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Abstract: The exponential growth and widespread adoption of Internet of Things (IoT) devices have
introduced many vulnerabilities. Attackers frequently exploit these flaws, necessitating advanced
technological approaches to protect against emerging cyber threats. This paper introduces a novel
approach utilizing hardware honeypots as an additional defensive layer against hardware vulner-
abilities, particularly hardware Trojans (HTs). HTs pose significant risks to the security of modern
integrated circuits (ICs), potentially causing operational failures, denial of service, or data leakage
through intentional modifications. The proposed system was implemented on a Raspberry Pi and
tested on an emulated HT circuit using a Field-Programmable Gate Array (FPGA). This approach
leverages hardware honeypots to detect and mitigate HTs in the IoT devices. The results demonstrate
that the system effectively detects and mitigates HTs without imposing additional complexity on
the IoT devices. The Trojan-agnostic solution offers full customization to meet specific security
needs, providing a flexible and robust layer of security. These findings provide valuable insights into
enhancing the security of IoT devices against hardware-based cyber threats, thereby contributing
to the overall resilience of IoT networks. This innovative approach offers a promising solution to
address the growing security challenges in IoT environments.
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1. Introduction

The number of Internet of Things (IoT) devices has grown exponentially and is ex-
pected to reach 80 billion by 2025 [1]. Although IoT device manufacturers have mainly
focused on functional aspects, cybersecurity threats have become a major concern. The
proliferation of insecure IoT devices has introduced significant vulnerabilities that can be
exploited in large-scale cyberattacks. Ensuring the security of these devices is becoming a
critical priority for preventing major incidents, such as the notorious Mirai botnet attack in
2016 [2].

Traditional security measures, such as Intrusion Detection Systems (IDSs) [3] and
Intrusion Prevention Systems (IPS) [4], offer limited protection for IoT environments.
Honeypots [5], decoy systems designed to mimic real systems, applications, or services,
have emerged as a promising method for studying and mitigating these threats. These
systems enable security experts to observe attacker behavior and techniques in a controlled
environment without compromising real assets. However, the integration of honeypots
into IoT systems requires further development, particularly for addressing hardware-level
threats such as hardware Trojans (HTs) [6].
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Although significant research has been conducted to secure traditional computing
systems, limited attention has been paid to securing IoT devices [7]. Addressing the security
of IoT devices is critical [8]. Additionally, there has been significant growth in research
aimed at securing connected cyber-physical systems such as smart autonomous bikes [9,10].

HTs are malicious modifications to integrated circuits (ICs) that can cause perfor-
mance degradation, functionality alterations, and data leakage. These modifications are
often difficult to detect because they are triggered under specific conditions, making tra-
ditional software-based defenses inadequate. To address this issue, this study proposes a
novel approach for detecting and mitigating HTs in IoT devices by leveraging hardware-
based honeypots.

The proposed system is implemented on a Raspberry Pi and tested using a Field-
Programmable Gate Array (FPGA) to emulate HTs. By integrating honeypots into the
IoT hardware layer, the system effectively detects HTs without adding complexity to the
IoT device operations. This solution is fully customizable and provides a flexible defense
mechanism to meet the varying security requirements in IoT environments.

The remainder of this paper is organized as follows: Section 2 presents the background
and related works. Section 3 presents the proposed IoT hardware Trojan honeypot (the
proposed approach). Sections 4 and 5 describe the experimental setup (the experimental
setup) and testing of the proposed approach, respectively (results and discussion). Finally,
Section 6 concludes the study and outlines the potential for future research.

2. Literature Review

This literature review provides a comprehensive analysis of the current state of re-
search related to IoT security, focusing particularly on the detection and mitigation of HTs
using honeypots. This section explores the various challenges faced by IoT devices, nature
and impact of HTs, existing detection mechanisms, and role of honeypots in enhancing
security. Additionally, the review identifies gaps in current research, underscores the need
for innovative approaches, and sets the stage for the proposed approach.

2.1. IoT Security Challenges
2.1.1. Overview of IoT Security Landscape

IoT security faces various challenges, including insufficiently upgraded devices, weak
security measures, operator negligence, and unreliable device monitoring [11]. The integra-
tion of IoT devices into traditional networks introduces additional security complexities,
necessitating the exploration of new solutions [12]. Furthermore, the rapid expansion of
IoT activities has surpassed the ability of operators and asset owners to respond effectively,
emphasizing the critical need for a focused approach to business risk [13]. The unique
architecture of IoT networks creates new vulnerabilities and cyber threats, demanding
a deep understanding of these challenges and the implementation of robust mitigation
strategies [14]. Advances in securing IoT devices have been made by leveraging technolo-
gies such as blockchain and machine learning algorithms, showing promising results in
enhancing data protection and overall security.

2.1.2. Common Vulnerabilities in IoT Devices

Common security vulnerabilities in IoT devices include weak communication pro-
tocols, inadequate authentication mechanisms, and unauthorized access facilitated by
inherent design flaws and poor implementation of security standards [15,16]. These vulner-
abilities can lead to cyberattacks, data breaches, and privacy concerns [17]. To address these
issues, mitigation strategies involve the implementation of secure communication protocols,
robust authentication mechanisms, and regular software updates [18,19]. In addition, rais-
ing user awareness of security risks, promoting responsible data collection practices, and
incorporating privacy-by-design principles can help create a safer IoT environment. Intru-
sion Detection Systems (IDSs) based on new technologies such as blockchain and machine
learning are also promising solutions for enhancing cybersecurity in IoT ecosystems.
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2.1.3. Attacks on IoT Devices

Various attacks on IoT devices include Distributed Denial of Service (DDoS) [20],
Denial of Service (DoS), reconnaissance, brute force, man-in-the-middle, and spoofing
attacks [21]. These attacks pose significant security risks owing to the vulnerabilities present
in IoT devices, which lack industry-wide security standards, making them susceptible to
exploitation by cybercriminals [21]. In a study analyzing IoT device vulnerabilities [22],
attacks such as DoS, man-in-the-middle, and brute force attacks were successfully executed
on a Raspberry Pi 4 acting as an IoT device, highlighting the importance of identifying and
mitigating these risks [22]. Additionally, a comprehensive IoT attack dataset was created,
encompassing 33 attacks across seven categories, including DDoS, DoS, reconnaissance,
brute force, spoofing, and Mirai attacks, to facilitate the development of security analytics
applications for real IoT operations [23].

