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Abstract: Global demand for sleep-tracking wearables, or consumer sleep technologies (CSTs), is
steadily increasing. CST marketing campaigns often advertise the scientific merit of devices, but
these claims may not align with consensus opinion from sleep research experts. Consensus opinion
about CST features has not previously been established in a cohort of sleep researchers. This case
study reports the results of the first survey of experts in real-world sleep research and a hypothetical
purchase task (HPT) to establish economic valuation for devices with different features by price.
Forty-six (N = 46) respondents with an average of 10 ± 6 years’ experience conducting research in
real-world settings completed the online survey. Total sleep time was ranked as the most important
measure of sleep, followed by objective sleep quality, while sleep architecture/depth and diagnostic
information were ranked as least important. A total of 52% of experts preferred wrist-worn devices
that could reliably determine sleep episodes as short as 20 min. The economic value was greater
for hypothetical devices with a longer battery life. These data set a precedent for determining how
scientific merit impacts the potential market value of a CST. This is the first known attempt to establish
a consensus opinion or an economic valuation for scientifically desirable CST features and metrics
using expert elicitation.

Keywords: behavioral economics; wearables; consumer sleep technology; Internet of Things; economical
survey; expert elicitation

1. Introduction

Wearables are a hallmark of the Internet of Things (IoT), but sleep researchers have
been using a precursor to wrist-worn wearables, called actigraphy, since before the “birth”
of the internet in 1983 [1–3]. Internet-enabled applications and wearables began to hit the
market in the mid-2010s [1,4]. A 2015 Journal of Clinical Sleep Medicine article coined the
term used to describe publicly available, computer-based systems that aimed to monitor or
improve individual sleep behavior, defined as “consumer sleep technologies (CSTs)” [5].
This term is widely used by the sleep research community to describe wearable or non-
wearable sleep tracking technology [1]. As the name suggests, CSTs have been designed
for the everyday consumer, rather than as a reliable scientific tool. However, CSTs are
increasingly becoming a part of the research landscape [1,6–14].

Enough reviews, statements, editorials, validation studies, and research findings
focused on CSTs have been published that it is impossible to cite them all, but none of these
previous works have put a price on the value of CST features that the scientific community
considers to have merit for clinical or research purposes (i.e., their scientific merit). Given
that recent advancements in sleep-tracking technology have been driven by consumer
economic demand, the time has come to examine researcher preferences in economic terms.
Multiple publications have discussed the value of the measurements that CSTs collect for
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use in a clinical or research setting [7–15], but the scientific merit of device features has not
previously been examined in the context of behavioral economics. Behavioral economics is
a field of science that applies behavioral science within economic frameworks to explain
decision-making behavior [15–17]. The motivation for this project is to describe the value of
scientifically meritorious CSTs in quantifiable terms, i.e., United States dollars (USD), that
can then be used to guide the development of future CSTs in order to maximize scientific,
as well as economic, gains.

This paper presents the results of an expert survey eliciting the professional opinions
and economic valuation of CSTs from a sample of researchers interested in real-world sleep
outside a controlled laboratory environment. To our knowledge, this is the first assessment
of its type, and it is also the first report in an on-going, multi-step project conducted as a
collaboration between the Institutes for Behavior Resources (IBR) Operational Fatigue and
Performance group and the Behavioral Economics group to establish the economic value
of CST wearable features on the basis of scientific merit. In order to assess the economic
value of CST features that are desirable to academic and industry sleep researchers who
are well-educated about the value of sleep monitoring, we first needed to establish which
features are, in fact, desirable to sleep researchers in economic terms. This case study was
designed to answer the following specific questions:

1. Which metrics of sleep quantity and quality do experts in the field believe are most
important for a CST wearable to measure?

2. What wearable design features are most important for the successful tracking of sleep
in the real-world from the perspective of experts who conduct such studies?

3. How much economic value do experts place on a CST wearable that has the most
desirable sleep metrics and design features?

The first step in this project was to conduct an online survey to see what wearable
features scientists with a professional interest in measuring real-world sleep consider most
important [18]. Survey items were geared toward identifying discrete design features, as
well as a hypothetical purchase task (HPT) and a validated behavioral economic demand
procedure for evaluating demand across a range of hypothetical circumstances [19–21].
This procedure can provide information about sensitivity to price for a particular device or
feature (e.g., how purchasing behavior may change as a function of cost) and provide an
economic valuation of those features in terms of demand elasticity. The target recruitment
population for this survey was scientists and industry professionals who routinely conduct
research related to human sleep physiology or behavior in real-world environments, i.e.,
sleep research experts.

