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Abstract: This paper presents the design, implementation, and characterization of a digital IoT
platform capable of generating brain rhythm frequencies using synchronous digital logic. Designed
with the Google SkyWater 130 nm open-source process design kit (PDK), this platform emulates
Alpha, Beta, and Gamma rhythms. As a proof of concept and the first of its kind, this device showcases
its potential applications in both industrial and academic settings. The platform was integrated with
an IoT device to optimize and accelerate research and development efforts in embedded systems. Its
cost-effective and efficient performance opens opportunities for real-time neural signal processing
and integrated healthcare. The presented digital platform serves as a valuable educational tool,
enabling researchers to engage in hands-on learning and experimentation with IoT technologies and
system-level hardware–software integration at the device level. By utilizing open-source tools, this
research demonstrates a cost-effective approach, fostering innovation and bridging the gap between
theoretical knowledge and practical application. Furthermore, the proposed system-level design can
be interfaced with various serial devices, Wi-Fi modules, ARM processors, and mobile applications,
illustrating its versatility and potential for future integration into broader IoT ecosystems. This
approach underscores the value of open-source solutions in driving technological advancements and
addressing skills shortages.

Keywords: IoT devices; cyber-physical systems; emerging technologies; open-source synthesis tools;
applied artificial intelligence; IoT for healthcare; skill shortage in chip design; open-source chip design

1. Introduction
1.1. Context

The integration of brain decoding technologies with IoT and CPS signifies a major
advancement in both personal and clinical applications. The integrated embedded device
described in this paper, designed to generate and modulate neural rhythms, represents a
significant contribution to developing an IoT platform targeted for applications such as
the brain–computer interface (BCI). Enhanced signal processing capabilities could enable
seamless interaction with IoT networks and CPS, allowing brain activity to control a range
of connected devices directly. In CPS, which merges computational and physical processes,
advanced neural decoding devices provide more intuitive and responsive interfaces. For
instance, individuals with paralysis could utilize BCIs to manage smart environments with
unprecedented precision [1].

Similarly, linking brain signals to IoT devices enables users to adjust home automation
systems, operate assistive technologies, or interact with smart healthcare devices through
thought alone [2]. This integration enhances user experience and improves independence
for individuals with disabilities. The synergy between brain decoding technologies and
IoT can foster adaptive systems that respond to real-time neural data, such as smart homes
adjusting lighting or temperature based on the user’s emotional or cognitive state [3].
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The rapid evolution of IoT devices underscores the need for cost-effective and accel-
erated design at the chip level. Traditional chip design methods involve high costs and
lengthy development time due to expensive proprietary tools and complex fabrication
processes [4]. The Google SkyWater 130 nm open-source PDK addresses these challenges
by reducing development costs and time-to-market [5]. This paper employs Tiny Tapeout,
a platform designed to make chip production accessible and cost-effective [6]. Utilizing
open-source tools and PDKs eliminates the need for restrictive licenses and NDAs operating
on remote cloud servers. This approach aligns with the evolving digital chip design land-
scape, emphasizing accessibility and cost efficiency, particularly in educational settings [7].
Google’s recent initiative to promote complete open-source manufacturing through collabo-
rations with Efabless and SkyWater Technology has significantly democratized chip design.
By utilizing the SkyWater 130 nm PDK, designers can access advanced manufacturing
techniques without the prohibitive costs associated with semiconductor fabrication. The
platform supports approximately 400 open-source designs on a single chip with 24 GPIO
pins, which are then mounted on a demonstration board for thorough testing. The chip
designers receive a datasheet and access to an online project index, allowing exploration
of designs beyond their own and enhancing the educational and research value of the
platform. This model promotes affordability by sharing the costs of chip packaging and
circuit board manufacturing, making it particularly beneficial for rapid proof of concept
designs. Each tile on the chip measures approximately 160 × 100 µm2 and supports around
1000 logic gates. It is envisaged that analog and mixed-signal capabilities will be included in
future designs, which is an essential requirement for real-time signal sensing in AI-enabled
IoT devices, broadening the scope for experimentation. This aligns with the broader focus
on digital chip design for academic research prototyping and educational purposes, such
as the prototype application for reproducing brain rhythms, by providing a practical and
engaging tool for researchers.

Making use of these open-source tools in IoT and CPS applications could facilitate
integration with sensors, autonomous vehicles, and advanced healthcare technologies [8].
Furthermore, recent technological advancements underscore the importance of semicon-
ductor design and fabrication, particularly low-power, high-efficiency devices in IoT and
CPS [9]. Neuromorphic engineering is another important aspect of rapid prototyping,
which aims to replicate neural systems in hardware. It offers solutions to traditional
software-based models that could effectively be mapped with speed and energy efficiency
and could significantly benefit from this initiative [10–13]. In this research, the proposed
digital device designed using Google SkyWater 130 nm technology, capable of generating
brain rhythms, illustrates the viability of cost-effective IoT device implementation. This
system-level design demonstrates the viability of future advanced neural signal processing
and applications in real-time for IoTs.