2.2. Hardware Trojans (HTs)
Definition and Classification of HTs

HT is a malicious, unwanted, and deliberate modification of an electronic circuit.
However, these modifications can have several consequences:

• Alteration of functionality: This causes the circuit to perform unauthorized op-
erations, such as encryption algorithm bypassing, privilege escalation, and denial
of service.

• Degraded performance: This can potentially jeopardize the critical system through
induced electromigration of wires caused by continuous DC stress, increased or de-
creased path delay, and fault injection.

• Information leakage: This undermines the security provided by cryptographic al-
gorithms or directly leaks sensitive data handled by an integrated circuit (IC). This
could include the disclosure of cryptographic keys or other sensitive information via
debugging or I/O ports and side channels (e.g., delay, power).

An HT consists of two parts: trigger and payload. The HT is inserted into the original
circuit. The user is usually unaware of its existence because the circuit behaves normally
most of the time but starts behaving maliciously when the HT is triggered. Consequently,
it is not sufficient to protect only the software layer of the device; it is also critical to protect
the hardware layer of the device [24].

Hardware Trojans are classified into three classes [25]:

• Combinational: A trigger is taken from a circuit’s primary inputs and/or internal
nodes, and a payload can be activated once the trigger is asserted. Any Trojan design
can be classified as a Type-p Trojan based on p-trigger inputs. An AND gate with
p-inputs can be used to create the most basic trigger form. Any other combinational
logic can also be used as a trigger to produce a different logic when activated.

• Sequential: The payload is delivered when a sequence of input patterns occurs or a
period is triggered. To accomplish this goal, the trigger design of a sequential Trojan
incorporates the state elements and combinational logic. The payload is delivered
only when the counter reaches its maximum count or when the Finite State Machine
(FSM) for the counter reaches its final state in the first approach. Because specific test
patterns or inputs are unlikely to occur consecutively multiple times during testing
or normal operations on IC, this property of sequential Trojans makes detection even
more difficult.

• Analog (RF Trojan): The trigger circuit is designed with capacitors that are activated
by accumulating charge from the toggling of a nearby victim wire that exceeds a
specified threshold.

The design types of HT differ according to their triggering mechanisms. For instance, a
counter-based Trojan, also known as a ‘ticking time bomb’, waits until the user has reached
a preset number of executions of an instruction [26]. A cheat code Trojan is activated when
a certain user input is entered into a circuit. Backdoor Trojans are malicious software
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programs that allow unauthorized access to remote attacks [27]. Remote attackers can
execute commands or achieve complete control of a compromised computer. Backdoor
malware and viruses circumvent authentication procedures to gain access to systems and
to avoid detection.

2.3. Detection Mechanisms for Hardware Trojans

The detection mechanisms for HT include side-channel information analysis [28],
VGG-Net architecture-based detection [29], trigger signal testability assessment [30], and
IC topology and behavior-aware detection using Graph Neural Networks (GNNs) [31].

Side-channel information analysis leverages dual discriminator-assisted conditional
generation adversarial networks (D2ACGAN) to distinguish between side-channel data
with and without Trojans, achieving high accuracy rates. The VGG-Net architecture-based
method excels in detecting Trojans in Advanced Encryption Standard benchmarks. Trigger
signal testability assessment focuses on the low testability of trigger signals within circuits
to enhance detection speed and reduce false positives.

Additionally, the IC topology and behavior-aware approach utilize structural features
and behavioral information extracted through graph learning to effectively detect Trojans
without requiring a golden IC reference design, demonstrating high accuracy rates even on
unseen Trojan benchmarks [32].

2.4. Honeypots

A honeypot is a cybersecurity mechanism that employs a simulated attack target
to divert the attention of cybercriminals from legitimate targets [33]. They also gather
intelligence on the identities, methods, and motivations of the adversaries. A honeypot
can be designed to look like any digital asset, such as software applications, servers, or the
network itself. It is purposefully designed to look like a legitimate target, with a structure,
components, and content similar to that of the model. This is intended to persuade the
adversary that they have gained access to the actual system and to encourage them to
spend time within this restricted environment.

The researchers in [33] introduced a hardware honeypot called the Finite State Machine
Honeypot (FSM-HP). The purpose was to imitate the original FSM by accepting identical
inputs, aiming to appear highly realistic and evade detection. However, the FSM-HP was
intentionally equipped with additional vulnerabilities to enhance its appeal to potential
attackers. A honeypot can be reprogrammed if novel identification mechanisms are created.
Accompanied by new characteristics, the generation of honeypots can be adjusted accord-
ingly [33]. This makes a carefully constructed and designed honeypot an ideal mitigation
mechanism for protection against adversaries.

Honeypots are classified into three major groups, each of which is further subdivided
as follows [34]:

1. Purpose-Based:

• Research Honeypot: A research honeypot is designed to gather information about
the specific methods and techniques used by adversaries as well as to identify
potential vulnerabilities within the system related to these tactics. Typically,
research honeypots are more complex than production honeypots are.

• Production Honeypot: The common type of honeypot is the production honey-
pot. Businesses use this decoy to gather information and intelligence regarding
cyberattacks on production networks. The collected data include IP addresses, in-
trusion attempt times and dates, traffic volume, and other attributes. Production
honeypots are relatively simple to design and deploy; however, they produce
less sophisticated intelligence than research honeypots.

2. Levels of Interactivity-Based:

• Low-Interaction Honeypot: Low-interaction Honeypots use a small number of
resources to simulate parts of a system’s software or network services while gath-
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ering basic information about the attacker. Because of their limited capabilities,
attackers cannot escape emulation; thus, the host system cannot be compromised.
The vast majority of production honeypots have low interaction. HoneyD is one
of the most popular low-interaction honeypots.