One concern with an expert survey is that the sample population may not be ade-
quately representative of the expert community [22]. In qualitative research, even studies
presenting the results from a single case can be highly informative; however, it is necessary
for qualitative researchers to outline and justify their final sample size [23]. Adequate
sampling requires the determination of a sufficient sample size based on an estimation
of the size of the overall population [24]. Experts can be recruited using nonprobability
sampling techniques, such as convenience sampling [25,26] or purposeful sampling [27–29].
“Snowball” sampling, in which participants identify other potential participants, is another
nonprobable sampling technique which can help increase the recruitment of experts for
survey participation [22,30,31]. This paper describes the efforts taken to ensure that re-
spondents were representative of the global sleep expert population and presents a rank
ordering of researcher preferences for CST device features and metrics.

The motivation of this case study has been to establish experts’ consensus opinion of
the economic value of desirable CST wearable features for use in real-world sleep research
environments. The novelty of this study is that this is the first report of an examination of
preferred CST wearables features solicited from sleep experts and a behavioral economic
analysis of the value this group assigns to those features. The goal of this line of research
is to bridge a communication gap that currently exists between CST manufacturers and
the scientific community. Findings from this case study and subsequent surveys in this
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on-going project can be used to assess the extent to which currently available devices meet
scientific criteria and how general consumer demand for CST wearables is influenced
by scientifically meritorious design. The significance of quantifying demand for CSTs by
price based on scientific merit is to provide developers with incentive to improve their
technologies in a manner that also benefits the sleep research and medical community.

2. Materials and Methods

This study was approved by the Salus Institutional Review Board and these analyses
were conducted in accordance with the Declaration of Helsinki. Professional opinions
from sleep medicine experts were elicited to identify what metrics and device features
for measuring sleep outside the laboratory are most desirable to the scientific commu-
nity. Potential respondents were recruited actively through direct contact and passively
through social media on the Twitter (www.twitter.com (accessed on 13 March 2022)) and
LinkedIn (www.linkedin.com (accessed on 13 March 2022)) social media platforms and
through scientific presentations which described the scope of the project to the target
audience. Potential respondents were actively recruited through email based on the
results of a literature review conducted using the biomedical literature search engine
Pubmed.gov (https://pubmed.ncbi.nlm.nih.gov/ (accessed on 13 March 2022)) and schol-
arly literature web search engine Google Scholar (https://scholar.google.com/ (accessed
on 13 March 2022)).

The search criteria for the literature review included that the article had been peer-
reviewed, published before July 2021, and included a combination of the terms ‘sleep,’
and ‘environment’ or ‘operational’ or ‘real-world’ or ‘ecological’ and/or ‘wearable’ or
‘consumer sleep technology’ or ‘device’ in the topic or title fields. Each returned article
was manually scanned for relevancy. Articles which included a description of methods of
active data collection in a real-world environment or simulated real-world environment
were considered relevant. Review articles, meta-analyses, papers focused on device engi-
neering/development, or opinion pieces such as editorials were not sufficient for inclusion.
Authors who had published at least two or more relevant papers were subsequently con-
sidered subject matter experts and were contacted via blind carbon copy (bcc) email with
a brief written explanation of the purpose of the research and a link to the online survey.
Recruitment terminology on all platforms (social media, scientific presentation, and email)
included a request to share the survey with any interested colleagues in relevant fields in
order to create a snowball effect and reach a broader range of potential respondents.

The survey was hosted through the online tool Qualtrics (www.qualtrics.com (accessed
on 13 March 2022)) between April and July 2021. The voluntary anonymous survey was
composed of 42 questions grouped in 5 sections. The first section contained 5 questions
that focused on identifying each respondent’s background and research experience. The
second section contained 10 questions about respondents’ typical sample population and
study design. The third section contained 13 questions asking about device preferences,
and the fourth section asked respondents to rate their agreement with 6 statements. The
fifth section contained 9 questions regarding economic demand for devices with varying
features and price points. Respondents were able to provide comments in a text box with a
20k character limit at the end of the survey.

An annotated list of survey items and hypothetical devices for discussion in this paper
is outlined in Table 1. Respondents could select the best fitting option from a multiple-choice
list for Q1–Q12 or provide a write-in response if no option described them. Respondents
were asked to rank by order of importance (high importance, medium importance, or
low importance) a list of features or metrics related to the question topic for Q13–Q15.
Respondents could additionally provide and rank a write-in response.

www.twitter.com
www.linkedin.com
https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
www.qualtrics.com
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Table 1. Survey questions and number of responses.