Previously, the high cost of proprietary design tools has been a barrier to semiconduc-
tor innovation. According to [14], more than a trillion semiconductors are produced annu-
ally, and the global semiconductor market is projected to reach a total value of USD 1 trillion
by 2030. By adopting open-source tools such as the Google SkyWater 130 nm PDK, re-
searchers can achieve cost-effective chip design and fabrication, reducing financial barriers,
fostering innovation, and aligning with the need for scalable and economically viable
solutions [15]. The semiconductor global supply chain during the COVID-19 pandemic
in 2021 exposed vulnerabilities, emphasizing the need for a skilled workforce to address
these challenges. The semiconductor industry faces skill shortages globally that impact
its ability to innovate and respond to emerging needs [16]. Addressing these skill gaps
through educational initiatives and training programs is imperative for advancing tech-
nology and ensuring industry resilience. Recent efforts and investments such as the UK’s
GBP 1 billion investment strategy [14], the European Chips Act investment forecast of
more than EUR 43 billion [17], and the Chinese CNY 47 billion for chips investment have
been announced [18]. These serious efforts and investments reflect a global recognition of
semiconductor technology’s strategic importance, underscoring how open-source solutions
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can enhance innovation and efficiency in semiconductor design and fabrication, promis-
ing smarter and more responsive systems that improve quality of life and operational
efficiencies [19].

1.2. Motivations and Contributions

As elaborated in the Section 1.1 of this paper, the importance of research efforts and
skills in IoTs at the device level is imperative and timely. With emerging applications in
AI-enabled IoT devices, the complexity of such devices will increase, and to keep up with
the pace of technology, this work fills the gap by proposing efficient and cost-effective
solutions in IoT system design. The rapid advancement and widespread adoption of these
technologies require the need for digital chips that not only meet high performance and
reliability standards but are also developed quickly and affordably.

Traditional chip design cycles pose significant challenges, including the high cost of
development tools and associated licenses, which far exceed the budgetary constraints of
higher education institutions, and secondly, extended development cycles restrict rapid
prototyping and innovation. To address these challenges, this study demonstrates the use
of the Google SkyWater 130 nm open-source PDK as an alternative to conventional chip
design strategies and associated tools.

The primary objectives of this research are twofold: first, to demonstrate how open-
source tools can simplify and expedite the chip design process and integrate with the IoT
ecosystem, making it more accessible and economically viable. Secondly, to showcase
the practical implementation of these tools through the development of a digital platform
capable of generating brain rhythms that could potentially be used for future developments
in treating neurological disorders. The digital IoT platform proposed in this study demon-
strates a small-scale prototype within IoT applications, thereby fostering innovation while
reducing development costs. By integrating the proposed IoT platform with various serial
devices and Wi-Fi modules, the case study illustrates its potential for real-time process-
ing and adaptive control systems. This research thus forth addresses the critical issue of
skill shortages and resource limitations in IoT device development due to the constraints
elaborated in the Section 1.1 of this paper.

By promoting the use of open-source tools and emphasizing the importance of skill
development, this research contributes to advancing technology cost-effectively and helps
mitigate skill gaps. The global emphasis on semiconductor technology, as reflected in
recent investments and legislative actions, aligns with the goal of this research, which is to
enhance chip design capabilities and leverage open-source solutions to drive innovation.
This approach not only supports the development of cutting-edge IoT technologies but also
provides a scalable and adaptable framework for future advancements in the field. The
primary objectives and significant contributions of this paper are as follows:

1. Demonstrate the use of the Google SkyWater 130 nm open-source PDK as an alterna-
tive to conventional chip design for IoT device development;

2. Demonstrate open-source tools to simplify and expedite the chip design process and
integrate with the IoT ecosystem;

3. Showcase the practical implementation with a small-scale prototype capable of gener-
ating brain rhythms;

4. Demonstrate the use of an open-source mobile application interfaced with an ARM
Cortex-M0 processor and Wi-Fi module.

The rest of this paper is organized as follows:
Section 2 presents the software and hardware design, the development of an IoT device,

its characterization, and mobile app integration. Sections 3 and 4 thoroughly discuss the
research presented in this paper, as well as its limitations, followed by the conclusion in
Section 5.
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2. Materials and Methods

Brain rhythms are represented as continuous analog signals using sinusoidal functions.
The general mathematical representation of a continuous sinusoidal waveform is given by
Equation (1).