• High-Interaction Honeypot: A high-interaction honeypot represents the other end
of the spectrum in deception technology. Without a simulation, high-interaction
honeypots use a comprehensive operating system. They are difficult to maintain
and sophisticated and are designed to keep hackers occupied for long periods by
utilizing a network of exploratory targets, such as several databases. This pro-
vides the cybersecurity team with a better understanding of how these attackers
operate, their tactics, and even hints as to who they are [34,35].

3. Implementation Based:

• Physical Honeypot: The term “physical honeypot” or “hardware honeypot”
refers to a honeypot powered by a physical mechanism. It runs on a real machine
connected to the network by using its assigned IP address. Physical Honeypot
generally suggests a high level of engagement, which allows the system to be
entirely compromised.

• Virtual Honeypot: Virtual Honeypots can combine different levels of interac-
tivity as they can host more than one honeypot and control the number and
characteristics of the ones deployed. This can be more cost-efficient and less
time-consuming [36].

Various honeypot systems, such as HoneyIoT [37], IoTZeroJar [38], and RIoTPot [39],
have been developed to address security challenges in IoT environments. These systems
utilize adaptive high-interaction techniques to analyze zero-day attacks and expose them-
selves to threats on the Internet. This approach allows for the collection of valuable data on
attack patterns and attacker behavior [40]. By mimicking real IoT devices and applications,
honeypots can effectively deceive attackers, gather information on emerging threats, and
prevent unauthorized access to actual devices. This significantly enhances the overall
security posture of IoT networks [41].

2.5. Analysis and Gaps

IoT devices face significant challenges, including insufficient updates, weak secu-
rity, and complex integration into traditional networks, which necessitate innovative so-
lutions [11–14]. Numerous studies have shared common drawbacks such as insecure
communication, poor authentication, and design flaws, all of which lead to cyberattacks
and data breaches. Proposed solutions include secure protocols, robust authentication,
and user awareness [15–19]. IoT devices are susceptible to DDoS, DoS, brute force, and
man-in-the-middle attacks. Studies highlight the importance of identifying and mitigating
these risks [20–23].

Many IoT devices remain vulnerable owing to their inherent design flaws and lack of
industry-wide security standards. Although promising, existing detection mechanisms for
HTs often require complex implementations and may not cover all possible Trojan designs.
Although effective, honeypot systems can be resource-intensive and require careful design
to avoid detection by attackers. Research on IoT security requires continuous updating to
keep pace with the rapidly evolving cyber threats and technologies.

In summary, researchers have proposed several methods and techniques to address
the security issues in IoT devices. However, to the best of our knowledge, only a few
studies have focused on the detection and mitigation of HT using honeypots. Table A1 in
the Appendix A presents some recent literature on IoT security, with a summary of their
strengths and weaknesses.

Given the extensive work presented in Table A1, it is evident that the existing solu-
tions for HT detection in IoT devices often require additional complexity and significant
modifications to the IoT system. IoT devices are typically built on less powerful chips,
which make them more vulnerable than other devices within a network. To address these
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vulnerabilities, we propose a novel approach that utilizes a hardware network-based hon-
eypot that mimics IoT devices. This honeypot monitors and blocks any suspicious activity
and effectively identifies an adversary’s intentions. This is achieved without introducing
overhead to the IoT system or requiring knowledge of its internal working. Our approach is
Trojan-agnostic and fully customizable to meet specific security needs, thereby providing a
flexible and robust solution. Crucially, the logs generated by the honeypot can be analyzed
to enhance network security, offering a practical means to address vulnerabilities and
strengthen overall defenses.

3. Proposed Approach

Our approach involved designing and deploying a honeypot, creating an HT, and test-
ing the system. The system was rigorously tested to ensure its effectiveness in identifying
and analyzing security threats.

3.1. Honeypot Design Architecture

Our honeypot was designed to mimic vulnerable IoT devices, thereby attracting and
recording cyberattacks. This enables the analysis of attack patterns and methodologies,
helping to understand the strategies used by attackers to compromise IoT devices. The
honeypot architecture is multilayered and comprises the following components:

• Emulation Layer: Simulates various IoT device vulnerabilities.
• Monitoring Layer: Tracks interactions with the honeypot.
• Logging Layer: Records data about the attacks for further analysis.

Figure 1 illustrates the honeypot system architecture. The emulation layer includes
modules that mimic various IoT devices by hosting services identical to those offered by
the actual IoT system. The monitoring layer captures the network traffic directed at these
emulated devices. This layer uses socket programming to communicate with IoT devices
in the LAN, determining whether incoming packets will be forwarded to the IoT device
or dropped. The logging layer stores the captured data for analysis. The honeypot is
strategically deployed within a controlled network environment to ensure that it appears
to be a legitimate device, thus enabling attackers to interact with it. It monitors incoming
traffic, captures malicious activities, and logs the details for further analysis. The honeypot
uses Python 3.12 socket programming for network communication and integrates a packet
sniffer to detect and log malicious packets.
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3.2. HT Design

Trigger-based HT is a type of malicious modification or addition to hardware compo-
nents, particularly integrated circuits (ICs), and is designed to be activated under specific
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conditions or triggers. These triggers can be based on various factors, such as a specific
time, sequence of operations, signal pattern, or specific input sequence.

The mechanisms for activating trigger-based Trojans are divided into two categories:

• Internal triggers: These Trojans are conditional, such as a ticking time bomb, using
counters to compute the execution of an instruction, or physical conditions, such as
tampering with the internal temperature of the components.

• External triggers: These Trojans can be activated remotely by an attacker based on
external factors, such as the user entering a specified input (cheat code) or a component
returning a specific output.

This study employs a combination of a ticking time bomb and a backdoor Trojan. The
counter-Trojan is activated if a specific command exceeds a predetermined value, thereby
triggering the payload. This in turn activates the backdoor Trojan, creating a backdoor in
the circuit and affecting its functionality.