Question Number of
Responses

Research Background and Experience

Q1. Do you conduct human subjects research related to sleep in real-world
environments/outside a controlled laboratory environment? (Only respondents
who selected yes were able to complete the rest of the questions)

55

Yes 46
Q2. How many years’ experience do you have conducting human sleep research
in real-world environments? 44

Q3. Which organization best describes your research affiliation? 43
Q4. In what region are you/your research based? 42
Q5. Which category best describes the population whose sleep you study? 40
Q6. Which category best describes the focus of your research? 36

Device Preferences: Multiple Choice

Q7. Where is your preferred placement for a fieldable device or instrument to
collect sleep data? 32

Q8. What do you consider to be the most important time scale for measuring
sleep for your research in general?
Q9. What is the most appropriate method for determining actual sleep
onset/offset in real-world environments? 33

Q10. Do you collect data related to napping or fragmented sleep? (yes/no) 29
Yes 24
Q11. What is the most appropriate minimum period of inactivity that could
reliably be considered a nap? (only respondents who selected Yes on Q10
received this question)

23

Q12. What is your preferred continuous observation period or window for
collecting data on real-world sleep? 32

Device Preferences: Rank Order of Importance

Q13. Which information about sleep do you consider most important to
your research? 33

Q14. Which features of a fieldable device or instrument are/would be most
important to facilitating data collection for your research? 30

Q15. Which factors related to devices or instruments are most important to
limiting your observation period/data collection window? 33

All data were exported from Qualtrics as an Excel file and subsequently analyzed
using Excel 2013. In-depth statistical testing was not appropriate for these analyses due to
the nature of the survey and the small sample size. Responses for Q13–Q15 were weighted
by level of importance. The Excel Rank function was used to calculate weighted mean
rank order for Q13–Q15 items. The hypothetical CST devices used for the HPT are briefly
described in Table 2. A total of 18 participants responded to the HPT section of the survey.

Participants’ data were first analyzed with algorithms used to determine the non-
systematic demand curve data [21]. Four demand curves were excluded as the data were
only input for a single price (one curve for Device A and B and two curves for Device C).
The demand curve data were analyzed using a recent extension of the exponential demand
model [32] specifically designed to handle zero demand data using guidelines and equa-
tions from Gilroy et al. (2021) [33]. With this equation, Q0 is an estimate of the maximum
level of demand (the number of devices one would purchase) and α is an estimate of the
rate of change in elasticity normalized to the transformed maximum level of demand (Q0).
A demand curve template for GraphPad Prism 8.0 available from the Institutes for Behav-
ior Resources (www.ibrinc.org (accessed on 13 March 2022)) was used to fit the pooled
consumption data and estimate the two parameters. Post hoc extra sum of squares F-tests
were used on the pooled consumption data to determine whether the demand elasticity
rate parameter (α) differed between devices. We also report the essential value (EV), which

www.ibrinc.org
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is proportional to the inverse of α (EV = 1/(100 × α)) and allows for a simple way to
understand the rate of change in elasticity—a lower rate of change in elasticity is denoted
by smaller α values and indicates a higher EV or higher resistance to the effect of price [32].
Taking the inverse of α ensures that a higher value is represented by a higher number.
Pmax was also calculated for each curve. Pmax denotes the price at which demand becomes
elastic and monetary expenditure would be maximal, and it was calculated using an Excel
solver tool that uses α and Q0 to estimate Pmax (Behavioral Economics Tools. Available
online: https://ibrinc.org/behavioral-economics-tools/ (accessed on 14 March 2022)).

Table 2. Device descriptions for the hypothetical purchase task.

Device A Device B Device C

Specifications

• Accelerometer
• Light exposure
• 30 s epochs
• 30 days continuous

battery life

• Accelerometer
• Light exposure
• Heart rate detection
• Oxygen saturation
• 4 days continuous battery life

• Accelerometer
• Light exposure
• Heart rate detection
• Oxygen saturation
• 30 days continuous battery life

Data Features

• 30 days on-device
data storage

• Data is downloaded
from device via USB

• 100 days cloud data storage
• Remote data

download/Bluetooth
Sleep depth estimation (light, deep,
or REM) which has been validated
against PSG

• Extraction mode settings:
• 30 days on-device storage via

USB download
• 100 days cloud data storage

via Bluetooth
• Sleep depth estimation (light,

deep, or REM) which has been
validated against PSG

Features Consistent
Across All Devices

• 30 s epochs
• Rechargeable battery
• Water-resistant to 50 m
• Dual function as a watch and alarm clock
• Event marker
• Optional feedback mode
• Companion software which allows researchers to score raw activity data
• CSV export of epoch-by-epoch (EBE) data
• CSV export of summary data averaged across all study days
• Bedtime in 24 h clock time
• Waketime in 24 h clock time
• Total sleep time (TST) in minutes

Sleep efficiency (SE) as a percentage

3. Results
3.1. Respondents
3.1.1. Recruitment Exposure

The total estimate of exposure of potential respondents through all platforms was
N = 14,057. The vast majority of exposure occurred through the social media website
Twitter (N = 11,117). Between April and July 2021, a total of 37 Twitter users clicked the
research survey link which had been embedded in recruitment tweets and 14 Twitter users
retweeted the recruitment tweets. The estimated exposure through scientific presentations
was approximately 142 attendees. Additionally, 101 potential respondents were directly
recruited through email.

