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Abstract: In this study, we present an integrated approach utilizing IoT data and machine learning
models to enhance precision agriculture. We collected an extensive IoT secondary dataset from an
online data repository, including environmental parameters such as temperature, humidity, and soil
nutrient levels, from various sensors deployed in agricultural fields. This dataset, consisting of over
1 million data points, provided comprehensive insights into the environmental conditions affecting
crop yield. The data were preprocessed and used to develop predictive models for crop yield and
recommendations. Our evaluation shows that the LightGBM, Decision Tree, and Random Forest
classifiers achieved high accuracy scores of 98.90%, 98.48%, and 99.31%, respectively. The IoT data
collection enabled real-time monitoring and accurate data input, significantly improving the models’
performance. These findings demonstrate the potential of combining IoT and machine learning to
optimize resource use and improve crop management in smart farming. Future work will focus on
expanding the dataset to include more diverse environmental factors and exploring the integration of
advanced deep learning techniques for even more accurate predictions.

Keywords: crop recommendation; machine learning; prediction; preprocess; nitrogen; phosphorus;
potash

1. Introduction

The cultivation of precision crops, often known as agricultural precision or smart
farming, is a crop organization method that uses skill to exploit produce crops, then
increase resource efficiency [1]. It entails gathering and evaluating information on soil
composition, moisture levels, climate arrangements, and crops’ well-being trends as a
directive to make educated decisions about planting, fertilizing, watering, and harvesting.
Efficient crop recommendation and forecasting of yield systems are essential parts of
precision agriculture. These systems, which use analytics, machine learning, and IoT
(Internet of Things) technology, can analyze massive quantities of data to offer farmers
individualized suggestions [2]. These suggestions may include crop selection based on
soil characteristics, the environment, and demand from the marketplace, as well as ideal
planting and cultivation procedures.

Using precision farming allows agriculturalists to move toward procedural assets
like nutrients, aquatics, and then herbicides more efficiently [3,4]. Farmers may decrease
waste and expenses while increasing crop yields by applying these inputs just where and
when they are required. A precision farming approach reduces environmental effects
by minimizing chemical usage and improving resource allocation. It encourages sustain-
able farming methods by saving water, improving soil health, and lowering pollutants.
Precision agriculture enables farmers to more effectively track and handle their fields by
utilizing technology including GPS, sensors, drones, and data processing. This leads to
greater outputs since farmers can recognize and handle concerns like pests, illnesses, and
nutritional deficits instantaneously.
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The sustainability of the environment was another important feature of precision
agriculture [5]. Precision agriculture encourages environmentally friendly agricultural
techniques by limiting chemical use, preventing soil erosion, and saving water. Farmers
may enhance soil health and minimize their use of synthetic fertilizers and pesticides
by employing conservation tillage practices and using cover crops. Precision agriculture
allows for more exact application of agrochemicals, reducing runoff and polluting of
water sources.

The growth in precision farming adoption is driven mostly by increased production.
Farmers may use technologies like GPS, sensors, and unmanned aircraft, along with
information analytics to monitor their fields with remarkable accuracy and efficiency [6].
Continuous observation enables farmers to quickly identify and solve concerns like insect
infestations, illnesses, and nutrient shortages, reducing output losses. Better decision-
making is made possible by precise agriculture at every stage of the agricultural cycle, from
choosing plants and sowing to arranging irrigation and harvest timing, which eventually
results in increased yields and better-quality crops.

Another big benefit of precision farming is risk reduction. Risks faced by farmers
include volatile markets, pest and disease outbreaks, and unexpected weather. With the use
of current information, precision agriculture reduces these hazards by offering actionable
insights and early warnings. For instance, farmers may predict drought situations and
modify their irrigation schedules by integrating meteorological forecasts and moisture level
data [7]. In a similar vein, crop monitoring systems can identify early warning indicators
of illnesses or insect infestations, enabling farmers to take preventative or corrective action.

Precision farming demands accurate predictions of crop yield and efficient resource
management, but these tasks are often complicated by various environmental factors such
as soil quality, temperature, and humidity. Traditional prediction methods frequently
overlook the intricate relationships between these variables, leading to less effective farm
management recommendations. This study addresses this issue by leveraging IoT-based
data collection combined with machine learning techniques to enhance the precision of
crop yield predictions.

The research objectives are closely tied to this problem. The first objective is to design
and implement an IoT system that effectively captures environmental data crucial to crop
outcomes. The second objective involves applying machine learning models to analyze
the collected data and improve the accuracy of yield predictions. The final objective is
to validate the proposed approach through comprehensive field testing and comparisons
with conventional prediction methods. Each of these objectives is structured to address
the challenges identified in the problem statement, ultimately aiming to improve decision-
making in precision farming.

2. Literature Review

Conventional farming and traditional agriculture have long been the standard, relying
on tried-and-true techniques that have been passed down through the years. But these
methods have built-in drawbacks that provide serious difficulties for farmers all around
the world [8,9]. The main drawback is the use of antiquated methods and human labor
for activities like pest management, irrigation, and planting. In addition to requiring
a substantial amount of time and energy, manual labor adds to crop management and
output fluctuations.