x(t) = A. sin (2π f t + φ) (1)

where x(t) is the amplitude of the signal at time t, A denotes the peak amplitude, f is the
frequency in Hertz (Hz), and φ, represents the phase shift in radians. This continuous
function captures the smooth oscillations of brain rhythms over time. To represent these
continuous signals in a digital system, they must be discretized into a series of digital
samples. This process involves sampling the continuous signal at regular intervals and
quantizing the amplitude values to fit within a finite digital range. The digital representa-
tion of a signal is governed by the sampling theorem, specifically the Nyquist–Shannon
sampling theorem, which states that Fs ≥ 2·fmax, where Fs is the sampling frequency and
fmax is the highest frequency component in the signal. This theorem ensures that the signal
can be accurately reconstructed from its samples without aliasing, which occurs when
high-frequency components are misrepresented as lower frequencies. To discretize the
analog signal, we sample it at intervals of Ts, the sampling period, where Ts = 1/fs.

Thus, the discrete-time signal x[n] can be expressed by Equation (2).

x[n] = A.sin(2π f .n.Ts + φ) (2)

where n is an integer index representing each discrete time step. Quantization is the process
of mapping these continuous amplitude values to a finite set of discrete values, which is
determined by the number of bits used in the digital representation. Therefore, with b bits
of resolution, the amplitude is quantized into 2b levels, and each sample is assigned one of
these levels. In practical terms, if the continuous analog signal has a frequency component
f of 50 Hz, and the chosen sampling frequency fs is 1000 Hz, the sampling period Ts is
1/1000 s. For a signal with a period T = 1/f, the number of samples per period is given by
Equation (3).

Samples per period = fs × T = fs/f (3)

This ensures that each cycle of the continuous signal is accurately captured by the
discrete samples. For digital chip design, representing brain rhythms as discrete pulses
allows the implementation of digital systems that can process and analyze these signals in
real time. The digital pulses approximate the analog waveform by converting continuous
variations in amplitude and time into a series of discrete values, making it feasible to
integrate these signals into digital hardware. The transition from analog to digital represen-
tation involves approximating the continuous waveform with a sequence of digital values,
facilitating efficient processing and analysis in digital circuits. This approach is essential for
implementing brain rhythm simulations on digital chips, enabling real-time applications in
neurotechnology and cyber-physical systems.

2.1. Software Design and Implementation

This section of the paper presents a case study demonstrating the practical applications
of a custom-designed chip capable of generating these rhythms using open-source tools. By
leveraging the Google Skywater 130 nm technology, the study illustrates how such a chip
can be used for real-time modulation of brain signals, offering a cost-effective approach
to advancing research and therapeutic interventions in neurotechnology. The Alpha, Beta,
and Gamma rhythms were first simulated in software by using Python on Thonny design
suite (Windows 10, Python 3.10.11, Tk 8.6.13) running on intel i7@1.87 GHz quad core.

Different brain rhythms, such as Alpha, Beta, and Gamma, represent various patterns
of electrical activity in the brain, each associated with different cognitive and physiological
states. Alpha rhythms, typically observed during relaxed wakefulness, range from 8 to
13 Hz and are crucial for calming the mind. Beta rhythms, ranging from 13 to 30 Hz, are
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associated with active thinking and focus, while Gamma rhythms, from 30 to 100 Hz, are
linked to higher cognitive functions such as problem-solving and perception. The simulated
waveforms are shown in Figure 1.
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Figure 1. Simulated brain rhythms.

Figure 1 illustrates digital step signals for three distinct brain rhythm frequencies:
Alpha, Beta, and Gamma. The purpose of the simulation is to demonstrate the variations
in these rhythms, including how they are sampled and represented digitally. The sampling
frequency used was 1000 Hz. This rate is crucial for accurately capturing the characteristics
of the signal. In practical terms, this means that each second of the signal is divided
into 1000 discrete points. Retrospectively, for the Alpha rhythm, which has a period of
100 milliseconds, there are 1000 samples in one second, so each cycle of the Alpha rhythm
is represented by 100 samples.

The top plot in Figure 1 represents the Alpha rhythm at 10 Hz and shows that this
rhythm completes one full cycle every 100 milliseconds. This slower oscillation is reflected
in the plot as longer periods between transitions. The 1000 Hz sampling rate ensures
that these transitions are captured with adequate detail, providing a clear depiction of
the Alpha rhythm. The middle plot illustrates the Beta rhythm at 20 Hz. This rhythm
has a shorter period of 50 milliseconds, meaning that each cycle occurs more frequently
than the Alpha rhythm. The plot shows these more frequent transitions, with the Beta
rhythm completing a full cycle every 50 milliseconds. The sampling rate of 1000 Hz is
still sufficient to accurately represent these faster transitions. The bottom plot displays
the Gamma rhythm at 40 Hz. This rhythm oscillates even more rapidly, with a period of
just 25 milliseconds. The plot captures these rapid changes, highlighting the short time
intervals between each transition. The high sampling frequency of 1000 Hz is essential here
to ensure that the quick oscillations of the Gamma rhythm are accurately depicted. In all
three subplots, the x-axis represents time in seconds. The x-axis is scaled consistently across
all plots to allow direct comparison of the different rhythms.