3.1.2. Demographics

Seventy-six (76) individuals navigated to the Qualtrics survey website. Of these,
55 respondents indicated whether they conducted research related to sleep in real-world
environments (see Table 1 above). Nine (N = 9) respondents indicated that they did not

https://ibrinc.org/behavioral-economics-tools/
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conduct research in this field and were excluded from further participation, leaving a total
sample population of N = 46. The respondents did not need to complete the entire survey
in order to be included in subsequent analysis. All respondents completed between 5% and
100% of the survey. Sixty-three percent (63%; N = 29) of respondents completed 100% of
the rank order survey questions and 39% (N = 18) of respondents completed the HPT.

Figure 1A depicts respondents’ years of experience by region: Africa; Asia; Europe;
North America; Oceania; and South America; and organization type: Academic or Edu-
cation Institution; For-Profit Organization or Business; Government; Hospital or Clinical
Laboratory; and Non-Profit Organization. The majority of respondents (N = 26) were geo-
graphically located in North America and conducted research in an academic or education
institution (N = 30). Respondents had an average of 11 years’ experience conducting re-
search (Range: 1–27 years; Mode: 10 years). Figure 1B shows the distribution of respondents
by research focus across the following categories: (1) healthy sleepers with conventional
sleep patterns; (2) sleep disorders; (3) operational environments, such as transportation,
shiftwork, or the military; (4) marginalized or underrepresented groups, including racial,
ethnic, and gender minorities; and (5) other. One (N = 1) respondent indicated that their
research focus pertained to ultra-endurance sports athletes, which constitutes its own cate-
gory in Figure 1B. Six (N = 6) respondents did not provide an answer. Figure 1C shows the
distribution of respondents by research field: (1) biological sciences; (2) behavioral or social
sciences; (3) human factors or ergonomics; and (4) diagnostics services. No respondent
indicated that they worked in a field other than these categories, and 10 respondents did
not provide an answer.

3.2. Device Preferences

A qualitative description of responses to Q7–Q12 are depicted in Figure 2. The
percentages are shown by total number of respondents per question, rather than the total
number of survey respondents. In brief, a 66% majority of respondents (21/32) preferred
devices which are worn on the wrist for sleep measurement (Q8) and a 49% majority
of respondents (16/33) considered epoch-by-epoch/minute-by-minute to be the most
important time scale for measuring sleep (Q8). On Q9, 52% (15/29) believed that the most
appropriate method for determining sleep onset/offset was through a combination of
brain activity, motor activity (e.g., activity counts), and peripheral biometric measures (e.g.,
heart rate and/or oxygen saturation). Eighty-three percent (83%; 24/29) of respondents
indicated that they collected data related to napping or sleep fragmentation (Q10). Only
these 24 respondents were permitted to answer Q11. On Q11, 52% (12/23) indicated that
the most appropriate minimum period of inactivity that could be considered a nap was
less than or equal to 20 min. Another sizeable fraction (44%) of respondents selected a
time period of between 20 and 40 min. No respondents selected a time period greater than
60 min for Q11. For Q12, a 44% majority of respondents (14/32) preferred a continuous
observation window of between 4 and 14 days long.
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Rank order responses are depicted in Figure 3. For Q13, total sleep time (TST) received
the highest ranking for information about sleep that respondents considered important to
their research, followed by objective sleep quality, time in bed (TIB), and subjective sleep
quality. Measures of sleep architecture or sleep depth and diagnostic information (e.g.,
apnea-hypoxia index, AHI) were ranked the lowest out of the provided categories. One
respondent provided a write-in response indicating that social activity timing was of high
importance to their research. Regarding device features which facilitated data collection
(Q14), the ability to differentiate between actual sleep and “false sleep” (i.e., a period of
low activity that mimics sleep onset but is not a sleep episode) was most frequently ranked
as having high importance, followed by data security. The ability for subjects to self-report
information other than sleep and the capacity to provide feedback or an intervention
were ranked the lowest. For Q15, the top-ranked factor which respondents felt limited
their observation period or window of data collection was battery life. Logistics, such as
receiving approval for study procedures, was ranked the lowest. Four (4) respondents
provided additional comments about the use of CSTs for research. The end-of-survey
comments are included in Appendix A.



