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Abstract: Sleep pattern and posture recognition have become of great interest for a diverse range
of clinical applications. Autonomous and constant monitoring of sleep postures provides useful
information for reducing the health risk. Prevailing systems are designed based on electrocardio-
grams, cameras, and pressure sensors, which are not only expensive but also intrusive in nature, and
uncomfortable to use. We propose an unobtrusive and affordable smart system based on an electronic
mat called Sleep Mat-e for monitoring the sleep activity and sleep posture of individuals living in
residential care facilities. The system uses a pressure sensing mat constructed using piezo-resistive
material to be placed on a mattress. The sensors detect the distribution of the body pressure on
the mat during sleep and we use convolution neural network (CNN) to analyze collected data and
recognize different sleeping postures. The system is capable of recognizing the four major postures—
face-up, face-down, right lateral, and left lateral. A real-time feedback mechanism is also provided
through an accompanying smartphone application for keeping a diary of the posture and send alert
to the user in case there is a danger of falling from bed. It also produces synopses of postures and
activities over a given duration of time. Finally, we conducted experiments to evaluate the accuracy
of the prototype, and the proposed system achieved a classification accuracy of around 90%.

Keywords: sleep posture recognition; Internet of Things; convolutional neural network; machine
learning; healthcare

1. Introduction

The population of elderly people is on the rise and the number is expected to reach
20% of the total world population by 2050 [1]. They tend to suffer from poor sleep quality
which leads to myriad problems and affects their physical health, cognitive function,
and overall quality of life [2–5]. Therefore adequate and restful sleep is important as
it allows the body and brain to undergo necessary restorative activities. The quality of
sleep seems to be a common problem among the elderly and needs attention. Sleep
analysis is vital for the detection and diagnosis of sleep related complications. In addition
to sleep quality, sleep posture is another prevalent issue among elderly and may cause
pressure injuries (PI) if they have prolonged sleep in a single posture without moving, as
shown in Figure 1. PI may result in constant pain, loss of mobility, depression, and even
death. Studies have found that sleep issues are more prevalent within the residential care
population [6,7]. Furthermore, certain sleep positions and postures are considered to be
the major causes of certain diseases [8]. Elderly sleeping in the decubitus position have a
higher risk of developing sub-acromial impingement syndrome [9] and those sleeping in a
supine position are more likely to develop the symptoms of sleep paralysis [10]. Similarly,
sleeping on the right-side poses a greater risk of development of transient lower esophageal
sphincter relaxation, which is the main reason of nocturnal gastroesophageal reflux [11].
Finally, falling out of bed during sleep is another major risk to the elderly, resulting in
injuries and even death in extreme cases.
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Figure 1. Pressure sore face up [12]. 

The aforementioned risks can be mitigated if staff actively and regularly monitors 
the patient at the elderly care facilities. Clinical shreds of evidence suggest that posture 
sleep can be used as a diagnostic indicator for a range of chronic diseases and as an aid in 
medical therapies. Detecting and monitoring these symptoms can be challenging and may 
also require the use of extra staff resources leading to increased healthcare expenditures 
and stress for the patients. The healthcare community has also emphasized the need and 
significance of a perennial sleep tracking system to identify trends and assist people in 
creating individualized sleep goals. 

The challenges, rising costs of care and effects of sleep-related issues on the elderly 
motivate the need for a system that could assist medical practitioners and caregivers in 
residential-care in monitoring patients more efficiently. The Internet of Things (IoT) is the 
network of smart electronics device that are connected through internet equipping them 
with the capability of data exchange [13–15]. This capability of remote connectivity offered 
by IoT technology can be used remote monitoring of patients lacking access to effective 
health care. This will not only result in reduction in health cost but also enhance the avail-
ability and quality of care. The recognition of sleep posture requires the data related to 
positioning of the subject and some algorithm to classify this information. The data can be 
acquired remotely using IoT enabled sensors and several methods are in place for sleep 
posture classification, including means clustering [16], artificial neural network [17], dual-
tree [18], and support vector machine (SVM) [19]. However, these traditional approaches 
require considerable features extraction from the preprocessed signals and are susceptible 
to local optimization. Recently, researchers proposed a deep learning model named con-
volutional neural network (CNN), reduces the complexity of the network and number of 
weights because of its shared-weight network structure. It is being extensively deployed 
in the domain of object recognition [20] as well as image segmentation [21,22]. 

The objective of this study is to devise and implement a system for monitoring the 
sleep health of the elderly people living in hospice. We propose a smart autonomous sys-
tem that is capable of monitoring sleep pattern, sleep posture, and producing alerts about 
potential falls during sleep. This IoT based solution records patient’s posture related data 
using the sensor and transmits it to the cloud over the internet for further processing. The 
computations are performed in the cloud and deep learning algorithms are used to iden-
tify the posture and stored on the cloud with time stamp. The medical specialists can ac-
cess this data over the internet and use for making suitable health recommendations. The 
subject can also use this information to learn about their sleep habits and find ways to 
improve sleep health by obtaining feedback on their sleep postures and activities. This 
may prevent them from possible injuries when sleeping in wrong posture for prolonged 
period of time thus reducing burden on the health system. Caregivers and healthcare pro-
fessionals can also access this data and use it to implement preventative measures to re-
duce and manage the risks of poor sleep as necessary. The smartphone application gener-
ates many useful which can be helpful in assessing sleep efficiency (the ratio of total sleep 
time to time spent in bed) and sleep latency (the duration from bedtime to the onset of 
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The aforementioned risks can be mitigated if staff actively and regularly monitors
the patient at the elderly care facilities. Clinical shreds of evidence suggest that posture
sleep can be used as a diagnostic indicator for a range of chronic diseases and as an aid in
medical therapies. Detecting and monitoring these symptoms can be challenging and may
also require the use of extra staff resources leading to increased healthcare expenditures
and stress for the patients. The healthcare community has also emphasized the need and
significance of a perennial sleep tracking system to identify trends and assist people in
creating individualized sleep goals.