4. Experimental Setup
4.1. Honeypot

The proposed honeypot is a low-interactive system implemented on a Raspberry Pi
Model 3 B+, operating with the desktop version of the Raspbian 64-bit Lite OS. It redirects
attackers to a fake admin login web page, prompting them to enter the username and
password. The honeypot records all data, including the IP address, type of request, values
entered, and breached port. It was created using a socket programming approach with a
Python script directing users to a web page by listening to port 80, the port where the server
anticipates receiving data from a web client. Multiple ports can be opened, allowing the
honeypot to monitor changes or requests and respond accordingly. Socket programming
facilitates communication between two nodes in a network: one socket (node) listens to
a specific port at an IP address, whereas the other socket establishes a connection. When
the client attempts to contact the server, the server creates a listener socket. The following
Script demonstrates how the socket was created and configured for IPv4 addressing using a
TCP connection. The socket is given a dedicated port to which it should listen, as illustrated
in Script 1.

Script 1: Socket Connection Establishment
try:

get_socket_con = socket(AF_INET, SOCK_STREAM)
get_socket_con.bind((ip_add, port))
get_socket_con.listen(10) #timeout after 10 s
while True:

client_con, client_addr = get_socket_con.accept()
print("Visitor Found! - [{}]".format(client_addr[0]))

The code snippet provided in Script 1 establishes a socket connection to create a hon-
eypot system that listens to the incoming connections from potential attackers. The try
block initiates the process by creating a new socket using the AF_INET address family and
SOCK_STREAM socket type, which is suitable for TCP connections. The bind method asso-
ciates the socket with a specific IP address (ip_add) and port (port). The listen method then
sets the socket to listen to incoming connections with a timeout set to 10 s. Within an infinite
loop (while True), the accept method waits for a client to establish a connection, returning
a new socket object (client_con) and the address of the connected client (client_addr).
Upon successful connection, the code prints a message indicating the detection of a visitor
along with the visitor’s IP address.

The session must then be ended upon completion, closing the endpoints.
The Hypertext Transfer Protocol (HTTP) is handled by port 80. Therefore, a request

can be submitted by typing the honeypot’s IP address ‘192.168.1.4’ in any web browser.
The attacker is then routed to a webpage that is designed using JavaScript and CSS. As
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illustrated in Figure 2, two input text boxes represent the data needed to unlock the
SmartLock system. This is normal behavior for the IoT system, giving the attackers a false
sense of security and believing that they have infiltrated our IoT system. These inputs,
along with other information about the attack and its location, were saved for the analysis.
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Figure 2. SmartLock Fake Webpage.

String manipulation techniques were applied to extract the username and password
values. Data were retrieved from the HTML page using a socket programming approach
that captures and decodes the response from the webpage. String manipulation was then
performed on the decoded response to clean and filter data. These logs, generated by
the honeypot, record any active connections established with the honeypot. The terminal
output first announces that the honeypot is active and logs any device that connects to
it within a specified time frame. Subsequently, it logs the values entered on the website,
allowing us to track the attacker’s activity on the webpage. The terminal output after
entering the data into the webpage is shown in Figure 3.
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Next, an Excel spreadsheet was generated using a Python script to format the logged
data. This sheet records the time a connection is made to the honeypot, the IP address of the
device that made the request, the port accessed, and the type of connection, whether it is a
GET request (when accessing the webpage) or a POST request (when sending a response to
the webpage). In addition, it records the operating system and other information about
the device that made the connection, as well as the actual values of the usernames and
passwords that were entered.

Figure 4 illustrates the Excel spreadsheet “Honeypot Logs” automatically created locally,
as previously mentioned. The sheet contains six columns with the following information:

• Time Stamp: The exact time a connection was made.
• Visitor IP: The IP address of the suspicious device.
• Listening on Port: The vulnerable port accessed on the honeypot.
• Visitor Information: Details about the type of connection made.
• Username: The username entered on the website.
• Password: The password entered on the website.
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Additionally, the logging package in Python was used to create a logger file that
presented the collected data in a different format. Figure 5 illustrates an example of a
logger file.
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A port packet sniffer is used to log traffic from vulnerable open ports in the system.
The TCPdump, a command-line-based sniffer, was employed to gather detailed information
about incoming connections. The data captured by the TCPdump can be saved in a .pcap
format, which is then imported into data analysis tools such as WireShark for further packet
analysis. The collected data from the sniffer was appended to both a logger file and a
.xlsx file for convenient access and comparison of the incoming connections across various
ports. The last two lines in Figure 6 are added by the sniffer, containing the IP address
initiating the connection, the accessed port, and two respective values, A and B. These
values serve as the trigger inputs for the HT. Monitoring these values and connections
helps mitigate attacks.
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These logs were also entered into a separate sheet .xlsx file in a separate tap “Attack
Logs” for a clearer presentation as shown in Figure 7.
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4.2. Hardware Trojan

The hardware Trojan employed in this study was a hybrid design consisting of two
separate Trojans based on references [26,42]. The newly established Trojan was then
simulated on Logisim and emulated on an FPGA Cyclone IV (D2-115) Intel board.

Figure 8 illustrates a counter-based Trojan, commonly referred to as a “ticking time-
bomb” [26]. This architecture served as a case study for our project. The activation
mechanism consists of an XOR gate and a k-bit counter. When a = b = 1, the k-bit counter is
decremented. When a ̸= b, the counter is incremented. When the counter value exceeds a
predefined number N, the output signal is altered.
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According to [42], for a system to authenticate user-password pairs x and f, the
function f (x) needs to be constructed. With f (x) = x2, the design specifies ten users, I0
through I9. Because there are ten users, the designer utilizes four bits, x1 to x4, to encode
them. Because the greatest function output is 81, seven bits, z1 to z7, are required. Figure 9
shows the final circuit.
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Because the input is 4 bits, we can have 16 users. However, this design does not utilize
all of these. Consequently, 6 users are not in use and are in the “don’t care” condition.
The designer asserts that the circuit correctly performs the function f (x) = x2 despite this
incomplete specification. If an attacker makes the minor modification shown in Figure 10
(in red), the output for the ten valid inputs remains unchanged compared to the original
circuit. For inputs 10 and 11, there are two additional correct outputs. Thus, the modified
circuit included a backdoor Trojan.