IoT 2022, 3 322
IoT 2021, 2, FOR PEER REVIEW 8 
 

 

 
Figure 2. Device preferences: multiple choice: Responses to Q7–Q12 regarding device preferences 
by number of respondents per question. The pie slices indicate multiple-choice options and the per-
cent of respondents per question who selected this response. The multiple choice options which 
were not selected by any respondent (0%) are not depicted. 

Rank order responses are depicted in Figure 3. For Q13, total sleep time (TST) re-
ceived the highest ranking for information about sleep that respondents considered im-
portant to their research, followed by objective sleep quality, time in bed (TIB), and sub-
jective sleep quality. Measures of sleep architecture or sleep depth and diagnostic infor-
mation (e.g., apnea-hypoxia index, AHI) were ranked the lowest out of the provided cat-
egories. One respondent provided a write-in response indicating that social activity tim-
ing was of high importance to their research. Regarding device features which facilitated 

Figure 2. Device preferences: multiple choice: Responses to Q7–Q12 regarding device preferences
by number of respondents per question. The pie slices indicate multiple-choice options and the
percent of respondents per question who selected this response. The multiple choice options which
were not selected by any respondent (0%) are not depicted.



IoT 2022, 3 323
IoT 2021, 2, FOR PEER REVIEW 10 
 

 

 
Figure 3. Device preferences: rank order: Mean rank order of responses to Q13–Q15 regarding de-
vice preferences by level of importance. The items are listed on the y-axis by weighted rank, with 
number 1 corresponding to higher importance rankings. The bars depict the number of responses 
by level of importance (low importance in dark gray, medium importance in gray, and high im-
portance in light gray) for each item. 

Figure 3. Device preferences: rank order: Mean rank order of responses to Q13–Q15 regarding
device preferences by level of importance. The items are listed on the y-axis by weighted rank, with
number 1 corresponding to higher importance rankings. The bars depict the number of responses by
level of importance (low importance in dark gray, medium importance in gray, and high importance
in light gray) for each item.



IoT 2022, 3 324

3.3. Behavioral Economic Demand

Demand curves were created for the hypothetical devices described in Table 2. The
demand curves are depicted in Figure 4. The Gilroy et al. (2021) model of demand [33] fit
the data well, with an average R2 of 0.9847. Post hoc extra sum of squares F-tests determined
a significant difference between the curves for the three devices (F (2, 447) = 6.01, p = 0.003).
Further examination showed that Device B had a significantly lower Q0 than Devices A
and C, indicating that when the devices are free, participants would ‘purchase’ fewer units
of Device B than Devices A and C. Additionally, the F-tests on α values indicated that the
demand for Device B was significantly more elastic than the demand for Devices A and
C. The essential values for Devices A, B, and C were 705, 367, and 935, respectively. In
rank order, Device C maintained the highest purchasing level across prices, while Device B
maintained the lowest.
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ment of sleep is a prerequisite for the use of any device in a research setting [6,34]. More-
over, ensuring privacy and data security is required by institutional review boards (IRB) 
in order to conduct human research studies. However, the survey highlighted a few areas 
where CSTs could make improvements. Notably, estimations of sleep depth were consid-
ered less important to respondents than almost any other information about sleep (Figure 
3, Q14). It may be that researchers’ disinterest in sleep depth estimations are related to the 
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Figure 4. Demand curve for hypothetical CST devices: Group mean demand curves for Device A,
Device B, and Device C. The essential value (EV) indicates the degree to which consumption level
resists the impact of increases in price, Q0 is an estimate of the maximum level of demand, and R2

represents the coefficient of determination. Consumption data is shown in inverse hyperbolic sine
(IHS) units, a log-like scale that evaluates at zero.

4. Discussion

The main aim of the survey was to establish a reliable consensus opinion from sleep
research professionals about the preferred device features for measuring sleep outside
the laboratory in the context of economic demand. This is important not only to provide
guidance to CST or wearables manufacturers, but also to facilitate innovation within sleep
research methodology. The reliability of the survey results hinges on the assumption that a
sufficient number of subject matter experts provided responses. Survey completion was
done anonymously to ensure that respondents would feel comfortable providing honest
responses, but it could create skepticism about the expertise of unknown respondents.
While no identifying information was collected, respondents had to indicate that they
conducted sleep research related to human sleep in real-world environments in order to
complete the survey. Expertise may be considered a matter of opinion; for the purposes of
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this survey, the included respondents were those who considered themselves sufficiently
knowledgeable to participate. The low number of respondents is a study limitation, and
the results must be interpreted as descriptive rather than statistically significant.