2.1. Traditional Agriculture Challenges

Traditional agricultural methods frequently suffer from a lack of accuracy and effi-
ciency, which causes inefficiencies and production losses. For instance, applying insecticides
and fertilizers uniformly throughout vast fields may lead to either an excessive or insuf-
ficient usage of these inputs, which would degrade the ecosystem and result in higher
expenses and worse yields [10]. Furthermore, farmers who base their decisions only on
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experience and practical knowledge are exposed to un-predictabilities including volatile
markets, insect outbreaks, and weather variations.

• Limited Ability to Make Precise Decisions: Conventional agricultural practices fre-
quently depend more on broad strategies than on accurate, data-driven decision-
making. Farmers may evenly administer irrigation, herbicides, and fertilizers through-
out whole fields, which might have a negative impact on the environment and result
in inefficient use of resources.

• Environment and Climate: The weather and climate, which can be erratic and turbu-
lent, play a major role in conventional agriculture [11]. Droughts, floods, or extremely
high temperatures are examples of unfavorable weather phenomena that can cause
crop failures, production losses, and financial instability for farmers.

• Difficulties with Disease Management: Traditional methods of controlling pests and
diseases may mostly rely on chemical inputs, which can pollute the environment and
disturb ecosystems. Over time, pests and illnesses may become resistant to pesticides
and herbicides, requiring greater chemical use and raising production costs.

• Labor Lack: Manual work is needed for labor-intensive chores including planting,
harvesting, and weed management in traditional agricultural methods. There is a
growing labor shortage in agriculture due to the aging of the agricultural workforce,
and the movement towards urbanization is supported by various sources. The labor
shortage in agriculture is a significant issue, exacerbated by the aging agricultural
workforce and the trend of younger generations moving to urban areas for better
opportunities. One source discusses how the American Farm Bureau Federation
highlights the annual need to fill over 2.4 million farm jobs, with a drastic decline in
available workers each year.

These inefficiencies and productivity losses in traditional agriculture are caused by
a number of variables. Farmer decision-making is hampered by limited access to timely
and reliable information on market needs, weather, and soil health [12]. Moreover, all
of these challenges are made worse by a lack of funds and infrastructure, particularly in
rural regions, which makes it challenging for farmers to implement optimal methods and
contemporary technology [13].

Long-term sustainability is frequently neglected in favor of optimizing short-term
returns in traditional agricultural methods. Ecosystem degradation is exacerbated by
practices that limit biodiversity, deteriorate soil health, and rely too much on chemical
inputs, such as monoculture and excessive tilling. Over time, these unsustainable methods
endanger human health and food security in addition to weakening used for farming
systems’ adaptability.

2.2. Role of IoT in Agriculture

In IoT, actual-time data-gathering, monitoring, and decision-making throughout the
agricultural value chain are made possible by IoT based-tech, which has developed as a
troubleshooting power now for up-to-date farming [14] (as shown in Figure 1). Fundamen-
tally, agriculture has used the IoT for demands with a mixture of radars, actuators, and
networked devices positioned throughout farms to collect information on many environ-
mental, agricultural, and animal aspects. Farmers may get important insights into their
operations by using these sensors to track dirt-humidity stages, temperature, humidity, the
condition of crops, cattle behavior, or the performance of equipment.
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The internet plays a major role in agriculture by enabling precision farming, which
allows farmers to precisely control inputs like water, fertilizer, and pesticides depending
on plant requirements and localized circumstances [14,15]. Farmers may reduce waste,
optimize water use, and lessen the chance of over- or under-watering crops by utilizing
IoT-enabled smart irrigation systems, for instance. Similar to this, IoT-based monitoring
systems are able to identify early indicators of insect infestations, nutritional deficits, or
plant stress, enabling prompt interventions and focused treatment plans.

• Soil Monitoring: An essential component of contemporary agriculture, soil moni-
toring allows farmers to evaluate the fertility, moisture content, and overall health
of their soil in order to maximize crop productivity. The latest technologies tackle
consumption augmented with complexity plus the effectiveness of soil monitoring [16].
Fields may be equipped with internet-connected soil sensors to continually monitor
important characteristics including temperature, fertilizer concentrations, pH-levels,
and moisture content. Growers may customize the real time data from these instru-
ments to make knowledgeable choices regarding soil management, fertilization, and
irrigation techniques. Farmers may reduce nutrient leakage, prevent flooding or sub-
merging, and guarantee ideal growth conditions for crops by closely monitoring soil
conditions from a distance. Additionally, soil monitoring is essential to sustainable
agricultural operations since it makes agricultural precision techniques possible and
reduces environmental effect.