The challenges, rising costs of care and effects of sleep-related issues on the elderly
motivate the need for a system that could assist medical practitioners and caregivers in
residential-care in monitoring patients more efficiently. The Internet of Things (IoT) is
the network of smart electronics device that are connected through internet equipping
them with the capability of data exchange [13–15]. This capability of remote connectivity
offered by IoT technology can be used remote monitoring of patients lacking access to
effective health care. This will not only result in reduction in health cost but also enhance
the availability and quality of care. The recognition of sleep posture requires the data
related to positioning of the subject and some algorithm to classify this information. The
data can be acquired remotely using IoT enabled sensors and several methods are in
place for sleep posture classification, including means clustering [16], artificial neural
network [17], dual-tree [18], and support vector machine (SVM) [19]. However, these
traditional approaches require considerable features extraction from the preprocessed
signals and are susceptible to local optimization. Recently, researchers proposed a deep
learning model named convolutional neural network (CNN), reduces the complexity of
the network and number of weights because of its shared-weight network structure. It
is being extensively deployed in the domain of object recognition [20] as well as image
segmentation [21,22].

The objective of this study is to devise and implement a system for monitoring the
sleep health of the elderly people living in hospice. We propose a smart autonomous
system that is capable of monitoring sleep pattern, sleep posture, and producing alerts
about potential falls during sleep. This IoT based solution records patient’s posture related
data using the sensor and transmits it to the cloud over the internet for further processing.
The computations are performed in the cloud and deep learning algorithms are used to
identify the posture and stored on the cloud with time stamp. The medical specialists can
access this data over the internet and use for making suitable health recommendations.
The subject can also use this information to learn about their sleep habits and find ways to
improve sleep health by obtaining feedback on their sleep postures and activities. This may
prevent them from possible injuries when sleeping in wrong posture for prolonged period
of time thus reducing burden on the health system. Caregivers and healthcare professionals
can also access this data and use it to implement preventative measures to reduce and
manage the risks of poor sleep as necessary. The smartphone application generates many
useful which can be helpful in assessing sleep efficiency (the ratio of total sleep time to time
spent in bed) and sleep latency (the duration from bedtime to the onset of sleep). These
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measures can help physicians detect and diagnose sleep-related disorders such as insomnia
and sleep apnea [23].

There is a plethora of work dedicated to the aspects related to sleep health and
researchers have explored diverse techniques for identifying the sleep posture. In many
early studies on sleep postures, an empirical approach was favored and data was collected
by interviewing subjects. In recent years, advancements in the IoT and sensing modalities
have enabled researchers to more accurately determine the posture and patterns during
sleep. Several studies have been performed that in one way or another try to quantify the
quality of sleep or sleep posture [24,25]. In a clinical sleep assessment setting, the current
‘gold standard’ for diagnosing sleep disorders and issues is the use of polysomnography
(PSG) [24]. This method involves the measurement of multiple physiological parameters,
such as brain activity, blood oxygen level, heart rate, breathing, and leg and eye movements.
It also requires a number of sensors and equipment to be physically attached to the patient’s
body. Although this method provides accurate results and insight into one’s sleep, it is
obtrusive, disruptive, expensive, and requires monitoring in a exceedingly controlled and
unusual environment. Therefore, it is only suitable for medical-supervised evaluations
and not feasible for daily use. Conceptually similar device called WatchPAT [25] is worn
on the wrist by the subject and comes with a finger clip but intrusive nature may cause
discomfort. Several smartphone applications are also developed that use built-in sensors
to monitor sleep patterns including: Toss ’N’ Turn sense [26], My Sleep APP [27], ‘Sleep as
Android’ [28] and Runtastic Sleep Better [29], and iSleep [30]. Smartwatches, wristbands,
and headbands are powerful devices in terms of the sensors that are embedded in it. The
Fitbit Charge2 [31], Jawbone UP3 [32], Zeo, SleepImage, Lark, WakeMate, Hexoskin, OURA are
popular commercially available wrist-worn sleep trackers used for collecting data about
sleep [14,31–33]. They are expensive and also intrusive in nature.