Many findings are unsurprising, such as researchers’ high ranking of the importance
of sleep duration (TST and TIB) and their interest in a device which can reliably differentiate
sleep from inactivity and provide data security (Figure 3, Q14). Accurate measurement
of sleep is a prerequisite for the use of any device in a research setting [6,34]. Moreover,
ensuring privacy and data security is required by institutional review boards (IRB) in order
to conduct human research studies. However, the survey highlighted a few areas where
CSTs could make improvements. Notably, estimations of sleep depth were considered less
important to respondents than almost any other information about sleep (Figure 3, Q14).
It may be that researchers’ disinterest in sleep depth estimations are related to the fact
that the majority of CSTs do not measure sleep architecture such as PSG (N1, N2, SWS, or
REM), but instead provide non-equivalent measures (e.g., light, deep, or REM) with little
documentation with regards to the scoring criteria [35–37]. It is possible that researchers
would be more interested in sleep staging capabilities if CST systems reliably measured
PSG-equivalent sleep architecture and followed standardized scoring criteria, or if sleep
depth estimations were shown to be robustly related to sleep health outcomes.

While deep sleep may be connotated with superior quality, sleep depth was listed
separately from measures of sleep quality in this survey. Objective sleep quality, such as
number of awakenings, wake after sleep onset (WASO), or sleep efficiency (SE), was ranked
by respondents as the second most important information about sleep, and subjective
sleep quality, or the sleeper’s personal satisfaction with their sleep, was ranked fourth.
Both these measures have independently been shown to be important for health and
performance outcomes [38–42], which may explain why they were highly ranked by sleep
experts. The value of nap detection and the minimum time period required for sleep
determination is indicated by the finding that 83% of respondents collect data related to
napping and a combined 96% preferred naps to be defined as a sleep event less than or
equal to 40 min (Figure 2, Q10–Q11). The number of times per day sleep occurs (daily
sleep intervals; DSI) was ranked ninth in importance (Figure 3, Q13). Nap information is
important to researchers working in operational domains such as shiftwork, healthcare,
or aviation. In these safety-sensitive industries, strategic napping is recommended to
prevent on-the-job fatigue [43–48]. Napping is also important as a health indicator across
all research populations [49–51]. The impact of napping on downstream effects cannot be
assessed if devices do not record them.

Respondents overwhelmingly indicated that periods of inactivity shorter than an hour
could reliably be considered a nap (Figure 2, Q11). No respondents indicated that minimum
nap detection should be greater than 60 min. Few studies have assessed the performance
of CSTs for measuring naps and the specific parameters regarding minimum duration for
scoring sleep are poorly communicated by CST companies [6]. A CST (the Zulu watch) that
has been validated against PSG [52] automatically detects sleep episodes as short as 20 min
using only accelerometry, indicating that algorithms can be developed to detect short naps.
Automatic detection of short sleep periods and multiple sleep periods per day is one area
in which developers could improve CSTs with regards to scientific merit.

The importance of battery life was highlighted by a number of survey items. Battery
life was ranked as the most important factor which limited researchers’ observation window
(Q15), and extended battery life (defined as greater than/equal to 30 days) was the fourth
highest ranked feature of a device which would facilitate data collection (Q14). Having
to recharge or replace the battery frequently can result in periods of missing data during
data collection. The majority of respondents (44%) preferred a continuous data collection
window of between 4 and 14 days long, based on responses to Q12. Thirty-four percent
(34%) preferred 15–30 days as an observation window. As shown in Figure 4, economic
value and demand were greater for hypothetical devices with longer battery life on the HPT.
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The findings suggest that extending battery life is another area in which CST developers
could enhance competitive value in the scientific market.

Respondents’ preferences were occasionally contradictory. For example, respondents
preferred devices which measure sleep at the wrist (Q7) but believed the most appropriate
method for determining sleep onset in real-world environments was by measuring brain
activity in combination with motor activity and biometric data (Q9). Brain activity cannot
currently be measured at the wrist. The next most popular method of sleep/wake determi-
nation, which was selected by 31% of respondents, was by a combination of motor activity
and biometrics. This is how many CSTs determine sleep, but it is not the method used
by actigraphy [14,53]. Only 7% of respondents preferred a standard actigraphy method
for sleep–wake determination, either through motor activity alone or motor activity in
combination with self-report (Q9). This finding would suggest that researchers actually
prefer the sleep determination method used by CSTs to actigraphy.

Respondents also rated data security and remote data extraction closely with respect
to desirable features (Q14). Demand was greatest for a hypothetical device which had
the options of either remote or wired data extraction, but it was lowest for a device that
only featured remote data extraction. Remote data extraction would likely rely on wireless
technology which utilizes an automatic sync function to upload data to a cloud-based
or internet-enabled server. Ensuring data security through a system such as this is not
impossible, but it presents more areas of vulnerability than a wired data transfer to an
offline computer.