• Machines for routines operations: Regular tasks like planting, spraying, and harvesting
frequently need a large amount of time and hard effort. These procedures have
been completely transformed by the incorporation of IoT technologies, which have
made it possible to create autonomous and intelligent machinery. With sensors,
GPS units, and networking capabilities, agricultural equipment that is Internet of
Things (IoT) enabled may carry out normal tasks more accurately, efficiently, and
independently [17]. With minimum human interaction, autonomous tractors can travel
fields and carry out chores like cultivating, sowing, and plowing, maximizing resource
efficiency and lowering labor costs. Analogously, IoT-enabled harvesting apparatus
can precisely detect ripe crops, modify harvesting methods, and maximize yield results.
IoT solutions simplify agricultural processes, increase production, and free up farmers’
time to concentrate on more critical activities by automating mundane operations.

• Water Management: IoT technology provides creative approaches to agricultural water
management, enabling growers to track, save, and maximize water use all through the
producing season. IoT technologies enable farmers to remotely monitor and operate
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irrigation systems, allowing them to adjust irrigation timings and settings by means
of computers or mobile devices at any location. Farmers may increase complete
farmhouse sustainability, preserve aquatic resources, and upsurge crop yields by
putting IoT-driven water management systems into practice.

• Drone Monitoring: With drone surveillance, farmers can now see their fields and
crops from the air, making it a crucial tool for precision agriculture. Drones with
cameras, sensors, and GPS systems are able to gather high-quality data and images
that offer important insights into crop health, growth trends, insect infestations, and
environmental factors [18]. Drones with Internet of Things capabilities are able to fly by
themselves or under remote control, taking precise aerial photos of fields and creating
3D models and maps. With this data, farmers can monitor crop progress, pinpoint
problem areas, and make well-versed verdicts regarding irrigation, impregnation, and
pest running. Early harvest stressor identification made possible by drone surveillance
enables prompt responses to minimize yield losses and maximize farm output. Drones
can also swiftly and effectively monitor vast agricultural regions.

The uses of IoT to tackle challenging gardening tasks sparked a new phase of fact-based
ambitious decision-making and also accuracy farming [18,19]. By giving farmers useful
information about the fitness of their dirt and its nutrients levels, soil monitoring devices
help them apply fertilizer and manage their crops more effectively. Routine agricultural
operations are automated by machines with IoT capabilities, which lowers labor costs and
improves operational efficiency.

2.3. Machine Learning in Crop System

In managing the crop system, ML has become a potent instrument that provides
creative answers to a range of problems that farmers encounter. The creation of algorithms
that allow computers to learn from and examine information, spot designs, and type
forecasts without obvious program writing or commands is this fundamental work of
machine learning [20]. In agriculture, machine learning algorithms can extract useful
insights to maximize crop productivity from the huge sizes of records collected by tools
and satellites, besides fields.

As shown in Table 1, Crop-monitoring remains unique among the main uses of
machine learning in farming. Real-time-checking of crop health, growth patterns, and
environmental conditions may be achieved by ML algorithms through the analysis of
satellite data, drones, and ground-based sensors [21]. This makes it possible for farmers to
recognize early indicators of stress and respond quickly to avoid yield losses.

Table 1. ML Application in crop.

Application Description

Crop Monitoring

Real-time monitoring of crop health, growth trends, and
environmental conditions is achieved by the analysis of

sensor data, drone footage, and satellite pictures by machine
learning algorithms.

Disease Detection

Various agricultural diseases and pest damage can be
reliably identified by machine learning models that have

been trained on datasets that comprise photos of both
healthy and damaged plants.

Yield Prediction

Utilizing historical data, weather forecasts, and agronomic
practices, algorithmic learning algorithms create predictive
models that project crop yields in the future for profitability

and resource efficiency.

Disease detection is yet another essential use. Various agricultural diseases and pest
damage can be reliably identified by machine learning models that have been trained on
datasets that comprise photos of both healthy and damaged plants [22,23]. Farmers may
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decrease crops harm in addition the feast of diseases in using image recognition algorithms
on smartphones or drones to rapidly assess the health state of their crops and apply tailored
treatment measures.

In order to anticipate crop yields based on historical data, weather forecasts, and
agronomic practices, machine learning is essential [24,25]. With the help of analysis of
variables like temperature, precipitation, crop variety, and soil quality, machine learning-
algorithms are clever extremely precise near-crop prediction models that project future
yields. With the help of these production projections, farmers may plan planting dates and
allocate resources in an intelligent manner [26].

The use of machine-learning on farms takes potential just before completely trans-
forming agricultural production methods. In the end, farmers may contribute to global
food security and ecological agricultural growth by increasing productivity, lowering input
costs, and mitigating risks related to insect outbreaks and climatic variability by utilizing
cutting-edge algorithms and big data analytics [27].

2.4. Agriculture Challenges and Limitations

There are a few important challenges being faced in the development of crop organi-
zation, and these are given with some of limitations as shown in Table 2.

Table 2. Agricultural Challenges and Limitations in Technology Adoption.