Alternatively, there are other nonintrusive technologies for recognizing the sleep
posture of the subject. They are based on pressure sensing or camera based visual data.
The latter used common digital visible light (2D or 3D) cameras, Infrared cameras, Kinect
cameras acquire visual data and then applied image processing and machine learning
techniques to recognize different postures [34–36]. The versatility of the data captured is
also augmented by using different sensors in conjunction with the sensors [37–41]. These
approaches are expensive, sensitive to light, require installation, and breach of personal
privacy is a concerning issue. Another approach excluded the use of cameras and instead
used smart bed-type devices in the form of sensors installed on or near the mattress for
sleep posture monitoring. These devices comprised inertial measurement unit (IMU) sensor
and wireless technology (Wi-Fi and RFID) to identify sleep quality and sleep postures.
Wireless identification and sensing platform (WISP) [42] and MediSense [43] used the y-axis
accelerometer and z-axis gyroscope readings to infer body postures and movement of the
patients, respectively. Wi-Sleep [44] leverages Wi-Fi signal, TagSheet [45] used passive
RFID tags taped under a bed-sheet, SMARS [46] exploited ambient radio signals, and
SleepSense [47] made use of Doppler radar-based system to detect the activities but all
these systems do not possess the capability to recognize postures.

Within the recent past, pressure sensing techniques is getting attention as it leveraged
to not only identify sleep patterns, but recognized postures as well. These techniques made
use of different types of pressure sensors that are non-intrusive and did not discomfort
the users. A wide variety of pressure sensors were used ranging from simple fluid cells to
sophisticated pressure sensing mats. The fluid-filled cells [48] and low-ended load cells [49]
detect motion via pressure fluctuations. A more popular approach is to place a small
sensing mat between the mattress and bed-sheet. The bedsheet deployed pressure sensors
captured pressure mapping images and different postures could be recognized using
classifiers. Alternatively, distributed pressure sensors entrenched in the mattress could
record any changes in body posture [50–53]. The pressure-sensitive mats manufactured
by S4 sensors recorded the patient’s movement between different postures [54]. These
mats used photodiodes connected to optical fiber for providing light. The light intensity of
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photodiodes would vary as pressure applied is translated to a voltage signal indicating
the pressure exerted on the mat. Data were transferred to a computer for processing via
Bluetooth, and linear and SVM classifiers were used for categorizing data. Apart from
being expensive, this system was not able to detect multiple postures and relay the recorded
information to the user in real-time. A force sensing application pressure mattress [55], a
high-resolution mattress that contained 2048 sensors, was used. This system could identify
only three different postures, namely “supine”, “right side” and “left side”. Similarly, [56]
used a sensor mat comprising 1728 resistive sensors for identifying 13 different sleep
postures using a Gaussian mixture model. The image collected from the mat was processed
by various filters for highlighting the pressure areas using a low pass Gaussian filter. For
identifying the positions of a user’s limbs, pressure sensor data from specific regions on the
mat were clustered together. This information was combined with the previously collected
information from pressure sensors to obtain the posture classification. KNN linear classifier
was used for supervised training using the collected datasets. There are few other recent
solutions which make use of the pressure sensors and machine learning for identifying
different postures [57–62].

The problem of sleep recognition involves both feature extraction and then classifi-
cation of the image. The application of the feature extraction techniques to the images
obtained from the pressure sensor mattresses is not effective due to ambiguous nature
of the data as well as due to the lack of description of features. It becomes even harder
to extract features when number of pixels increase as there exist a correlation between
each pixel point’s pressures. The solution to aforementioned problem is offered by CNN
as it offers the capability of automatically detecting the important features without any
human supervision through integration a feature extractor and a classifier into a network
for training through data. In contrast to traditional networks, CNN scale well and offer
optimal performance and efficiency.

There are many studies on posture estimation based on deep learning [63–67]. The
technique proposed by Georges Matar et al. for monitoring patient posture uses the binary
images produced by the pressure sensing mattress with an aim to reduce the storage
requirement and computational cost [63]. Though proposed method is able to detect the
posture with high accuracy as indicated by the Cohen’s Kappa coefficient value (κ = 0.866)
but this system was not been realized in hardware at that time. Later, the extension of the
research involved the hardware implementation using piezo-resistive pressure sensors
array of 27 × 6 nodes and used artificial neural network for the classification. The system
was capable of classifying six with a very high accuracy of 97.6% [64]. The most recent
work by [65] deployed 1024 sensor nodes (23 rows × 32 columns) bedsheet and deploys
shallow CNN to determine the six health-related sleep postures of a person. This approach
uses too many sensors nodes and also requires a standalone PC for processing the data
thus adding considerably to the cost of the system. Also, data is available locally and does
not offer the remote monitoring.

There exists other works dedicated to develop a sleep quality monitoring and sleep
posture recognition system with a high level of accuracy by using CNN but they lack
the capabilities of delivering processed data to the end-user and a health professional in
real-time and flexible manner. Furthermore, these systems use a pressure sensor array
with a large number of nodes which not only requires high computation but also result in
increased cost and power consumption. The proposed system overcomes above drawbacks
by accompanying a smartphone application where the user or medical staff can visualize
the data in real-time. Also, it uses a fewer sensor nodes, making it cheaper and more
affordable for the consumer in terms of cost and consumes less energy, thus resulting in
longer battery life.