The total duration shown in each plot is 10 s, which covers multiple cycles of each
rhythm, offering a comprehensive view of how each rhythm behaves over time. The
y-axis in each plot represents amplitude, showing the signal’s high and low states. The
step function in the plots depicts these transitions, where each rhythm alternates between
a high state and a low state. The plots include labels and titles to specify the type of
rhythm and its frequency, with the x-axis labeled as “Time (s)” and the y-axis labeled as
“Amplitude”. Overall, the figure demonstrates how different brain rhythms are represented
digitally, highlighting the importance of a sufficient sampling frequency to capture the
details of both slow and fast oscillations. The consistent sampling rate of 1000 Hz across all
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rhythms ensures that each rhythm is accurately captured, providing a clear and detailed
visualization of their characteristics.

Similar to Alpha, Beta, and Gamma rhythms, Delta and Theta rhythms are crucial
brainwave patterns with distinct physiological and cognitive roles. Delta rhythms, char-
acterized by frequencies between 0.5 and 4 Hz, are predominantly associated with deep
sleep and are believed to facilitate restorative processes and memory consolidation [20].
The plot shown in Figure 2 generates and visualizes two types of brain rhythms, Delta
and Theta, over 10 s using a sampling frequency of 1000 Hz. To create the time axis, an
array is generated that spans from 0 to 10 s in 1-millisecond intervals. This array provides
a detailed time scale for the x-axis, allowing each sample point to be accurately plotted. For
signal generation, the Delta rhythm has a frequency of 2 Hz, which translates into a pulse
occurring every 500 samples, while the Theta rhythm has a frequency of 5 Hz, resulting in
a pulse every 200 samples. These specific frequencies determine the spacing and duration
of each pulse in the signals. In the top subplot, the Delta rhythm is depicted with green
step plots, showing periodic pulses every 500 samples. This creates a pattern reflecting the
rhythm’s lower frequency. The bottom subplot displays the Theta rhythm in red step plots,
with pulses occurring every 200 samples, illustrating the higher frequency of this rhythm.
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Unlike regular brain rhythms reported in neuroscience, epilepsy is a neurological
disorder characterized by recurrent seizures caused by abnormal electrical activity in the
brain. Seizures often manifest as distinct changes in the brain’s electrical rhythms, which can
be observed using electroencephalography (EEG). These rhythms, categorized into different
frequency bands, play a crucial role in understanding and managing epilepsy. The plots
shown in Figure 3 visualize pulse signals at various frequencies, simulating chaotic behavior
similar to that observed in epileptic seizures. This approach is essential in understanding
how different frequency components interact to model complex neurological patterns.

The sampling frequency, set at 1000 Hz, ensures a high-resolution representation of
the pulse signals. With a total duration of 10 s, this results in 10,000 samples, creating a
detailed time series for analysis. The time array is generated to span this duration with
1-millisecond intervals between samples, providing an accurate depiction of the pulse
signals over time. The top plot illustrates a pulse signal with a low frequency of 2 Hz.
Here, the x-axis represents time in seconds, while the y-axis shows the amplitude of the
signal, which alternates between 0 and 1. At 2 Hz, the signal completes a cycle every 0.5 s,
resulting in a repetitive pattern of pulses. Low-frequency oscillations, such as those in the
Delta (0.5–4 Hz) and Theta (4–8 Hz) bands, are associated with various brain states. Delta
waves are linked with deep sleep, while Theta waves are observed during lighter sleep
and certain cognitive processes [20]. This plot captures the lower end of these oscillatory
patterns, providing insight into baseline brain activity. The second plot depicts a pulse
signal with a medium frequency of 5 Hz. The time axis and amplitude axis follow the
same conventions, but at 5 Hz, the signal completes a cycle every 0.2 s. This creates a
more frequent pulse pattern compared to the 2 Hz signal. Medium-frequency oscillations,
such as those in the Theta range, are often observed during cognitive tasks and can reflect
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transitional brain states. In epilepsy, these frequencies may appear during seizures or
abnormal brain activity [21]. This plot demonstrates the contribution of medium-frequency
components to overall brain dynamics. The third plot (from the top) shows a pulse signal
with a high frequency of 15 Hz. The signal oscillates every 0.067 s, leading to a densely
packed pulse pattern. High-frequency oscillations, including Beta (13–30 Hz) and Gamma
(30–100 Hz) bands, are associated with heightened neural activity and various cognitive
functions. They are also relevant in the context of epileptic seizures, where high-frequency
bursts can indicate increased seizure activity [22].
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This plot illustrates how high-frequency components are represented, which is impor-
tant for understanding the impact of rapid oscillations during seizures. The bottom-most
plot presents a chaotic pulse signal with dynamically varying frequency. The x-axis shows
time, and the y-axis indicates the amplitude of the signal, which changes to simulate seizure-
like behavior. The signal begins with a low frequency, transitions to a medium frequency,
and then shifts to a high frequency. This modulation reflects the complex and dynamic
nature of epileptic seizures, where frequency and amplitude fluctuate unpredictably due to
the rapid synchronization and desynchronization of neural activity. In actual seizures, the
brain’s normal rhythms are disrupted, leading to irregular and high-amplitude bursts of
activity [21].