Challenge Description

Technical Qualifications Many rural producers lack the technical skills needed to
effectively use and maintain new technologies

Rural Extension Services
Significant difficulties exist in providing adequate
extension services to educate producers about
new technologies.

Access to Technology Reaching technology in remote rural areas is challenging
due to infrastructure and logistical issues.

Educational Barriers
Producers with limited formal education, particularly
those with minimal schooling, find it difficult to adopt
and utilize new technologies.

Training and Support
Lack of ongoing training and support for rural
producers hinders the effective implementation of
new technologies.

Financial Constraints High costs of technology and implementation can be
prohibitive for small-scale producers.

The potential for transforming conventional agricultural operations through the addi-
tion of the design framework of machine learning technology for cutting-edge cultivation
is enormous [28]. To fully reap these advantages, a few obstacles and restrictions must
be overcome. Remote locations with poor connections make it problematic to transmit
data in real time, while small-scale farmers find it hard to apply advanced technology due
to lack of resources [29]. In addition to power supply interruptions and environmental
factors, inconsistent data quality and standardization problems impact the dependability
of machine learning models.

3. Research Methodology

The system architecture involves preprocessing and analyzing farming data to suggest
suitable crops and estimate yields. It utilizes machine learning techniques like Light-
GBM, Random Forest, decision tree classifier, and logistic regression to classify crop labels
accurately. By integrating IoT and machine learning, it offers yield projections and crop
recommendations based on environmental conditions, aiming to maximize agricultural
output. The process includes data preprocessing, exploratory data analysis, classification
modeling, and output evaluation.
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3.1. Architecture of the System

The system architecture with Arduino sensor and devices, illustrated in Figure 2,
consists of two main components: hardware components and software. The hardware
includes a microcontroller and sensors, which measure soil nutrient levels. These values
are then transmitted from the sensors to the microcontroller and further relayed to Firebase,
eventually reaching the Android app.
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Figure 2. Architecture proposed of IoT-Based Crop Prediction System with Machine Learning.

3.2. IoT and ML Architecture

The system’s IoT and ML architectures are depicted in Figure 2. In the IoT setup, Ni-
trogen, Phosphorus, Potassium, and Humidity values are sent to Firebase via Arduino and
ESP32. These data are then forwarded from Firebase to the mobile app for processing and
presentation of results. In the ML framework, the process begins with data gathering, then
proceeds to storage and pre-processing to make it ready for model fitting. Subsequently,
the data are trained within the models and evaluated for performance.

3.3. Data Collection and Preprocessing

In order to comprehend the features of the secondary dataset, preprocessing of agricul-
tural data and conducting exploratory data analysis (EDA) were performed in this phase
of the procedure. The secondary dataset was gathered from online repository platforms.
The dataset includes labels indicating different kinds of crops together with other parame-
ters including temperature, moisture, p-H, NPK, and rainfall. The study creates machine
learning models, especially using LightGBM (Light Gradient Boosting Machine), to predict
crop labels based on the provided characteristics after preprocessing and EDA. The models’
excellent accuracy shows how useful they are for tasks including crop recommendation
and yield prediction. To further assess the data and model performance, the work provides
visualizations including correlation matrices, bar charts, and scatter plots. In order to effec-
tively propose crops and anticipate yields in agriculture, the study presents an integrated
strategy that makes use of IoT data and ML-algorithms. This technique shows potential for
the way to improve agricultural operations’ sustainability and productivity.

3.4. Workflow Algorithms

The system’s workflow diagram and algorithm are illustrated in Figure 3 and
Algorithm 1. Users initially log in or register and then select one of the three modules:
Crop Recommendation, Fertilizer Recommendation, or Disease Detection. For crop and
fertilizer recommendations, sensor data is retrieved, while fertilizer recommendations
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require an additional input such as crop name. Disease detection involves uploading
an image for processing. To calculate fertilizer requirements, users input fertilizer name,
nutrients, application rate per 1000 sqft, and application area. After processing, the system
displays results for fertilizer, nitrogen, phosphorus, and potassium amounts.

Algorithm 1: User Workflow for Agricultural Recommendations

1. Initialization

2. if User is Logged in or Signed up then
3. if User selects Crop Recommendation then
4. Power up the device
5. Send data to backend for crop recommendation
6. Output: Display suitable crop name
7. end

8. if User selects Fertilizer Recommendation then
9. Power up the device
10. Send data to backend for fertilizer recommendation
11. Input: Select crop name and specify area
12. Output: Display recommended fertilizer name
13. end

14. if User selects Disease Detection then
15. Open camera
16. Upload image for analysis
17. Output: Display detected disease name and relevant information
18. end

19. if User selects Calculate Fertilizer then
20. Input: Fertilizer name, selected nutrient, rate per 1000 sqft, and area
21. Compute: Calculate required amount of fertilizer
22. Output: Display calculated result
23. end

24. else
25. Output: Prompt user to log in or sign up
26. end
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The communication with Arduino utilizes the Modbus protocol, which is open-source
and royalty-free. Modbus TCP enables data transmission across Ethernet TCP/IP networks,
as well as RS-485, RS-422, and RS-232 interfaces. To validate the accuracy and reliability of
the soil moisture meter used in this study, comparisons were made with other established
moisture measuring techniques.
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Soil moisture meters are devices that are placed at various depths within the soil to
measure moisture levels. These meters help determine how much water is available to
plants by monitoring changes in soil moisture content. By installing meters at different
depths, we can gain insights into how moisture is distributed throughout the root zone.
This information is crucial for optimizing irrigation strategies and ensuring that plants
receive the right amount of water for their growth.