We are specifically interested in a system which is low cost, low powered, user-friendly,
and easily accessible. The main contribution of the proposed system includes (1) low cost
and low powered pressure sensing mat with no computation performed at the point of
contact, (2) fully automated cloud-based solution for sleep posture recognition that permits
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the end users to access data anywhere and anytime, (3) a mechanism that sends a message
to the caregiver if the subject is on edge and may fall, and (4) a smartphone application that
can also access the previously collected and generate reports for analysis and diagnosing
different medical conditions.

2. Methods and Material

This section describes the methods and materials used in the study. The method
attempts to solve the problem following a three step process: (1) mat construction using
pressure sensor, (2) data acquisition, (3) data storage and computations in the cloud, and
(4) information exchange between cloud and end-user.

2.1. System Architecture

The system architecture shown in Figure 2 provides the conceptual model defining
the structure of the system. It comprises a sensing mat made up of pressure sensors used
to capture data related to the sleep position of the subject. The data acquisition module
integrated into the mat collects the data from the pressure sensors providing the snapshot
of the current posture, and transmits it to the cloud server using the Wi-Fi. The data
acquisition unit is implemented using the ATmega32u4 micro-controller. The firmware
performs initialization, collects data from sensors, arranges data, and transmits the data to
the cloud server using Wi-Fi module. Data received by the cloud server is then stored in
the server database. We use a central server design, which performs the data storage, data
processing and user authentication.
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Figure 2. System architecture.

The server can read the recently added data to the table in the server database for
classification. Machine learning is used to perform a statistical analysis of the data obtained
from the data acquisition unit and classify different postures. The data is continuously
received by the server and classified. Google’s deep learning library, TensorFlow, is used for
classification that incorporates different APIs to build at scale deep learning architectures
like CNN. The data is first loaded into memory, a model is built, a machine learning
algorithm is trained, and then posture is estimated.

An Android application is provided to the end-user (subject or health professional)
to interact with the system and retrieve information from the cloud. The information
provided is the current sleep posture and statistical data for a specified period of time.
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The statistical data contains the overall time in bed and the posture distribution over time.
The application also generates fall warning alerts when the user is sleeping closer to the
edge of the mat. The fall warning may help in preventing any potential fall injuries. If
a user sleeps in one posture for a prolonged period, a bedsore alert generation option is
also provided for the caregivers so that they can attend the patient and help change their
posture. Bed unoccupied alert is generated when the user leaves the bed which is also
helpful for caregivers.

2.2. Sensor Design

Selection of sensors capable of capturing the pressure distribution and contact area
between the body and the mattress was an important decision to make. We considered a
number of options considered for evaluation including: premade mattress sensor arrays,
limit switches, FSRs, and piezo-resistive materials. They were judged according to their
physical and technical specifications, in addition to costs. The options were analyzed
against the ideal sensor criteria: (1) flat sensor shape, (2) ability to detect a large pressure
range, (3) lower cost. Force-sensing resistors (FSR) are simple tactile sensors [51,68] that
are used in applications where changes and differences in pressure need to be detected.
These are constructed using conductive polymers, elastomers or semiconducting polymers,
piezo-resistive material, conductive wires, fiber-optical, or fiber-grating material.

Table 1 summarizes the sensor options with key metrics displayed. We implemented
an array of FSR’s using Velostat pressure-sensitive material was used because it is inexpen-
sive. Furthermore, they are cheap as they involve low-cost electronic components and for
these reasons, they are widely used in such applications. Velostat-based FSRs have an expo-
nential decay resistance to pressure curve having a significant drop in the resistance of the
material within a small region of the pressure range allowing to distinguish between high
and low-pressure regions. An FSR sensor with a larger surface area has higher resistance,
but it still has the same level of sensitivity. This is an important property as this allowed
the designing of the sensors for different pressure ranges having similar sensitivity. The
square-shaped sensor has dimensions of 2 × 2 cm and contains three main layers which are
a top electrode, Velostat, and the bottom electrode, respectively as shown in Figure 3a,b.

Table 1. Summary of sensor options.

Type Name Dimensions Sensors Max Pressure (kgf/cm2)

Pressure Sensing Mat Tekscan BPMS HMER3 173cm × 88cm 5304 6.6
SPI Tactilus Bodyfitter 185cm × 76cm 1728 14.1

Limiting Switch Tapeswitch Sensing Cell 2.5cm × 1.9cm Each NA

FSR
Leanstar Tech DF9-40 0.9 cm diameter Each 77.1

Tekscan A301 1 cm diameter Each 35.3

Piezoresistive Velostat Any Any 3.7

2.3. Mat Design

Our sensing mat is designed using an array of sensors attached to a thin plastic film
under the sheet, making it easy to deploy on the mattress and unobtrusive to users. As
shown in Figure 4, a total of 171 sensors are placed in a 19 × 9 grid structure. The sensors are
organized in rows and columns, forming an I-by-J rectangular matrix P =

{
pi,j

}
where pi,j

denotes the pressure sensor at the ith row and jth column of the matrix, 1 ≤ i ≤ I, 1 ≤ j ≤ J.
The total number of sensors is I × J. The dimensions of the mat is the same as that of
a single mattress, i.e., 100 × 200 cm. The end-to-end clearance between two sensors is
around 8 cm. We use the equally spaced sensor topology as opposed to a few other sensor
topologies such as the placement of sensors depending on the regions on the mat expected
to have certain pressure values. We preferred this topology as it was more generic and
would fit all the different types of major applications without imposing any restrictions on
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the user for the usability of the map. Two different plastic layers can be seen in Figure 5
with copper tapes applied on the bottom black plastic layer of the mat run perpendicular
to the copper tapes applied on the top transparent plastic layer. The Velostat sensor cutouts
were placed on the copper tapes on the bottom plastic sheet that can be seen in as black
dots along the entire stretch of each copper strip.
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2.4. Data Acquisition