This chaotic behavior in the plot offers a visual representation of the erratic nature of
seizure activity, providing valuable insights into the dynamics of neural oscillations during
epilepsy. The generated plots effectively illustrate how different frequency components and
their combinations can model brain activity and epileptic seizures. By varying the frequency
dynamically, the chaotic signal captures the unpredictable nature of seizures, enhancing
our understanding of these complex neurological phenomena. This simulation serves as a
valuable tool for analyzing seizure activity and offers a foundation for further research into
the dynamics of epilepsy. Furthermore, such simulations can enhance the development
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of methods for seizure detection and modulation, providing practical applications for
real-time monitoring and therapeutic interventions [22].

2.2. Hardware Design and Implementation

Digital counters are fundamental components in digital electronics, used to count
pulses or events, and are employed in this study to generate periodic waveforms, including
various brain rhythms such as Alpha, Beta, Gamma, Delta, and Theta rhythms. These
counters operate by incrementing their count with each clock pulse and can be tailored to
produce specific frequencies by adjusting the counting range and clock frequency. In this
study, synchronous counters were utilized to generate periodic signals corresponding to
these brain rhythms.

The basic operation involves a counter that increments with a clock signal and gener-
ates an output pulse when a designated count is reached. This pulse can then be used to
create waveforms with the desired frequencies. To produce the Alpha rhythm at 10 Hz, with
a clock frequency of 1 kHz, the counter produces an output pulse every 100 clock cycles.
Therefore, a counter with 100 stages, or a modulus of 100, is employed, which is im-
plemented as a 7-bit counter with additional logic to reset at 100 counts. This design
ensures that a pulse is generated each time the counter reaches 100. For the Beta rhythm
at 20 Hz, also with a 1 kHz clock frequency, the counter needs to generate a pulse ev-
ery 50 clock cycles. Thus, a counter with 50 stages or a modulus of 50 is used. This is
implemented with a 6-bit counter, producing a pulse whenever the counter reaches 50.
To achieve the Gamma rhythm at 40 Hz, the counter must output a pulse every 25 clock
cycles. A counter with 25 stages, or a modulus of 25, is used, which is implemented with a
5-bit counter. This setup generates a pulse each time the counter reaches 25. Each of these
counters is designed with an appropriate number of flip-flops to match its modulus.

For the Alpha rhythm, seven D-flip-flops were used, as this is sufficient for the modu-
lus of 100. For the Beta rhythm, six flip-flops are adequate, and for the Gamma rhythm,
five flip-flops are used, as 25 = 32 is enough for the modulus of 25. Each counter is con-
nected to a 1 kHz clock source, with flip-flops arranged in series and logic gates employed
to decode the count and generate the output pulse. These digital counters and their wave-
forms are designed to be implemented on a chip using the Google Skywater 130 nm node
with open-source tools.

This open-source approach allows for the development and fabrication of the chip
at a lower cost, fostering innovation and accessibility in academic settings with limited
resources to budget and tools. The digital waveforms produced by these counters are
characterized as periodic pulses, demonstrating the rhythm frequencies. For instance, the
Alpha rhythm’s waveform displays a pulse every 100 clock cycles, the Beta rhythm shows
a pulse every 50 clock cycles, and the Gamma rhythm reveals a pulse every 25 clock cycles.
These waveforms are depicted as digital step functions, highlighting the periodic nature
and frequency of each brain rhythm. In each design, the D flip-flops are connected in a
series configuration to form a binary counter. The clock input drives the flip-flops, and the
output from the last flip-flop is used to determine when the counter reaches the specified
count. A comparator was employed to detect the specific count value and generate an
output pulse. The reset logic ensures that the counter restarts after reaching the designated
count, maintaining periodic waveform generation.