3.5. Software Structure Design

The main circuit design shown in Figure 3 consists of the following components
and connections:

1. Power Source: Supplies power to the entire circuit. The power source is connected
to the step-down transformer to convert the voltage to a suitable level for the
other components.

2. Step-Down Transformer: Converts the high voltage from the power source to a
lower voltage suitable for the ESP32 and other sensors. The output of the step-down
transformer is connected to the ESP32.

3. ESP32:

- Acts as the central processing unit of the system.
- Receives power from the step-down transformer.
- Connects to the RS485 module for communication.
- Interfaces with the Arduino to relay information and control signals.

4. RS485: A communication module used for long-distance and noise-immune data
transmission. Connected to the ESP32 to facilitate data exchange between the ESP32
and other devices.

5. Arduino:

• Serves as an intermediary microcontroller to manage sensor data.
• Connected to the RS485 for data reception and transmission.
• Interfaces with both the NPK sensor and the capacitive moisture sensor to gather

environmental data.

6. NPK Sensor:

• Measures the nutrient levels in the soil (Nitrogen, Phosphorus, Potassium).
• Connected to the Arduino for data collection.

7. Capacitive Moisture Sensor:

- Measures soil moisture levels.
- Connected to the Arduino to provide moisture data.

The connections are as follows:

• Power Source to Step-Down Transformer: Direct connection to provide initial
voltage.

• Step-Down Transformer to ESP32: ** Provides the necessary operating voltage
for the ESP32.

1. ESP32 to RS485: ** Data lines connected for communication.
2. RS485 to Arduino: ** Communication lines connected for data exchange.
3. Arduino to NPK Sensor: ** Sensor data lines connected for nutrient

measurement.
4. Arduino to Capacitive Moisture Sensor: ** Sensor data lines connected for

moisture measurement.

This detailed circuit design ensures efficient data collection and transmission for
precise agricultural monitoring.

Backend: Google Firebase’s real-time database was utilized to transmit hardware-
collected data to the mobile app and maintain historical records. Firebase’s NoSQL cloud-
hosted database allows seamless storage and synchronization of data across multiple clients
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in real-time, providing features such as real-time synchronization, offline data accessibility,
and automatic conflict resolution using a JSON data format.

3.6. Test and Results Evaluations

We carefully evaluated our machine learning models’ performance during the testing
and results evaluation stages to make sure they would work well in practical agricultural
applications. We divided our dataset into training and testing subsets using methods like
cross-validation, which allowed for reliable validation of the models. We evaluated the
models’ capacity to correctly identify and forecast agricultural outcomes using measures
including accuracy, precision, re-call, and F1-scores. We made sure the models we use
and assessment methods were ready for use in actual agricultural settings by repeatedly
improving them. Accurate and trustworthy forecasts are crucial to successful management
of crops and yield improvement.

Table 3 represents a brief overview of the 2200 rows and 8 columns of the dataset. These
columns provide information on temperature, humidity, rainfall, potash (K), phosphoric
(P), nitrogen (N), and the appropriate labels. The following table provides essentials on the
accuracy of each model. These measures show how effectively each model categorizes the
dataset and shed light on how useful they are for the purpose of classification.

Table 3. Dataset overview information.

N P K Temperature Humidity pH Rainfall Label

90 42 43 20.879744 82.002744 6.502985 202.935536 Rice

85 58 41 21.770462 80.319644 7.038096 226.655537 Rice

60 55 44 23.004459 82.320763 7.840207 263.964248 Rice

74 35 40 26.491096 80.158363 6.980401 242.864034 Rice

78 42 42 20.130175 81.604873 7.628473 262.717340 Rice

The results column showcases the success rates of these tasks summarized in Table 4,
with percentages ranging from 90% to 100%. This suggests a generally high level of
proficiency in task execution across the board. Looking at the “No. of Attempts (M ± SD)”
column, which represents the mean number of attempts along with the standard deviation,
we observe that participants or users made differing numbers of attempts to complete
tasks. Moving to the “Task Completion Time (M ± SD)” column, which presents the mean
completion time along with its standard deviation, we see variations in the time taken to
accomplish tasks.

Table 4. Results of Task Verification for Different Modules.