Table 1 presents the circuit outputs. In this study, we designed an HT that combines
the two types using the counter-based Trojan result as a selection line for a multiplexer,
which determines whether the backdoor Trojan is activated. Figure 11 illustrates the
modified circuit, including the counter-based hardware Trojan (HT), as modeled in Logisim.
This diagram provides a clearer visualization of the proposed circuit design, which was
subsequently implemented using Quartus. The circuit consists of four inputs (x0 to x3)
representing the binary value of the user number and seven outputs (z0 to z6) corresponding
to the binary value of the password for the respective user. The K-bit counter represents
the counter-based HT integrated into our circuit.
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Table 1. Outputs of the circuits.

Inputs Circuit (a) Circuit (b)

x1 x2 x3 x4 X z1 z2 z3 z4 z5 z6 z7 F(x) z1 z2 z3 z4 z5 z6 z7 F(x)

In
pu

ts

I0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

I2 0 0 1 0 2 0 0 0 0 1 0 0 4 0 0 0 0 1 0 0 4

I3 0 0 1 1 3 0 0 0 1 0 0 1 9 0 0 0 1 0 0 1 9

I4 0 1 0 0 4 0 0 1 0 0 0 0 16 0 0 1 0 0 0 0 16

I5 0 1 0 1 5 0 0 1 1 0 0 1 25 0 0 1 1 0 0 1 25

I6 0 1 1 0 6 0 1 0 0 1 0 0 36 0 1 0 0 1 0 0 36

I7 0 1 1 1 7 0 1 1 0 0 0 1 49 0 1 1 0 0 0 1 49

I8 1 0 0 0 8 1 0 0 0 0 0 0 64 1 0 0 0 0 0 0 64

I9 1 0 0 1 9 1 0 1 0 0 0 1 81 1 0 1 0 0 0 1 81
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d

I10 1 0 1 0 10 1 0 0 0 1 0 0 68 1 1 0 0 1 0 0 100

I11 1 0 1 1 11 1 0 1 1 1 0 1 89 1 1 1 1 0 0 1 121

I12 1 1 0 0 12 1 1 1 0 0 0 0 112 1 0 1 0 0 0 0 80

I13 1 1 0 1 13 1 1 1 1 0 0 1 121 1 0 1 1 0 0 1 89

I14 1 1 1 0 14 1 1 0 0 1 0 0 100 1 1 0 0 1 0 0 100
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The proposed IoT system architecture was simulated using serial programming for
FPGA-Raspberry Pi communication. General Purpose Input Output (GPIO) in the FPGA
and the Raspberry Pi were used to achieve serial communication between them. Data can
be sent from one board to another to facilitate the control of the FPGA using Raspberry Pi.
Algorithm A1 in Appendix A describes the Python logic circuit for HT.

Next, Quartus was used to synthesize the Trojan on the FPGA board. The VHSIC
Hardware Description Language (VHDL) was used, and the project consisted of four files.
Three of these files were for different circuit components, and the main file included all of
them. The FPGA accepts inputs a, b, x0, x1, x2 and x3, which are used by the counter-based
and backdoor Trojans, respectively. An LED is assigned to each output from z0 to z7.

If the counter does not exceed a preset value, the circuit operates normally and does not
create a backdoor that allows hackers to breach the system. Only ten users can successfully
generate a password in this circuit. However, those ten users require four bits to encode,
which allows for the creation of six additional undesirable users. When the HT is not
enabled, the circuit continues to function normally; however, when triggered, the HT
allows two more users to obtain the correct password. This circuit can be assumed to be
part of a smart-lock IoT device that only permits ten users to unlock the SmartLock. The
generation function for the passwords is f (x) = x2.

Algorithm A2 in Appendix A shows the implementation of the HT in VHDL language
on Quartus.

As shown in Figure 12 in Modelsim, the value of the counter changed as a result of
XORing A and B together. The Trojan will not be activated unless the counter reaches 7
‘111’. A value of 7 is predefined in the code and can be changed as needed. Once this state
is reached, the circuit cannot return to its previous configuration because a backdoor has
been created.
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4.3. System Integration

The system schematic in Figure 13 illustrates how the hardware components, specif-
ically the FPGA and Raspberry Pi, are connected for seamless communication between
them. A common ground was established between them as well as two 330-ohm resistors
due to the DE2-115 board I/O standard mismatch.

Ground (GRD): The GRD pin ‘39’ on the Raspberry Pi and the GRD pin in JP5 on the
FPGA were connected to create a common ground.

• Inputs:

1. FPGA:

1. Pin ‘AB 22’ is used for transmitting the result of XORing values A and B.
2. Pin ‘Y 17’ determines whether access is authorized. Authorized access occurs

when the password entered on the website matches the correct password
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generated for the username and the Trojan has not been triggered. Failure to
meet any of these conditions results in unauthorized access.

1. Raspberry Pi:

1. Pin 37 is used by the FPGA to alert the honeypot of a malicious packet if a
Trojan has been triggered.

• Outputs:

1. FPGA:

1. Pin ‘AC 215’ is used to report back to the honeypot that the Trojan is acti-
vated.

1. Raspberry Pi:

1. Pin 40 is used to send the result of the XOR function to the FPGA.
2. Pin 35 is used to compare the password entered on the website with the

correct password generated for the username.

• Resistors: Because of the DE2-115 board I/O standard mismatch, 330 Ω pull-down
resistors were used to compensate for the mismatched GPIO pin differences.
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The Raspberry Pi has two threads running with a time-slicing round-robin scheduling
method. To achieve this, the threading and time packages were imported. The two threads
running are the main thread and the listener thread. The main function operates as a
honeypot, logging usernames and passwords from the website, among other activities. The
listener function, which logs the values A and B, operates as a sniffer. Both functions have
different vulnerable ports open to lure attackers.