A synthesis view of the circuit diagram simulated by Yosys 0.38 [23] is shown in
Figure 4. The circuit was simulated with Icarus Verilog 12.0, and simulations are shown
in Figure 5. An overall flowchart from design specification to implementation, including
GDS generation and final chip characterization, is shown in Figure 6. As shown in Figure 4,
square boxes represent cells. Outputs are shown on the right, while input ports are
shown on the left. The first line of text inside the box indicates the cell name for internal
cells. The second line specifies the cell type. Internal cell types start with a dollar sign.
Diamond-shaped nodes represent wires that are not ports (blue wires interface), whereas
octagon-shaped nodes represent ports (purple wires interface). Elliptical nodes are constant
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drivers (green wires interface and standard paths), and their labels follow the format
<width>’<bits>. Boxes with rounded corners and labels such as 4:0–4:0 are used to break
out and re-combine nets from buses (olive wire control signal). These boxes help manage
and reorganize signal connections within a bus structure.
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To calculate computational latency for software simulations and hardware synthesis,
unlike commercial tools, the open-source tools used in this study provide very limited
automated options. In this work, an HP ProBook laptop was used with Intel(R) Core i7-
10510U CPU @ 1.80 GHz, four cores, and eight logical processors with 8 GB RAM. Given the
complexity of the code, computational latency is negligible. The computational latency for
software simulations was recorded as 6 milliseconds for various brain rhythms generation.
For hardware simulations, Yosys, an open-source tool, does not provide built-in functions
for measuring synthesis time; however, a time counter in Verilog is included. The CPU user
time was recorded as 0.03 s, and the system time as 0.01 s. Hence, the total elapsed time for
the synthesis of the FSM using Yosys was recorded as 40 milliseconds. A screenshot of the
calculated time is shown below.
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Similarly, Yosys does not provide a built-in power analysis tool; however, the power
consumption could be estimated using the demo board’s 3.3 V IO supply voltage and
4 mA drive strength. For the low-frequency digital circuit, static power consumption
is considered negligible, and dynamic power consumption can be estimated using the
following expression, as shown in Equation (4).

Pdynamic = Cload × V2 × f (4)

The load capacitance could be estimated by Equation (5).

Cload ≈ Idrive
V × f

(5)

For 1 kHz operating frequency, 3.3 V IO supply voltage, and 4 mA drive strength, the
load capacitance is ≈1.21 uF. Hence, the dynamic power consumption is estimated at 42 mW.

2.3. Chip Layout

The digital chip was developed using the Wokwi and GitHub templates [24,25] with
the Google Skywater 130 nm process, which is a fully open-source PDK, to ensure acces-
sibility for educational and research purposes [26,27]. The chip features multiple digital
counters, each configured to generate specific brain rhythm frequencies. The complete
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chip layout of all designs, as rendered in GDS, is depicted in Figure 7a [27]. The chip is
packaged in a 64-pin QFN, and the chip layout of the design presented in this paper is
shown in Figure 7b. The design detailed in this paper utilized a single tile, which measures
160 × 100 µm2. The total cell utilization is shown in Table 1.
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Table 1. Total cell usage.

Category Count

Inverter

Tap 287

Flip-Flops 246

Buffer 171

AND 50

Misc. 39

Combo Logic 26

NOR 10

OR 10

Multiplexer 2

In total, 596 cells were used, which was 32.45% of the total logic available.

2.4. Chip Verification

The chip was tested using the Commander app via a serial port alongside an
8-channel logic analyzer. The IO pins on the breakout board were connected to a Saleae
logic analyzer [28] tool to detect and verify various brain rhythms. The breakout board and
connection setup are illustrated in Figure 8. The chip characterization and the resulting
waveforms are displayed in Figure 9. To ensure accurate testing and characterization, the
setup involved configuring the serial app to interface with the chip through the serial port,
while the Saleae logic analyzer provided detailed waveform analysis through its 8-channel
interface. This setup allowed for comprehensive verification of the chip’s ability to generate
and replicate the targeted brain rhythm frequencies.
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The results reported demonstrated the chip’s performance and functionality in gen-
erating the expected rhythms, confirming its effectiveness for its intended applications.
The detailed connection schematics and breakout board layout, as depicted in Figure 8,
facilitated the testing process and supported the successful validation of the chip.
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2.5. IoT Connectivity with Mobile App Interface

To enhance the functionality of the open-source customized platform for brain rhythm
generation, an open-source Blynk mobile application was integrated with the platform [29].
The Blynk app was developed to remotely control the Wi-Fi module integrated into an
Arduino board. This integration demonstrates how the platform can be extended into
an integrated IoT ecosystem, allowing wireless control of modulating brain rhythms. By
introducing this IoT feature, we can illustrate how IoT-enabled wireless communication
modules interact with the custom-designed brain rhythm chip, enabling real-time control
and monitoring, as illustrated in Figures 10 and 11.
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Figure 10. Mobile app interface with the MKR Wi-Fi 1010 IoT module.