Task Module Results No. of Attempts
(M ± SD)

Task Completion
Time (M ± SD)

No. of Times Help
(M ± SD)

T1: Verify Login SW 100% 1 ± 0.54 1.3 ± 0.44 0.6 ± 0.54

T2: Verify Crop
Recommendation HW & SW 96% 1 ± 0 3 ± 0 0 ± 0

T3: Verify Fertilizer
Recommendation HW & SW 94% 1 ± 0 3 ± 0 0 ± 0

T4: Disease Detection SW 100% 1 ± 0 2 ± 0 0.4 ± 0.54

T5: Calculation
of Fertilizer SW 100% 1 ± 0 1.2 ± 0.44 0 ± 0



IoT 2024, 5 644

In Figure 4 Agricultural Practice: Irrigation, the variations in soil moisture levels are
primarily due to irrigation events. During the monitoring period, irrigation was applied at
regular intervals to maintain optimal soil moisture for crop growth. Soil moisture meters
are critical tools used in agricultural practices to monitor the water content in the soil at
various depths. These meters are strategically installed at different soil depths (e.g., 10 cm,
30 cm, 60 cm) to provide a comprehensive profile of soil moisture levels throughout the root
zone of the plants. The peaks in the graph correspond to periods immediately following
irrigation, while the gradual decline represents water absorption by plants and evaporation
from the soil. In Figure 4, the nitrogen levels required for crop development are depicted
in the line plot. The amount of nitrogen required begins at 90 units at a ratio of 0.0. Then,
at 2.0 data points, it starts to decrease to 60 units, and then it starts to rise once again at
3.0 data points, achieving a level of 75 units. This pattern shows significant increases and
decreases in the amount of nitrogen required during the development of the crop cycle.
Figure 4 shows a sharp decline followed by recovery, likely due to a temporary disruption
like pesticide use or irrigation changes.

IoT 2024, 5 644 
 

 

Table 4. Results of Task Verification for Different Modules. 

Task Module Results 
No. of At-

tempts (M ± 
SD) 

Task Comple-
tion Time (M ± 

SD) 

No. of 
Times Help 

(M ± SD) 
T1: Verify Login SW 100% 1 ± 0.54 1.3 ± 0.44 0.6 ± 0.54 

T2: Verify Crop Rec-
ommendation HW & SW 96% 1 ± 0 3 ± 0 0 ± 0 

T3: Verify Fertilizer 
Recommendation HW & SW 94% 1 ± 0 3 ± 0 0 ± 0 

T4: Disease Detection SW 100% 1 ± 0 2 ± 0 0.4 ± 0.54 
T5: Calculation of 

Fertilizer 
SW 100% 1 ± 0 1.2 ± 0.44 0 ± 0 

In Figure 4 Agricultural Practice: Irrigation, the variations in soil moisture levels are 
primarily due to irrigation events. During the monitoring period, irrigation was applied 
at regular intervals to maintain optimal soil moisture for crop growth. Soil moisture me-
ters are critical tools used in agricultural practices to monitor the water content in the soil 
at various depths. These meters are strategically installed at different soil depths (e.g., 10 
cm, 30 cm, 60 cm) to provide a comprehensive profile of soil moisture levels throughout 
the root zone of the plants. The peaks in the graph correspond to periods immediately 
following irrigation, while the gradual decline represents water absorption by plants and 
evaporation from the soil. In Figure 4, the nitrogen levels required for crop development 
are depicted in the line plot. The amount of nitrogen required begins at 90 units at a ratio 
of 0.0. Then, at 2.0 data points, it starts to decrease to 60 units, and then it starts to rise 
once again at 3.0 data points, achieving a level of 75 units. This pattern shows significant 
increases and decreases in the amount of nitrogen required during the development of the 
crop cycle. Figure 4 shows a sharp decline followed by recovery, likely due to a temporary 
disruption like pesticide use or irrigation changes. 

 
Figure 4. Nitrogen level Line plots. 