Figure 14 illustrates the process by which an incoming connection undergoes verifica-
tion to determine whether it constitutes an attack. Any incoming connection is malicious
because it is a connection to a decoy and not a real system in the network. However, our
honeypot is designed to keep the adversary engaged until undesired behavior is observed.
This approach allows us to confirm the presence of a hardware Trojan and identify the key
to triggering it. This process begins with the collection and logging of information, such
as username and password values, entered on the website using a honeypot. Because the
honeypot’s IP address is not genuine, any input to the website is automatically flagged as
malicious and not intended for legitimate access. When values A and B are entered, their
XORing results are transmitted to an emulated FPGA device to monitor their impact on the
IoT device’s behavior. The emulated device then reports back to the honeypot, indicating
whether the Trojan has been activated. If the Trojan is activated, the packet is dropped, and
the system proceeds with a dummy login. Otherwise, the honeypot logs the entered data
to gather more information regarding the attacker’s objectives.
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5. Results and Discussion
5.1. Emulating the Hardware Trojan

The initial proof of concept involved testing the activation of the HT and assessing
its impact on an IoT device. The circuit was modified to receive the XOR results for
A and B from the honeypot. When the counter reached ‘111’ (seven in decimal), the
generated password for the user ‘10’ was altered, indicating Trojan activation. This scenario
is depicted in Figures 15 and 16. Figures 17 and 18 show that for input ‘9’, the generated
password remains unaffected by the Trojan, demonstrating a selective impact based on
specific conditions.
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5.2. Evasion Testing

Various scenarios were considered to test the proposed system. We categorized the
types of attacks into four groups: authorized, unauthorized, triggering, and non-triggering
attacks, each with their own testing scenarios.

5.2.1. Authorized Attacks

Authorized attacks involve accessing a website and attempting to log in with valid
credentials. The honeypot, which mimics the admin login page of the IoT device ‘Smart-
Lock’, logs the entered data and prevents intrusion by reporting to the FPGA. This scenario
is illustrated in Figure 19.
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5.2.2. Unauthorized Attacks

Unauthorized attacks involve attempts to log in with incorrect credentials. When such
an attempt is detected, the honeypot sends a signal to the FPGA, which is displayed as ‘U’
on a 7-segment display, as shown in Figure 20. Figure 21 illustrates the various inputs to
the website, highlighting both successful logins with correct credentials and unsuccessful
attempts with incorrect ones.
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5.2.3. Triggering Attacks

Triggering attacks occur when the counter reaches its predetermined value, which is
seven in this case. Consecutive inputs of values A and B, resulting in an XORing output of
1, trigger the Trojan. The counter is displayed on a 7-segment display, and whenever the
Trojan is triggered, it is also considered an unauthorized access, and a ’U’ will be displayed
on the neighboring 7-segment display.
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Figure 22 shows the values of A and B entered through the website until the Trojan
is activated upon reaching the counter limit of 7. Figure 23 illustrates the process of a
packet being dropped when the correct credentials are provided. Figure 24 displays an
unauthorized trigger, where incorrect credentials are entered, yet the packet is still dropped.
This is because the HT is activated in our honeypot, causing any subsequent packets to be
automatically considered malicious and subsequently dropped.
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5.2.4. Non-Triggering Attacks

Non-triggering attacks involve the values of A and B, which do not cause the counter
to reach seven. Every entered value is logged, and the attack can be either authorized or
unauthorized. Figure 25 shows attempts to trigger the Trojan. If the attacker continues with
this pattern, they may eventually reach the triggering stage. However, with the counter
currently at two, the Trojan has not yet been activated.
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5.3. TCPdump

A TCPdump was utilized to monitor incoming HTTP POST requests on port 80. After
installation, it was tested by pinging the Raspberry Pi from a laptop. Identifying the correct
network interface is crucial for accurately sniffing the network traffic, as illustrated in
Figure 26.

Below is the final command used after determining the correct interface:
$ tcpdump -i wlan0 -s 0 -A ‘tcp dst port 80 and tcp[((tcp [12:1] & 0xf0)

>> 2):4] = 0x504F5354’
The results of capturing POST requests are displayed in Figure 27.
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5.4. Analysis

Honeypots offer a compelling defense strategy for IoT systems, particularly for ad-
dressing the challenges posed by hardware Trojans. By acting as decoys, honeypots lure
attackers away from actual devices, facilitating early threat detection and valuable data
collection on attack vectors and adversary behavior. They significantly reduce false posi-
tives, provide insights into attacker motivations, and enhance incident-response strategies.
Importantly, honeypots allow for effective security without overloading IoT devices, whose
small controllers struggle with complex security measures, thereby maintaining their
performance. This lightweight approach not only protects the network but also enables
organizations to implement cost-effective targeted defenses. In this section, we elaborate
on the effectiveness of the proposed solution in various attack scenarios, the scalability of
the solution, and a comparative analysis with existing work.

5.4.1. System Effectiveness in Various Attack Scenarios

The proposed system was evaluated across multiple scenarios, including authorized,
unauthorized, triggering, and non-triggering attacks. The results demonstrate that the
honeypot system effectively distinguishes between legitimate and malicious activities,
thereby providing a robust security layer for IoT devices.

1. Authorized Attacks: The system successfully validated legitimate login attempts,
logging critical data for future analysis, and ensuring that no intrusions occurred. In
addition, the system employed a fallback mechanism to prevent unauthorized access,
even if attackers used valid credentials inappropriately.

2. Unauthorized Attacks: In cases of invalid credentials, the system effectively logged
all attempts and redirected attackers to a decoy page. This allows the system to gather
valuable intelligence on potential threat actors while maintaining system security.

3. Triggering Attacks: The hardware Trojan (HT) mechanism was successfully triggered
under specific conditions, demonstrating the capability of the system to detect sophis-
ticated HT attacks. The counter-based Trojan activation mechanism ensures selective
triggering, thereby minimizing false positives, which is often a challenge in static
detection systems.