The integration was achieved by setting up an Arduino board (MKR WIFI 1010) [30]
with a Wi-Fi module, which facilitated wireless communication between the Blynk mobile
app and the brain rhythm chip. The Arduino board was programmed using the Arduino
IDE, and code was developed that allowed the Arduino to receive commands from the
Blynk app and transmit them to the brain rhythm chip via the GPIO pins, as shown
in Figure 10. The Wi-Fi module was configured to connect to a local wireless network,
enabling communication between the mobile app, Arduino board, and the brain rhythm
chip. In the code implementation, the SAMD21 Cortex-M0+ module connected to the
local Wi-Fi network using authentication tokens from the Blynk app. The mobile app sent
control commands to the Arduino via the Wi-Fi module, which were then relayed to the
brain rhythm chip. The Blynk app’s switches were mapped to virtual pins (2, 3, and 4),
which allowed the user to select different brain rhythm frequencies (such as Alpha, Beta,
and Gamma) connected through the Arduino IoT board to the input pins of the daughter
board. When the user selects the virtual switch, it sends a signal through the SAMD21
Cortex-M0+ microcontroller to the GPIO pins to trigger the corresponding output on the
chip, as illustrated in Figure 11.
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Figure 11. Blynk mobile app interface with the MKR 1010 IoT board with chip interface and Saleae
logic analyzer.

This setup allows for smooth interaction between the mobile app and the hardware,
resulting in a fully functional IoT-enabled brain rhythm modulator. The Blynk mobile app
was configured with user-friendly interfaces to instantiate different frequencies, emulating
brain rhythms wirelessly. This user interface enables quick and easy control over the
chip’s output, making the system accessible for further research in IoT-enabled neural
signal modulation. The platform successfully demonstrated the ability to wirelessly switch
between different brain rhythms without manual reconfiguration, showcasing its flexibility
and robustness, as shown in Figure 12.

The proposed IoT platform, combined with the Blynk app interface and a custom-
designed chip developed with all open-source tools, serves as a novel platform for learning
and research. It enables researchers to gain practical experience with IoT, hardware–
software integration, and system design. The simplicity of the app interface makes it
easy for researchers to experiment with IoT-enabled devices. This approach also fosters
innovation, allowing engagement with cutting-edge technologies in a meaningful way. In
addition to its educational benefits, the integration offers scalable possibilities for industrial
applications. Combining IoT, and real-time brain rhythm generation, as a prototype opens
the door to applications in smart healthcare solutions, adaptive control systems, and real-
time neural signal processing. The computational latency and low power aspects pave the
way for standalone IoT applications, as alluded to in Section 2.2.

The designed chip was interfaced with an Arduino MKR Wi-Fi 1010 powered by the
SAMD21 Cortex-M0+ 32-bit ARM microcontroller, offering efficient performance with
low power consumption, making it ideal for IoT applications. It integrates the NINA-
W102 module (based on ESP32) for Wi-Fi and Bluetooth connectivity, supporting 2.4 GHz
networks while maintaining energy efficiency for battery-powered applications. The
author acknowledges the use of Grammarly 14.1202.0 and ChatGPT 4 mini in the process of
translating and improving the clarity and quality of the English language in this manuscript.
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3. Discussion

Alpha rhythms are typically associated with relaxed wakefulness, being most promi-
nent when a person is calm but awake. Abnormalities in Alpha rhythms during seizures
can indicate altered brain states or the onset of seizure activity. Monitoring these rhythms
provides valuable insights into baseline brain activity and potential deviations that might
precede or accompany seizures. By identifying these disruptions early, healthcare providers
can better predict and manage seizures, improving patient outcomes. Beta rhythms, on the
other hand, are linked to active cognitive processing and motor functions. In the context of
epilepsy, alterations in Beta rhythms can signal heightened brain excitability or the propaga-
tion of seizure activity. Disruptions in Beta rhythms during seizures can aid in identifying
and localizing seizure foci, which is critical for targeted therapeutic interventions. Accurate
analysis of these rhythms can help in the development of more effective treatment strategies
and enhance our understanding of the complex mechanisms underlying seizure activity.

The chip designed to generate these fundamental brain rhythms demonstrates a
viable option for academic research. By simulating and generating Alpha, Beta, and
Gamma rhythms, the chip creates a controlled environment for studying their roles in
epilepsy. When used alongside EEG data, this chip enables researchers and clinicians to
compare generated rhythms with actual brain activity, thereby enhancing the accuracy
of seizure detection and localization. Continuous generation of these rhythms can help
identify deviations indicative of potential seizures, facilitating earlier intervention and
more effective treatment.