Figure 5 provides a line plot showing the phosphorus levels. The changes in soil nu-
trient levels (Nitrogen, Phosphorus, and Potassium) are the result of fertilization practices. 
Fertilizers were applied at specific intervals to ensure adequate nutrient availability for 
the crops. The spikes in nutrient levels in the graph indicate the times when fertilizers 
were added to the soil. Over time, the levels decrease as the nutrients are absorbed by 
plants and leached out of the soil as required for crop development. Starting from 0.0, the 
ratio shows that 43 units are needed. When the data point approaches 1.0, the level drops 
precipitously to 90 units. After 3.0 data points, it starts to decrease even more, reaching a 
value of 35 units. Figure 5 peaks early and then declines, suggesting a successful short-
term intervention like nutrient-rich fertilizer that loses effectiveness over time. 
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Figure 5 provides a line plot showing the phosphorus levels. The changes in soil nutri-
ent levels (Nitrogen, Phosphorus, and Potassium) are the result of fertilization practices.
Fertilizers were applied at specific intervals to ensure adequate nutrient availability for
the crops. The spikes in nutrient levels in the graph indicate the times when fertilizers
were added to the soil. Over time, the levels decrease as the nutrients are absorbed by
plants and leached out of the soil as required for crop development. Starting from 0.0, the
ratio shows that 43 units are needed. When the data point approaches 1.0, the level drops
precipitously to 90 units. After 3.0 data points, it starts to decrease even more, reaching a
value of 35 units. Figure 5 peaks early and then declines, suggesting a successful short-term
intervention like nutrient-rich fertilizer that loses effectiveness over time.
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The line plot shows in Figure 6 the potash K levels required for crop development. 
Starting from 0.0, the ratio shows that 43 units are needed. When the data point ap-
proaches 1.0, the level drops precipitously to 41 units. Then, after 3.0 data points, it starts 
to decrease even further, reaching a value of 40 units. For environmental monitoring, the 
fluctuations in sensor readings for Figure 6 are attributed to changes in environmental 
conditions such as temperature, humidity, and sunlight. These factors can influence the 
sensor readings independently of any direct agricultural practices. The data helps in un-
derstanding the environmental impact on soil conditions and sensor performance. Figure 
6 shows a balanced rise and fall, which may reflect a controlled experiment where a 
growth stimulant was applied and later removed. 
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The line plot shows in Figure 6 the potash K levels required for crop development.
Starting from 0.0, the ratio shows that 43 units are needed. When the data point approaches
1.0, the level drops precipitously to 41 units. Then, after 3.0 data points, it starts to
decrease even further, reaching a value of 40 units. For environmental monitoring, the
fluctuations in sensor readings for Figure 6 are attributed to changes in environmental
conditions such as temperature, humidity, and sunlight. These factors can influence
the sensor readings independently of any direct agricultural practices. The data helps
in understanding the environmental impact on soil conditions and sensor performance.
Figure 6 shows a balanced rise and fall, which may reflect a controlled experiment where a
growth stimulant was applied and later removed.
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The confusion matrix provides a detailed breakdown of the model’s performance in
classifying the soil conditions. The values in the confusion matrix help in understanding the
distribution of correct and incorrect predictions made by the model, Table 5 provides the
model’s performance metrics and confusion matrix, detailing the accuracy of predictions.
A high number of true positives and true negatives indicates that the model performs well
in identifying both positive and negative instances accurately.

Table 5. Model Performance Metrics and Confusion Matrix.

Metric Value

Accuracy 0.92

Precision 0.90

Recall 0.91

F1 Score 0.90

Predicted Positive Predicted Negative

Actual Positive True Positive (TP)
91

False Negative (FN)
9

Actual Negative False Positive (FP)
10

True Negative (TN)
1

True Positive (TP): Number of actual positive instances correctly classified as positive. False Negative (FN):
Number of actual positive instances incorrectly classified as negative. False Positive (FP): Number of actual
negative instances incorrectly classified as positive. True Negative (TN): Number of actual negative instances
correctly classified as negative.

3.7. Model Comparisons

In this comparison, we evaluated four implemented ML models to measure their
accuracy and other evaluation metrics, as shown in Table 6.
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Table 6. Models Comparisons.

Model Accuracy Precision Recall F1-Score

Light GBM
Classifier 98.90% 99% 99% 99%

Decision Tree
Classifier 98.48% 99% 98% 99%

Random Forest
Classifier 99.31% 99% 99% 99%

Logistic
Regression 94.35% 94% 95% 94%

Crops Precision Recalls F1-Scores Support

apple 1.00 1.00 1.00 31
banana 1.00 1.00 1.00 32

black gram 0.85 0.83 0.84 35
chickpea 1.00 1.00 1.00 39
coconut 0.94 1.00 0.97 30
coffee 1.00 1.00 1.00 32
cotton 0.85 1.00 0.92 28
grape 1.00 1.00 1.00 33
jute 0.85 0.90 0.88 31

kidney bean 0.91 0.97 0.94 30
lentil 0.89 0.92 0.91 26
maize 0.96 0.83 0.89 29
mango 0.91 1.00 0.95 29

moth bean 0.85 0.85 0.85 39
mung bean 1.00 0.97 0.98 31
muskmelon 1.00 1.00 1.00 31

orange 1.00 1.00 1.00 40

The evaluation of several machine learning algorithms shows encouraging outcomes
in terms of yield prediction and crop recommendation. Based on environmental parameters
and previous information, the Light-GBM-Classifier, Decision-Tree-Classifier, and Random-
Forest-Classifier demonstrate resilience in selecting eligible crops with high accuracy scores
above 98%, and precision, recall, and F1-scores consistently around 99%. These models sup-
port precision farming and resource optimization by providing trustworthy advice on the
best crops to plant and how much yield to expect. In situations when computing resources
are restricted, the Logistic-Regression model is a useful tool for crop recommendation and
yield prediction since it retains reasonable precision, and other above metrics are measur-
ing performance despite having a somewhat lower accuracy. All things considered, these
results demonstrate how machine learning may improve farming methods and support the
production of food in a sustainable manner.