The data capture unit comprises a microcontroller and an electronic circuit connected
used to reduce the required pin count as shown in Figure 6a. Powering all rows required
19 digital outputs which were too many to handle for a low-end microcontroller. The
important aspect to note is that only one digital output needed to be active at any given
time during scanning process. We exploited this fact and reduced the pin count by deploy-
ing shift registers in a daisy-chain configuration essentially creating a single large shift
register while using the same common control signals for each chip and this solution was
even cheaper than using multiplexers. This circuit is connected to a microcontroller kit
during initial phases of development. The electronic circuit was put together with the
microcontroller on a single printed circuit board (PCB) in the final phase to reduce the size
as well as power consumption. The final completed PCB is shown in Figure 6b and has the
dimensions of 7 × 6.4 cm. At the heart of data acquisition unit is an AVR ATmega32U4
microcontroller which has 12 ADC channels, 26 I/O pins, 32KB program flash, 2.5KB SRA,
serial programming capability. The system required nine ADC channels, four I/O pins
for shift register control, a UART interface for the Wi-Fi module, and an SPI interface for
serial programming.
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The data acquisition unit captures a snapshot of sensor mesh (the values of all the
FSR’s on the mat at an instance) and sends it wirelessly to the cloud database. We use
sensor matrix scanning strategy and this is done by pulling up one row, i = 1, the analog
values outputted by all the columns, 1 ≤ j ≤ J, fed to an analog to digital converter (ADC)
are captured by the controller. The same procedure is repeated for all the rows, 1 ≤ i ≤ I,
and the pressure values of all nodes are captured as illustrated by the pseudo code given
in Algorithm 1. This is used to construct the snapshot of the pressure profile of the person
at a given instance.

Algorithm 1: Sensor Scanning

1: procedure
2: clear shift register
3: shift 1 into shift register
4: for row i = 0 to I-1
5: for column j = 0 to J-1
6: array[i][j] = ADCj value
7: end for;
8: shift 0 into shift register
9: end for;
10: end procedure;

The ADC is operated at a frequency of 250 KHz, each ADC conversion takes 13 cycles
and time to taken to scan all the 171 sensor nodes was around ~9 ms. The data was sent
to WiFi module connected to microcontroller via a UART using a baud rate of 19,600 for
transmission to the cloud. Each sensor node value comprises of 2 bytes which allows to
transmit over five frames per second but frame could easily be improved by increasing the
data rate.

2.5. Power Consumption Analysis

The Mat-e data acquisition and image transmission to the cloud is battery operated,
therefore, energy consumption is very important for the battery life. The power consump-
tion values of the main components which consume significant power are provided in the
Table 2 below. The power consumption of other auxiliaries components such oscillator,
shift register, UART, ADC, diodes, and regulators is not significant and not considered in
calculation.

Table 2. Power consumption.

Component Model Current

Sensor Array Mat-e 35 mA
Microcontroller ATmega32u4 13 mA
Wi-Fi Module ESP8266 80 mA

During data acquisition phase, which lasts for 9 ms, only sensor array and micro-
controller are active and energy consumed is given as

Idata_aquisition =
(

Isensor_array + Imircocontroller
)

Idata_aquisition = 35 mA + 13 mA
Edata_aquisition = 48 mA

It takes around ~175 ms to transmit one snapshot of the pressure values of the map
and during this time micro-controller and ESP8266 module are active and energy consumed
is given by

Idatatransmission
=

(
IWiFimodule + Imircocontroller

)
Idata_tranmission = 80 mA + 13 mA

Idata_tranmission = 93 mA
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The total energy for acquiring and transmitting a single frame is

Iaverage =
(Idata_transmission× Tdata_acquisition +(Idata_transmission× Tdata_transmission)

Tdata_acquisition + Tdata_transmission

Iaverage = 90.8 mA

A typical AAA 9V battery have capacity of around 750 mAh (miliampere hour), the
battery would last for around ~8 h only if we acquire and transmit data continuously.
However, by reducing the frequency of the images frames obtained, the battery life will
considerably improve. For example, an image after 2 s will increase the battery life 10 fold
to ~80 h approximately. Due to low battery life, a DC jack is provided to power it directly
using a 9V adapter. Also, ignoring the last two bit of the ADC will not affect accuracy by
great deal but it will considerably reduce the power consumption (almost by half) as the
resultant 8-bit value will be transmitted using a single byte only instead of two bytes.