4. Non-Triggering Attacks: The system logged non-triggering attacks without activating
the Trojan, ensuring that the IoT device maintained normal operation. This aspect
ensures that only real threats are flagged, reducing system noise and unnecessary
alerts while enhancing reliability.

5.4.2. Real-Time Packet Analysis and Behavioral Insights

By capturing HTTP POST requests on port 80 and analyzing the incoming traffic,
the system provides comprehensive insights into network activity, adding an additional
layer of monitoring that helps identify malicious actions as they occur. The detailed logs
generated by the honeypot recorded critical data such as IP addresses, ports accessed, and
attack attempts. These data offer valuable insights into attacker behavior, which is essential
for understanding how future attacks may evolve.

5.4.3. Resource Efficiency and Scalability

The system, implemented on a Raspberry Pi, requires minimal resource consumption.
By offloading computationally intensive tasks to an FPGA, the IoT device itself is not
burdened by complex detection mechanisms, allowing for efficient operation even in
resource-constrained environments. Owing to its low interaction design, the honeypot
architecture allows for the deployment of distributed honeypots across various devices in
large IoT networks. This design ensures that the system scales easily while maintaining
its detection capabilities, making it suitable for wide-scale IoT environments, from smart
homes to industrial IoT systems.



IoT 2024, 5 749

5.4.4. Comparative Analysis with Existing Studies

The results of the proposed system were compared with existing research, demonstrat-
ing superior performance across critical parameters, such as detection accuracy, resource
efficiency, adaptability, and scalability.

1. Detection Accuracy: Side-channel analysis [28] achieves high accuracy by analyzing
side-channel data such as power consumption and signal delays. However, this
approach is computationally expensive and not practical for resource-limited IoT
devices. Graph Neural Networks (GNNs) [31], which analyze circuit topologies for
HT detection, are effective but require golden IC reference designs, making them
complex and difficult to apply across heterogeneous IoT environments. The trigger-
based detection mechanism in our system, integrated with a honeypot, offers real-time
detection of HTs without adding significant complexity to the IoT device. Unlike side-
channel analysis, this approach does not require monitoring physical characteristics,
providing a more streamlined solution for IoT environments while still ensuring high
detection accuracy.

2. Resource Efficiency: Techniques using deep learning models (e.g., VGG-Net) [29]
and GNN [31] are effective but are resource-intensive and require significant compu-
tational power and memory, which are often unavailable in IoT environments. Our
solution, which is designed to operate on low-resource platforms such as Raspberry
Pi, is highly efficient. It uses lightweight socket programming for monitoring and
logging attacker interactions while offloading more demanding tasks to an FPGA.
This ensures that IoT devices are not overwhelmed by complex detection processes,
thereby providing a scalable and cost-effective solution.

3. Adaptability to Different Attack Types: Static detection methods such as combina-
torial testing [24] are effective for specific HT designs but are not adaptable to new
or emerging attack vectors. Machine learning-based systems can adapt to evolving
threats but require continuous retraining, which is resource-heavy and not ideal for
IoT environments. The honeypot-based architecture is Trojan-agnostic, making it
adaptable to a wide range of HT designs and attack types. The system is capable of
dynamically detecting and logging abnormal behaviors without the need for constant
retraining, thereby offering a more flexible and efficient solution for rapidly evolving
IoT environments.

4. Scalability: High-interaction honeypots, such as HoneyIoT [37] and RIoTPot [39],
provide deep engagement with attackers but are resource-intensive and difficult to
scale across large IoT networks. Blockchain-based security solutions offer secure com-
munication but struggle with scalability because of their computational requirements.
The low-interaction honeypot design of our system ensures scalability without the
need for significant resources. It can be deployed across large IoT networks while
maintaining high detection capabilities, making it ideal for both small- and large-scale
IoT systems.

6. Conclusions and Future Work
6.1. Main Contribution

This study aims to enhance the security of IoT devices by proposing a novel honeypot-
based architecture for detecting and mitigating hardware Trojans (HTs). The proposed
system, successfully implemented on a Raspberry Pi and integrated with an FPGA, demon-
strated an effective hybrid solution for detecting both triggering and non-triggering HT
attacks while maintaining the operational integrity of IoT devices.

Key findings from the study include the following:

• The honeypot system effectively identified and logged both authorized and unautho-
rized access attempts.
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• The HT detection mechanism proved to be resource-efficient, making it suitable for
deployment in resource-constrained IoT environments.

• Using a low-interaction honeypot design, the system successfully diverted malicious
attempts without imposing a significant overhead on IoT devices.

The implications of this research suggest that hardware honeypots provide a flexible
and robust defense layer against HT attacks, particularly in environments where traditional
detection mechanisms may be too complex or resource-intensive. This study contributes to
the broader field of IoT security by offering an adaptable solution for addressing emerging
hardware-based threats.

6.2. System Limitations and Future Work

Although the implemented system demonstrated significant strengths, it also high-
lights several areas for improvement.

• Scalability: Although the current system performs effectively in the tested scenarios
and is suitable for adaptation to a larger scale, it may encounter challenges when
deployed in larger networks with multiple IoT devices. Future studies should explore
the integration of distributed honeypots and scalable logging mechanisms to manage
larger data volumes and complex attack patterns.

• Machine Learning Integration: Incorporating machine learning algorithms can en-
hance a system’s ability to respond adaptively to evolving attack patterns. By analyzing
historical attack data, machine learning models can predict and preemptively mitigate
new types of attacks, thereby improving the system’s proactive defense capabilities.

• High-Interaction Honeypots: Transitioning to high-interaction honeypots can provide
deeper insights into attacker behavior. These honeypots, which simulate full operating
systems and applications, can capture more detailed data on sophisticated attacks,
thereby providing more comprehensive security strategies.

• User Experience and Usability: Enhancing the user interface to monitor and manage
the honeypot system can improve its usability. Providing intuitive dashboards and real-
time alerts can help security teams respond quickly and effectively to detected threats.