3.8. Performance Comparison of Soil Moisture Measurement Methods

In our study, the performance of the soil moisture meter was evaluated against several
established methods, including tensiometers, various commercial moisture meters, and
the standard oven drying method at 105 ◦C. As shown in Table 7 below, our soil moisture
meter demonstrated a high accuracy rate of 99% and consistent reliability. When compared
to tensiometers, the meter showed a strong correlation (r = 0.95), indicating that it provides
comparable moisture readings. Similarly, the meter performed on par or better than com-
mercial moisture meters, which generally have an accuracy variance of ±10%. Additionally,
the meter’s measurements were within ±3% of those obtained using the standard oven
method, further validating its precision. These results confirm that the soil moisture meter
is not only reliable but also highly effective for use in precision agriculture, where accurate
soil moisture management is critical for optimizing crop yields and water use efficiency.
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Table 7. Comparison of Soil Moisture Meter Performance with Various Measurement Methods.

Method Description Performance Metrics Comparison Results

Soil Moisture Meter
Device installed at various soil

depths to measure soil
moisture content.

Accuracy: 99%,
Reliability: High

Reliable measurements with
consistent results.

Tensiometer
Measures soil water tension,

indicating moisture
levels indirectly.

Accuracy: ±5% of
reference values

Strong correlation (r = 0.95)
with our meter readings.

Commercial Moisture Meters
Various commercial models

used for measuring
soil moisture.

Accuracy: Varies (generally
±10%)

Our meter performed
comparably or better in terms
of accuracy and consistency.

Standard Oven Method

Soil samples are dried in an
oven at 105 ◦C to determine

moisture content by
weight loss.

Accuracy: Considered as a
reference method

Our meter’s measurements
were within ±3% of the oven

method, validating
its accuracy.

4. Discussion

The results from the IoT-based soil monitoring system demonstrate its significant
potential in enhancing precision agriculture practices. By enabling continuous monitoring
of essential soil parameters, the system provides valuable insights that can improve crop
yields and optimize resource use. The variations observed in Figures 4–6 reflect the
system’s sensitivity to different farming practices, suggesting that it can effectively detect
and respond to subtle changes in soil conditions. This sensitivity is crucial for making
informed adjustments in agricultural techniques to enhance overall productivity.

The confusion matrix in Table 5 further supports the system’s effectiveness, showcasing
its robustness in accurately classifying soil conditions. With metrics such as 0.92 accuracy,
0.90 precision, and 0.91 recall, the system has proven its capability in differentiating various
soil states, thereby minimizing the risk of misclassification. These results highlight the
reliability of the machine learning algorithms used, which have been optimized to handle
the IoT data with high precision.

Despite these promising results, there is still room for improvement. The current
system relies on a limited number of sensors and data processing methods. Expanding
the system to include additional sensors that can monitor other critical environmental
factors, like humidity, light intensity, and soil nutrients, could further enhance its effec-
tiveness. Additionally, refining the data processing algorithms, potentially incorporating
advanced techniques like deep learning, may improve the system’s predictive accuracy
and overall performance.

It is also important to consider the scalability and adaptability of the system across
different agricultural settings. While the model has shown strong performance in the tested
scenarios, further validation in diverse geographic regions with varying soil types and
climatic conditions is necessary. Addressing these challenges will be key to ensuring the
system’s broader applicability and effectiveness in a variety of farming environments.

In summary, the IoT-based soil monitoring system represents a significant advance-
ment in precision agriculture. By providing real-time, accurate data on soil conditions, it
enables farmers to make more informed decisions, leading to better crop management and
resource utilization. Ongoing research and development will be crucial to addressing the
current limitations and fully realizing the system’s potential, thereby contributing to the
sustainability and productivity of modern agriculture.

5. Conclusions

Our study has demonstrated that employing machine learning models to predict
crop recommendations and yields, alongside a highly accurate soil moisture meter, yields
exceptional results. The soil moisture meter achieved a 99% effectiveness rate and proved
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reliable when compared with tensiometers, various commercial moisture meters, and the
standard oven method, confirming its precision and suitability for precision agriculture.
Our machine learning models, such as the Light-GBM-Classifier, Decision-Tree-Classifier,
and Random-Forest-Classifier, exhibited accuracy rates of approximately 98%, while the
Logistic Regression model, although slightly less accurate, remains practical in scenarios
with limited computational resources.

Despite these promising results, a critical challenge persists: effectively implementing
these technologies in real-world agricultural settings. While our findings support the
efficacy of these tools, broader adoption will depend on overcoming obstacles related to
producer awareness and training. Ensuring that farmers are informed and equipped to use
these technologies is essential for translating research advancements into practical benefits
on the ground.

In conclusion, while the integrated use of IoT data and machine learning algorithms
presents significant potential for enhancing agricultural practices, addressing the gap
between technology and its practical application remains a vital step. Future efforts should
aim not only at further technological innovation but also at facilitating successful technology
adoption among producers.
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