2.6. Posture Recognition

We identify six different cases based on positions a user could be in when on the
mat. These positions are identified as ‘Face Up’, ‘Facedown’, ‘Right Lateral’, ‘Left Lateral’,
‘Unoccupied’, and ‘Closer to the Edge’ as shown in Figure 7. The closer to the edge case
will alert the caregiver through the Android application, called SleepMat-e, that someone
may fall off the bed. The categorical heat map images generated from the pressure readings
is shown in Figure 8. Each colored square represents a pressure sensor and it has a color
which is based on the magnitude of the pressure applied to the FSRs. The brighter color
(yellow) indicates the highest pressure. The data stored in the database is classified and
sleep posture is predicted. The database is polled periodically to check for new data, and
when a new piece of data is received, the system performs the computations to classify
new posture. This not only reduces the workload but also lowers the power consumed
by the system. Posture recognition is an image recognition problem and deep learning,
specifically CNN, is an effective tool to solve this problem [69]. It is a class of deep
neural networks widely used to analyze visual images. CNNs are regularized versions of
multilayer perceptron which are fully connected networks where each and every neuron
in the current layer is linked to all neurons in the subsequent layer. These networks are
vulnerable to overfitting data due to the ‘fully-connectedness’ nature. ConvNets were
motivated by biological procedures in that the connectivity pattern between neurons bear a
resemblance to the organization of the animal visual cortex [70]. CNNs use relatively little
pre-processing compared to other image classification algorithms.

We make use of an artificial intelligence library, TensorFlow, which builds models
using data flow graphs. More precisely, it is an image classifier, type of image recognition
algorithm that analyzes an input image outputs what the image contains. The output is a
class label, which is one of the postures here. The dataset comprises 200 images for each of
the six possible cases, i.e., classes. Each image has three channels and all images have same
aspect ratio. From the 200 collected images for each case, this does not include images that
were either similar to other cases or were difficult to classify as some of them were not
valid images due to glitches, for example, image taken during the posture change period.
This was due to the resolution of the mat. Instead of creating the whole model again, we
retrained the existing model with our own data. In order to collect a maximum number
of posture variants and ensure inter-frame variance, the subject were provided specific
instructions during the experimental set up. Also, the complete pressure frames or binary
image received at the cloud are subject to scrutiny and a procedure was adopted to select
the frame to avoid the duplication of same posture of a particular subject.
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Based on the TensorFlow Hub module that calculates image feature vectors, we adapt a
pre-trained network for other classification. Inception-v3 [71] is a pre-trained convolutional
neural network model that is 48 layers deep and has an image input size of 299 × 299. This
pre-trained network is capable of classifying images into one thousand object categories
resulting in network learning rich feature representations for a many different types of
imageries. The model uses CNN to extract general features from input images first, and
then classifies them based on the features with fully-connected and softmax layers as
shown in Figure 9. This model has been trained over millions of images, but the last layer
of the network has been left untrained. We could supply our own dataset to complete the
last layer of training. After training, a graph file is created, which contains information
regarding nodes and weighting. This is the advantage of TensorFlow, as the training
dataset is not needed after the graph file is produced. By default, it uses the feature vectors
computed by Inception V3 (CNN) trained on ImageNet, thus taking advantage of the
existence of this model for a custom image classification task. This is referred to as transfer
learning (TL) as knowledge gained when solving a problem is used to solve a different but
related problem [72]. This is a super-effective technique for classification a relatively small
dataset is available. As mentioned earlier, neurons are organized in layers in a CNN. Each
of these layers may perform different kinds of transformations on the inputs and, in this
way, input travels from the first layer to the last one after traversing the layers many times.
The last layer has accumulated enough summarized information to provide the next layer
which does the actual classification task as illustrated in Figure 10. Transfer learning may
have a very limited effect when you switch the dataset from one modality to another one.
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Transfer learning enables the building of a new model to classify original dataset by
reusing the feature extraction part and re-train the classification part with original dataset.
Training feature extraction part is the most complex part of the model, skipping it allows to
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train the model with less computational resources and training time. The training usually
took around 10 to 15 minutes depending on the size of the data. The graph file generated
from the training session was then transferred to the server and used in a TensorFlow
session for classifying postures.

The process image classification using TensorFlow is shown in Figure 9. First, we
pre-process data to generate the input of the neural network. Then, we reshape input and
create a convolutional layer, followed by the creation of a pooling layer. The above steps in
the process are repeated multiple times to create the multiple convolutions and pooling
layers. The output of convolution and pooling layers is flattened before feeding it to the
fully connected layer as shown in Figure 10. A fully connected layer is created and an
activation is also added. Lastly, a final layer for class prediction is created and weights and
biases are stored using TensorFlow variables.

2.7. Mobile Application

Mobile applications have been used in assistive healthcare and other medical related
cases [73–75]. The final stage of our solution displays the information to the end-user
after processing data through an Android application installed on a smartphone. The
information provided is the current sleep posture and the statistical data for a specified
date. The statistical data contains the overall time in bed and the posture distribution. The
application also generates a fall warning alert when the user is sleeping closer to the edge
of the mat. The fall warning will help in preventing any potential fall injuries. If a user
sleeps in one posture for a significant amount of time, a bedsore alert is generated for the
caregiver so that they can attend the patient and help change their posture. Bed unoccupied
alert is generated when the user leaves the bed which is also helpful for caregivers.