The behavioral economic analysis of demand curves for the three hypothetical devices
provides insight into decision-making behavior about purchasing CSTs for research. HPTs
are typically used to assess individual commodity demand (for example, the demand for
alcohol and drugs) and their reliability and validity have been well documented [20,54].
The demand curves created here demonstrated significantly lower and more elastic demand
for Device B than the other two devices. The main features that distinguish the device with
the lowest demand (Device B) and the device with the highest demand (Device C) were
long battery life (4 days for Device B and 30 days for Device C), and the ability to choose
between extracted data wirelessly via Bluetooth and through a wired download (USB). A
long battery life was indicated as one of the most-desired features for CSTs, and a short
battery life was also indicated as the most limiting factor for research studies. Device A
featured a longer battery life (30 days, and data that could be extracted only through a USB
download. There was significantly more demand for Device A than for Device B, despite
the fact that Device B included more features, including sleep depth estimation, which had
been validated against PSG. This finding supports the ranking of sleep depth estimation
having low importance to sleep researchers from Figure 3. From these data, it is likely that
the demand for Devices A and C was largely driven by their longer battery life features
and secure wired data extraction features.

The low importance of sleep depth scoring and the high importance of short nap
detection, data security, and battery life are at odds with the features of the majority of
CST wearables on the market today. IBR is conducting a follow-up analysis to compare the
features of currently available devices against expert preferences. The contrast between
what scientists consider important and what is being produced suggests a fundamental
shortcoming of the market-driven approach to the design of sleep-tracking wearables. The
average consumer is not necessarily the best judge of what is important to measure about
a physiological process like sleep, despite their interest in the health science aspect of a
device. This gap is also an opportunity: it is clear that the current technologies are capable of
delivering features that have scientific merit. A company that orients toward these features
would have a unique market advantage; perhaps not just within the academic research
community, but within the larger consumer populace as well. The next step in this project
is to determine whether the average consumer is willing to pay more for a device with
scientifically meritorious sleep-tracking features and to measure how scientific validation
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or endorsement impacts the hypothetical demand for a sleep monitoring wearable in
consumers who indicate an interest in monitoring sleep.

A highlight of the methodology of this survey has been the attempt to recruit opinions
from as many sleep researchers as possible from across multiple research domains. Previous
publications about scientifically meritorious CST features may reflect the views of the authors
or the opinions from a select workshop panel of invited experts [5–8,10–13,34,35,53,55].
These works are of great importance to the field, but exclude the valid contributions from
early-career, industry, or non-academic researchers. Moreover, researchers may be more
likely to provide their honest, yet unpopular, beliefs about CSTs in an anonymous survey
conducted privately rather than through a live discussion or named authorship. Another
highlight is that this is the first report of economic demand for hypothetical devices within a
sleep researcher population.

A limitation to the interpretation of these results is the low sample size. Because
the actual global population of sleep researchers who have expertise in data collection
outside the laboratory is unknown, the statistical power of this sample size (N = 46)
is indeterminate. Great efforts were taken to recruit as many real-world sleep experts
as possible, and a variety of regions and research domains were ultimately represented
(Figure 1). However, these findings are limited to a qualitative case study and may not
generalize to the overall sleep researcher population. Relatedly, the survey was focused
on establishing consensus opinion among sleep researchers most interested in naturalistic
“real-world” sleep, rather than medical clinicians. While 18% of respondents indicated
that they conducted research related to sleep disorders, researchers may be less interested
in diagnostic or treatment features for CSTs. CSTs traditionally have had lower accuracy
for the measurement of sleep in disordered populations relative to healthy controls. The
current results, therefore, may not generalize to the medical community; a follow-up
survey will concentrate on device preferences for diagnostic purposes, rather than for
the scientific observation of naturalistic sleep behavior. The survey was conducted in
English, which may have led to skewed demographics. The skewed demographics and low
sample size of this case study also prevent comparisons between respondents by culture,
nationality, or affiliation. Another limitation is that respondents were not evenly distributed
across research domains, precluding a comparison between domains and years’ experience
regarding CST preferences. Respondents had, on average, 11 years’ experience conducting
sleep research, with 10 years being the most frequently indicated length of experience. It
is interesting to note that CSTs have only been around for 10–11 years themselves [1,5].
Respondents were not asked to indicate their age, level of education, or terminal degree,
so it is possible that the consensus opinions reflect those of early-career researchers. The
survey was purposely designed not to ask these questions under the assumption that
non-academic researchers, technicians, and students have a valuable perspective on real-
world data collection that should not be discounted because of their demographics or
degree status. However, an interesting follow-up study would be to evaluate the impact of
researcher status on CST preferences or the economic value of their scientific endorsement.

