pronounced
in the humidity sensors, yet it did not prove to be critical in relative terms.

The verdict about atmospheric pressure sensors lies in their reproducibility. The obtained
results from the inter-comparison of the sensor units allows us to conclude that the evaluated
sensors present very good reproducibility. Another finding was an eventual cross-interference from
temperature and humidity in the sensor readings, since the deviation observed between the BME280
and BMP180 readings seemed to follow a pattern. In practice, such an issue can be overcome by using
machine-learning algorithms using multivariate data to model the error, as demonstrated in [35].

The positive findings about the utilization of the low-cost climatic sensors can be strengthened
if the application presented by Mwangi [44] is considered: the author built weather stations with
low-cost sensors that were later tested and assessed at NOAA (National Oceanic and Atmospheric
Administration of United States of America) facilities, and then managed to deploy them in hard-to-reach
sites in Kenya. Moreover, these weather stations used two sensor models that were investigated in this
paper: the HTU21D and BMP180 models. Another example of work with interesting achievements
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using low-cost climatic sensors is the “CanSat” design, launch and data collection experience reported
by Colin and Jimenez-Lizárraga [12], which used—with no issues mentioned—the MPL115A2 sensor,
a previous version of the MPL3115A2, used in this paper.

In relation to the carbon dioxide sensor outcomes, they led to different conclusions in our
assessment in the indoor environment under natural conditions (an expected outcome, since they
use different transduction principles). While the NDIR sensor (MH-Z16) showed acceptable accuracy
and good linearity, the MOS sensor (MG-811) presented, generally, poorer performance due to its
unpredictable stabilization time, inaccurate nominal conversion curve, hysteresis, and higher bias
and even the significant interference from physical movements and orientation (both baseline and
sensitivity were affected by the physical orientation of the sensor). None of these issues are mentioned
in the sensor datasheet.

The analysed data show that MH-Z16 is a ready-to-use sensor with built-in calibration suitable
for indoor monitoring. In brief terms, a USD 50 device showed very similar performance to a
USD 2000 certified instrument (Vaisala), proving to be a cost-effective device. The MG-811, in turn,
considering the options that a citizen scientist would have, for instance, has its application list reduced
to basically a carbon dioxide detector, since even movements and physical orientation affected its
readings. This sensor may be used in fixed spots, with a stable power supply and with no sudden
temperature variations (e.g., exposure to cold wind streams), so it can serve as a complementary asset
for indoor surveillance or human presence detectors [21,22,45]. Without a reference being co-located
with this sensor, the MG-811 alone is unable to provide information. Accordingly, it can be said
that NDIR sensors can achieve superior performance when compared to MOS sensors for carbon
dioxide monitoring in the Internet of Things scope. However, the monotonic drift of NDIR sensors still
necessitates a very long-term investigation to extract conclusive information on whether they can play
an important role in the assessment of climate change, for example, especially in the monitoring of
carbon dioxide levels in the atmosphere, which requires constant and reliable measurements over years.

It is convenient to emphasize that although many authors undertake relevant contributions in
the field of low-cost environmental sensors, many of the observed contributions are mainly scenario
analytics [46,47], field applications [5,17,48,49] and advanced techniques for improving sensor data
accuracy [33,34,50]. In view of these observations, this work addressed a little-explored issue when
analysing the behaviour and performance of low-cost environmental sensors from the perspective of
an individual engaged in using the Internet of Things to build their own platform, justified by the
fact that these individuals may not have access to data calibration tools, such as reference sensors or
machine-learning algorithms, and yet they remain interested in building and keeping their weather
stations running and providing data, either due to particular motivations or by engaging in collaborative
sensing campaigns.

5. Conclusions

This paper presents an original experimental study on the performance metrics of sensors
commonly used in instrumentation within the scope of environmental monitoring using the Internet
of Things, providing a statistical analysis of the raw data obtained from the sensors exposed to
scenarios designed to obtain as much performance information as possible (the datasets are given in the
Supplementary Materials section). The evaluation included different low-cost environmental sensors
for temperature, humidity, atmospheric pressure and carbon dioxide that can be easily obtained at
affordable prices from recognized online stores, making the experimental setup easily reproducible for
anyone who is interested.

As findings, it turns out that while some of these sensors are ready-to-use devices and can present
reliable readings even without previous assessment, in terms of being able to provide a good sense of
reality at a very low price, other sensors presented issues regarding accuracy and sensitivity. We also
found that the information contained in the sensor documentation sometimes might be partially
inaccurate. As an example, we could mention that regarding the temperature accuracy in the datasheets
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of the BME280 and the MPL3115A2. The nominal levels of accuracy were claimed to be ±0.5 and
±1.0 ◦C, while the average RMSEs observed were 1.7 and 1.2 ◦C (from −5 to 40 ◦C), respectively.
Considering the MG-811 MOS sensor, the lack of details in its datasheet was found to be much more
critical. This sensor would be completely useless without a reference to calibrate it, since its nominal
conversion curve was proven to be incorrect, as well as its susceptibilities to interferences not being
stated clearly in the document.

Moreover, to fully meet professional requirements, such as those proposed by the WMO,
the individual calibration of these sensors is desired. This suggests that, without efforts in individual
sensor calibration, citizen science and Internet of Things approaches for environmental monitoring
cannot be compared to conventional methods yet, due to producing biased readings (in temperature
monitoring, for instance).

If it was necessary to choose the best sensor for each quantity in “from factory” conditions, from the
evaluated ones, we would recommend the HTU21D for temperature, the BME280 for humidity and
atmospheric pressure, and the MH-Z16 for carbon dioxide. However, as mentioned, if the operation
requires a high-end specification beyond the Internet of Things scope, actions must be taken to obtain
higher-quality data information, such as machine-learning methods for real-time calibration.

Aware of the limitations of this work, we can mention, as future work, further investigations to
cover the aging of these sensors through the persistence of performance indicators in their long-term
use and the robustness of a calibration curve (for the case of metal oxide sensors). In addition, it is
also desirable to evaluate the behaviour of climate sensors in an external environment, when they are
exposed to natural conditions where the measurements from them can change unexpectedly.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-831X/1/2/17/s1,
the datasets containing the sensor readings used to support the findings of this study have been deposited in the
Zenodo repository, with the digital object identifier (DOI) “10.5281/zenodo.3560299”.
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