Figure 11 shows the screenshots of our Android app. The first screenshot is of the user
login as shown in Figure 11a. The user login screen also provides a general description
of the application. In order to protect the unauthorized access of the data on the cloud,
end-user is required to create a new account by entering personal details such as name,
surname and email address. This information is used to create a new profile for the user.
After the registration process is complete, the user may log in. In this way, only authorized
end-users (health professionals or subject) can access the subject specific sleep related data.
In order to provide enhanced security and privacy, we rely on the features provided by
the AWS as well. Once a user has successfully logged in, the user can then access the
dashboard as given in Figure 11b from where the user can check the current occupancy
status of the mat of whether someone is on the mat or not. ‘Posture’ option when clicked
uses cartoon images as an indication of the current posture of the occupant. To get more
details regarding the sleep posture for a given night, the user can select the ‘Stats’ option
and then select a date through the calendar menu as shown in Figure 11d. The ‘Stats’ option
also provides information regarding the overall time in bed as demonstrated in Figure 11c.
This time is measured from midday of the selected date to the midday of the next day; a
complete day.
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3. Experimental Results

In order to confirm the validity of the proposed system, we conducted the accuracy-
test for the recognition of the postures. The mat was placed over the bed and unobtrusive to
users. The controller responsible for measurement and collection of data was ATMega32u4.
Experiments were conducted by extracting the pressure data generated by the subject lying
down on the mat and forming a data set. The subject simulated his sleeping postures by
lying on mat for a period. In order to confirm the recognition accuracy, we constructed
200 data sets for each posture, and the following results given in Table 3 were obtained.
The ground truth was recorded by a camera and checked manually. The output of the
original Inception-v3 network contains 1000 classes, but we had only 6 classes; therefore,
we changed the number of output channels of the last layer from 1000 to 6. We divided
the dataset randomly into training data and test data for each posture type according
to a ratio of approximately 10:1. Also, we ensured that there was no overlapping of
the original images between the two datasets. In order to reduce the storage capacity
on cloud, we ensured that not duplicated data is sent to the cloud. For this reason, we
take the accumulated value of all sensors outputs in a snapshot and subtract it from the
preceding frame. The snapshot is transmitted with time stamp if differential exceeds a
certain threshold. This technique reduced the amount of data transmitted, computation
and storage required on cloud, and the power consumption at both ends.

Table 3. Numbers of images in the training and test groups.

Category Training Test Total

Unoccupied (U) 180 20 200
Face Up (FU) 180 20 200

Face Down (FD) 180 20 200
Left Lateral (LL) 180 20 200

Right Lateral (RL) 180 20 200
Edge (E) 180 20 200

The developed prototype could identify four different postures namely ‘Face up’, ‘Face
Down’, ‘Right Lateral’, and ‘Left Lateral’ alongside generating fall warning, bedsore alerts,
and bed occupancy status. Our system comes with an Android application, which allows
a user to get statistical data regarding their sleep. TensorFlow machine learning library
was used for the classification of the pressure images that are generated from the pressure
sensors information sent by the microcontroller. The system exhibited a high accuracy of
more than 90% when trained with the TensorFlow model as shown in Table 4. The system
performed well for all the different cases with the highest for unoccupied and edge, as
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these cases were the easiest to classify. Those Image-Net pre-trained networks are mainly
trained from natural images which are different from the original images used. Although,
model is fine-tuned through TL, the accuracy of the model can be further improved by fine
tuning of the final layer with larger dataset.

Table 4. Accuracies of posture categories.

Category Accuracy (%)

Unoccupied (U) 100.0
Face Up (FU) 93.0

Face Down (FD) 90.0
Left Lateral (LL) 85.0

Right Lateral (RL) 80.0
Edge (E) 95.0

The confusion matrix shows detailed analysis of classification outcomes from single
annotated test data of a particular subject for six postures (including ‘unoccupied’). By
analyzing the confusion matrices from different classifiers, the weights specified in voting
fusion matrix are shown in Table 5. There are two cases where confusion mainly occurs,
that is, FU vs. FD and LL vs. RL and this may be due to variations of spatiality among
subjects. The LL image is incorrectly identified as RL and vice versa. This typical kind of
error can be explained from the pressure map that is extended behind the subject’s back,
thus misclassifications can occur since the pressure image looks like a RL image. Similarly,
FD and FU have 7% to 10% chance to be erroneously classified into the other. That is
because these two postures have extremely similar snapshots due to the bilateral symmetry.
Edge is also erroneously taken as unoccupied as in both cases majority of the sensors are
not active.

Table 5. Confusion matrix of posture classification.

U FU FD LL RL E

U 100 0 0 0 0 0
FU 0 93 7 0 0 0
FD 0 7 90 2 1 0
LL 0 0 2 85 10 3
RL 0 2 2 12 80 4
E 3 0 0 1 1 95

The current posture is displayed on the app screen as shown in Figure 12a. Fall Alert
is triggered when the system detects that the user is close to either the left or the right edge
of the mat, which can be seen in Figure 12b. When the user leaves the bed, the ‘Bed Alert’
is triggered for the caregiver. This notifies the caregiver that the bed occupant has left the
bed. Both alerts are intended to inform the android application user about the possibility
that the user may fall or has fallen out of bed.
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4. Discussion

In this section, we compare the obtained results to the state-of-the-art works similar
to ours. Table 6 summarizes the comparison of our approach with other unobtrusive
methods based on the pressure sensor mattress and machine learning. The majority of
the earlier work produced high accuracy but at the cost of higher number of sensors and
computational cost. We have achieved competitive results with a low resolution mat. This
is largely due to transfer learning which can build a relatively small training data set as the
model is already pre-trained. The CNNs are trained with a relatively large date sets which
take long time to train and data set might not be available at times. The transfer learning
also reduces the training time as the knowledge learnt by a model when training with large
data is reused in the new task which has a small data only.