This investigation of CSTs for sleep research purposes differs with respect to previous
analyses because it focuses on the desirability of features to a sleep scientist, rather than
focusing on the accuracy or validity of sleep measurement. The importance of validation
testing of CSTs has been well established in the literature [6,8–10,14], but even a validated
device may not translate to researcher desirability. Four (4) respondents provided additional
feedback about CSTs in the comments section at the end (see Appendix A). Each of these
comments expresses a concern that the data are somehow invalid—either due to arbitrary
units, changing algorithms, or improper recording of sleep. While beyond the scope of
these analyses, an interesting follow-up survey would be to assess the importance of trust
and transparency in the relationship between sleep researchers and CSTs.

Despite the growing conversation about the viability of CSTs for research, manufactur-
ers may not be interested in increasing scientific accuracy in their devices unless doing so is
expected to result in greater consumer sales. While the global sleep tracking device market



IoT 2022, 3 328

is estimated to be worth up to USD 50 billion by 2027 [56], the monetary value of a scientific
endorsement of a product or specific, scientifically relevant design features has not been
quantified. The next study in our project will address whether increasing the value of a
CST product within the sleep research community, backed by independent validation and
endorsement, results in an increase in the value of the product for the general consumers
interested in purchasing a sleep tracker.

5. Conclusions

Consensus opinion from this survey indicates that real-world sleep experts are looking
for an accurate and reliable multi-sensor, wrist-worn device that measures sleep on an
epoch-by-epoch basis, detects sleep as short as 20 min, and has sufficient battery life to
record data continuously for between 4 and 30 days. Real-world researchers are more
interested in measures of sleep duration and quality than they are in sleep depth estimation,
diagnostic information, circadian measures, or cognitive performance. The device should
be able to remotely extract data, but it needs to provide data security, perhaps through a
feature which allows researchers to turn off wireless capabilities. The features ranked most
highly as important to real-world sleep researchers do not align with the most prominent
features of currently marketed wearables. These data provide context for further behavioral
economics analyses to determine the differences in demand for scientifically meritorious
CST device features between scientists and general consumers in order to inform IoT
business and development decisions.

Author Contributions: Conceptualization, J.K.D., L.P.S. and S.R.H.; methodology, J.K.D., L.P.S., J.C.
and S.R.H.; formal analysis, J.K.D., L.P.S., J.C. and S.R.H.; data curation, J.C.; writing—original draft
preparation, J.K.D., L.P.S. and S.R.H.; writing—review and editing, J.K.D., L.P.S., J.C. and S.R.H.;
visualization, J.K.D. and L.P.S.; supervision, S.R.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted according to the guidelines of
the Declaration of Helsinki and approved by Salus Institutional Review Board for the Institutes for
Behavior Resources, INC. (Protocol Number IBR2021, March 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data from this survey can be provided upon request.

Acknowledgments: The authors would like to acknowledge and thank the survey respondents for
providing their time and honest opinions. The authors would also like to thank any individuals who
shared information about the survey with their colleagues or the larger sleep research community.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Comments

Comment 1: In my experience, the data/feedback on the device and/or accompanying
phone app need to be immediately understandable and trusted by the user. I’ve seen
compliance and buy-in drop off quickly when subjects don’t feel like they are getting useful
or trusted data on a daily or weekly basis. If the device even misses picking up just one
or two sleep episodes or is really inaccurate (e.g., detecting sleep onset or offset >1 h from
reality, or not picking up a major awakening in the night) can break trust easily, especially
in the beginning stages of a study. Then subjects think its [sic] just a junk device. So having
a device with immediate buy-in is huge, especially for longer-term studies (>1 week) where
subjects aren’t necessarily interacting with researchers daily.

Comment 2: One of the concerns that we run into with consumer products are the
security issues surrounding the pipeline for cloud-based data and the use of a participant’s
phone (app-based). There is also the issue that was not explicit in the questionnaire as to
whether the raw data are available or only the consumer company provided summary
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(EBE or whole night). Given that the company algorithms can change (improve!?), this
would disrupt a longitudinal study or a study conducted over multiple years.

Comment 3: Activity counts are arbitrary/meaningless units; they are undefined.
Actigraphy is only reliable for measuring the daily timing of activity (wakefulness?). A
defined, unit of measure for “activity count” needs to be developed/established . . . like
mph, bpm. Variability in the sensitivity to same motion/movement among the same or
different devices is too great. E.g., Place 2 or more actigraphy devices on your wrist (same
Make: Model) and record simultaneously (1 min epoch) for a few hours or 24 h. The activity
count values for corresponding minutes are not similar . . . not even close. If you don’t
have a unit of measure, how can you calculate/conclude anything?

Comment 4: Both actigraphy and CSTs are proxy measures of sleep and both require
significantly more work to have any confidence at all that they can reliably and accurately
distinguish sleep and wake.
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