Furthermore, the chip’s ability to generate and modulate specific brain rhythms
opens up exciting potential therapeutic applications. For instance, it can be utilized in
closed-loop neurostimulation systems, where the chip generates compensatory rhythms
to counteract abnormal brain activity. This approach could help stabilize brain activity
and mitigate seizures, offering a new avenue for therapeutic intervention. Beyond its
application in epilepsy research, the integrated platform holds promise for a wide range of
IoT applications. In intelligent transportation systems, real-time neural processing could
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enhance decision-making and improve safety by integrating neural data with vehicular
control systems. In industrial IoT, such chips can advance monitoring and control systems,
leading to more efficient and responsive operations. The design and implementation of
this chip using open-source tools underscore the importance of democratizing access to
advanced technology.

Open-source platforms allow for cost-effective experimentation and innovation, partic-
ularly valuable for university students and researchers. By reducing the barriers to entry for
advanced chip design, open-source tools play a crucial role in fostering the next generation
of engineers and researchers, contributing to the advancement of technology and science
on a global scale. Recent studies have highlighted the benefits of using open-source tools to
streamline chip design. For instance, authors in [31] explore the financial and operational
advantages of open-source design tools for IoT chips, demonstrating a reduction in design
costs and a faster time-to-market. However, their work primarily focuses on hardware
design aspects and lacks detailed implementation scenarios. Similarly, authors in [32]
discuss the role of open-source hardware in alleviating chip shortages through 3D printable
breakout adapters, which reduce design costs and aid faster prototyping. Their work
showcases how open-source tools can be vital in distributed manufacturing models for IoT
and electronics design. Authors in [33] provide an overview of IoT architecture, protocols,
and data formats, proposing a reference architecture and reviewing popular data layer
protocols and formats. The article also highlights the importance of gateways in ensuring
compatibility between IoT devices and platforms. Additionally, it surveys both commercial
and open-source IoT platforms, noting the heterogeneity of open-source options. The article
also includes a summary of relevant free and open-source projects, making it a valuable
resource for IoT system deployment.

Retrospectively, the author of this paper proposes the use of end-to-end open-source
tools for IoT development at the device level, with no commercial tools involved. The
proposed platform is a novel, cost-effective, easily implementable solution for generating
brain rhythms while also serving as an educational resource for hands-on experience with
applied IoT technologies. The proposed work in this paper addresses several gaps, such as
by using the Google SkyWater 130 nm open-source PDK, demonstrating a cost-effective chip
design solution with a development cost of approximately USD 150 per tile, significantly
lower than traditional proprietary tools [34]. Further IoT applications have been reported in
the literature [35–39]; however, none of these reported studies offer an end-to-end solution
for IoT development. The approach presented in this paper not only reduces financial
and temporal costs but also accelerates time-to-market, making advanced chip design
integrated with IoT capability more accessible. Hence, the proposed research offers a
valuable contribution that bridges the gaps identified, providing practical implementations
and supporting educational initiatives in the IoT and semiconductor industry.

4. Future Work and Limitations

Open-source IoT development and applications entail several focus areas. In ap-
plications related to neural signal processing, integrating complex neural models could
enhance the capabilities of the proposed IoT platform, making it more valuable for research
on brain function and disorders. While the Google SkyWater 130 nm technology does
facilitate open-source device development, it also imposes limitations, such as a tile size
of approximately 160 × 100 µm2, which supports around 1000 logic gates. This size is
relatively small and restricts large designs, thereby limiting the complexity of the designs
that can be implemented. If users wish to add more tiles, the cost of the device increases
retrospectively. Furthermore, existing open-source hardware synthesis tools do not offer
automated power and speed calculations; they require the netlist to be analyzed by other
tools, which restricts design automation at the system level. Addressing these constraints
will be crucial for future research, aiming to expand the chip’s functionalities for broader
applications in neuroscience, IoT, and cyber-physical systems.
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5. Conclusions

This paper successfully demonstrates the design, implementation, and characteriza-
tion of a digital platform capable of generating various brain rhythms using the Google
SkyWater 130 nm PDK. The platform not only emulates key brain rhythms but also pro-
vides a versatile solution for integration into IoT and CPS, offering real-time neural signal
processing and adaptive control system capabilities. By utilizing open-source tools, this
approach presents a cost-effective method for both industrial applications and academic
research, fostering hands-on experimentation and bridging the gap between theoretical
knowledge and practical skills in hardware–software integration. Furthermore, its compati-
bility with serial devices, mobile applications, and Wi-Fi modules enhances its versatility,
ensuring future scalability within broader IoT ecosystems. This work underscores the po-
tential of open-source technology in advancing both educational and industrial initiatives,
highlighting its value for future research and innovation in neural signal processing and
IoT platforms. Nonetheless, as highlighted in Section 4 of this paper, this work provides
a significant opportunity for academics and researchers to explore further applications
and address the skills shortage. Retrospectively, it will require strong commitments from
academic and research institutions, as well as governments, to recognize the urgent needs
and opportunities this discipline offers. Additionally, there should be more focus on de-
veloping open-source tools and democratizing the toolchain and chip fabrication to fully
benefit from the technological advancements.
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