Table 6. Comparison with existing methods.

Methods Sensor Type Resolution Algorithm Postures Accuracy

Proposed method Piezo-resistive
pressure sensors sheet 19 × 9 = 171 CNN with Transfer

Learning 4 90%

[65] Pressure sensor sheet 32 × 32 = 1064

HOG + SVM
CNN

CNN with Transfer
Learning

6
87%
85%
91%

[66] Piezo-resistive
pressure sensors 64 × 32 = 2048 CNN 6 97.6%

[64] Piezo-resistive
pressure sensors 64 × 27 = 1728 Artificial Neural

Network 4 91%

[55] Force Sensitive
Resistor 2048 Deep Neural Network 3 97.1

[67] Force Sensitive
Resistor 360 Mean Squared Error

Scaled Moving Average 3 87%
96%

[76] Piezo-electrical
Pressure Sensor 64 × 128 = 2048 K-nearest Neighborhood 6 91.2

[77] Piezo-electrical
Pressure Sensor 64 × 128 = 2048 K-nearest 6 90.6%

[56] Pressure Sensor Mat 64 × 27 = 1728 K-nearest Neighborhood 3 91.6%
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Existing systems used specialized pressure mapping sensors integrating large arrays
of FSR’s into thin profile mats. These could provide extremely accurate and high-resolution
images as they had very high sensor densities, with many available solutions containing
thousands of pressure sensors. Although they were very suitable for the task at hand but
the costs of these systems is very high, upwards of thousands of US dollars, which makes
it unaffordable for the average user. The total cost of the sensor mattress was less than
$51 (tape, adhesive, conductive shielding, copper foil—price for 2 rolls $ 43; conductive
sheet—price for 2 sheets is $8.7) i.e., less than $0.0025/cm2. As our target demographics
were elderly patients in residential care facilities, the sensor technology needed to be
comfortable and non-invasive as the mat was to be placed on the mattress of the patient’s
bed. It needs to be very thin and comfortable. The material used to build the include
copper foil with conductive adhesive having total thickness (backing plus adhesive) of
0.066 mm and conductive sheet of thickness 0.1 mm; hence, this accumulates to a total
thickness of ~0.23 mm which is comparable to the commercial FSR sensor. The thickness
calculations are based on the values obtained from the datasheet.

In order to reduce the pin count, shift registers, analog multiplexers (muxes) and
direct I/O connections were considered for the supply of voltage to the 19 columns. A
microcontroller would control the sequential activation of each line. Direct I/O connections
were considered as no additional hardware was required. However, microcontrollers with
lots of I/O pins were generally expensive to source and had large amounts of resources,
such as memory and processing power, which would be unused in our application. Multi-
plexers can activate specific lines and could cater for all columns with just a single chip.
However, multiplexers with 16 or more outputs per IC are expensive. The more economi-
cally feasible options were found to be the two-, four-, or eight-output ICs which would
require at least nine control pins from a microcontroller. We also reduced the cost of the
system and energy by building a customized hardware that included needed auxiliaries
only thus avoiding the unnecessary power consumption in undesired components present
in available commercial kits.

This system offered the flexibility and mobility by storing the data on cloud and
made it possible to access data from anywhere and anytime with single click which is an
invaluable feature in the healthcare. The reports and statistics about the sleep posture could
help the health professionals diagnosing and making decisions based on the comprehensive
and up to date data. This not only reduced the cost of diagnosis but also saves the time of
the doctors spent otherwise in organizing the data for providing meaningful and useful
information. The availability of the information could also be beneficial for the well-being
of the elderly as they can keep track of their sleep posture and feedback on sleep posture
might provide the much needed motivation to the subject struggling with the sleep posture
related issues. Another unique feature of the proposed solution being pre-fall alerts as this
real-time information could be vital for the safety of the elderly people. The care giver can
intervene before an accident happens and the patient can sustain injuries incurring extra
financial burden and stress.

5. Conclusions

This study presents an IoT enabled smart sleep posture recognition system which
uses CNN for classifying the postures alongside generating fall warning, pressure sore,
and unoccupied bed alerts. The system is unobtrusive, affordable, and accessible through
a smartphone. By continuously monitoring the sleep posture, potential pressure hot
spots of the subject can be identified and appropriate interventions can subsequently be
implemented. The design, implementation, and evaluation of sleep posture classification
approach and methodologies were presented in details. The experiments were conducted
to evaluate the classification accuracies and system efficacy, and the results demonstrate
that sleeping postures can be classified up to 90% accuracy. A user-friendly Android
application allows users to easily access the statistical data related to their sleep such as
posture distribution and generates fall, bedsore, and bed unoccupied alert warnings. The



IoT 2021, 2 136

current posture recognition method may be further enhanced and validated by taking into
account random sleep postures, testing with real patients in actual care settings.
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