• Interoperability with Existing Security Systems: Ensuring that the honeypot sys-
tem can seamlessly integrate with existing security infrastructure (e.g., firewalls and
intrusion detection/prevention systems) will enhance its effectiveness and facilitate
broader adoption in enterprise environments.

Future research should focus on refining the scalability of the system, integrating more
advanced logging mechanisms, and exploring the application of artificial intelligence to
automate threat detection and response.
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Appendix A

Table A1. Summary of the related work on IoT security.

Reference Method/Technique Strengths of the Study Weaknesses of the Study

Joel et al., 2023 [11] Analysis of security
challenges in IoT smart homes

Comprehensive analysis of
various IoT security

challenges

Limited focus on mitigation
strategies

Blake et al., 2022 [12] Security with blockchain
technology

Innovative use of blockchain
for IoT security

Does not address integration
with other security measures

Alawadhi et al., 2022 [13] Analysis of IoT security risks
for businesses

Focuses on business-related
IoT risks

Lack of technical details on
mitigation

Khanam, 2023 [14] Review of IoT threats and
solutions

Provides a broad overview of
IoT threats

Lacks in-depth analysis of
specific threats

Haris et al., 2023 [15] Discussion on IoT security
and privacy issues

Highlights various security
and privacy issues

Limited empirical data to
support claims

Gupta and Lingareddy,
2021 [16]

Security threats and
mitigations in IoT

Discusses a range of security
threats and solutions

Focuses mainly on theoretical
aspects

Bakshi, 2021 [17] IoT architecture
vulnerabilities

Detailed analysis of IoT
architecture vulnerabilities

Limited focus on practical
solutions

Hromada et al., 2021 [18] Security aspects of IoT Comprehensive discussion on
IoT security protocols

Limited real-world
application examples

Mallik and Jena, 2021 [19] Analysis of IoT security
vulnerabilities

Provides solutions for
common IoT vulnerabilities

Focuses on general rather
than specific vulnerabilities

Amit et al., 2022 [20] Study on DDoS attacks on IoT
devices

Detailed analysis of DDoS
attack methods

Limited focus on preventive
measures

Lightbody et al., 2023 [21] Framework for intrusion
detection in IoT

Innovative use of side-channel
analysis

Limited scalability for large
IoT networks

Mohd Bakry et al., 2022 [22] Security attack study using
Raspberry Pi

Practical demonstration of IoT
attacks

Limited scope with a single
device model

Neto et al., 2023 [23] Real-time IoT attack dataset Provides a comprehensive IoT
attack dataset

Limited focus on mitigation
strategies

Kampel et al., 2022 [24] Detection of HTs using
combinatorial testing

Effective method for detecting
HTs in cryptographic circuits

May not be applicable to all
circuit types

Jain et al., 2021 [25] Survey of HT detection
methods

Comprehensive survey of HT
detection techniques

Limited practical application
examples

Liu et al., 2011 [26] Design of counter-based HT Innovative HT design method Dated methodology, lacks
modern context

Shakya et al., 2017 [27] Benchmarking of HTs Provides a benchmarking
framework for HTs

Limited focus on detection
methods

Tang et al., 2023 [28] HT detection using
adversarial networks High accuracy in HT detection Complex implementation

Dakhale et al., 2023 [29] Detection of HTs using
VGG-Net

Effective use of neural
networks for HT detection Computationally intensive

Mao et al., 2022 [30] HT detection using suspicious
circuit partition

Novel approach to HT
detection May produce false positives

Hassan et al., 2023 [31] GNN-based HT detection High accuracy without a
golden IC reference

Requires complex graph
learning algorithms

Brunner et al., 2024 [33] FSM-based hardware
honeypot

Realistic imitation of original
FSM May not cover all HT types
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Table A1. Cont.

Reference Method/Technique Strengths of the Study Weaknesses of the Study

Wegerer and Tjoa, 2016 [34] MySQL database honeypot Effective in deceiving
database adversaries Limited to MySQL databases

Piggin and Buffey, 2016 [35] Operational technology
honeypot

Provides insights into attacker
methods

Limited scope, focused on
specific technologies

Kibret and Yong, 2013 [36] Dynamic hybrid virtual
honeypot

Combines multiple honeypot
types Complex implementation

Guan et al., 2023 [37] Adaptive honeypot for IoT
using RL

Adapts to evolving threats
using RL High resource requirements

Ellouh et al., 2022 [38] IoT honeypot for zero-day
attacks

Effective against zero-day
attacks

Limited real-world
deployment

Srinivasa et al., 2021 [39] Modular hybrid-interaction
honeypot Flexible and modular design Limited long-term studies

Srinivasa et al., 2022 [40] Comprehensive honeypot
analysis and dataset

Provides extensive data on
attack patterns High complexity in analysis

Xiaoming et al., 2022 [41] Lightweight honeynet for IoT Cost-effective and scalable Limited to lightweight
applications

Algorithm A1. Python Logic Circuit for Hardware Trojan

Input: GPIO pin 10, GPIO pin 12 ▷ Input pins
GPIO pin 18 ▷ Output pin (payload control)
Output: Trigger activation (GPIO pin 18 set to HIGH)
Initialize variables:
input_a, input_b, Counter ▷ 0.
Define logic gates:
Define ANDGate (a, b) ▷ Returns True if a and b are both 1.
Define XORGate (a, b) ▷ Returns True if exactly one of a or b is 1.
While True do:

Check GPIO pin 10
if pin 10 is HIGH then

set input_a to 1
else

set input_a to 0
endif
Check GPIO pin 12
if pin 12 is HIGH then

set input_b to 1
else

set input_b to 0
endif
Logic Operations
if XORGate (input_a, input_b) is True then

increment Counter by 1.
endif
if ANDGate (input_a, input_b) is True then

decrement Counter by 1.
endif

Trigger condition
if Counter is 20 then

call Trigger()
endif



IoT 2024, 5 753

Algorithm A2. Hardware Trojan Architecture in VHDL

Input: A, B ▷Control signals
CLK ▷Clock signal
count ▷Counter value
v ▷Counter Limit value
Output: LEDS, leds ▷ 7-bits binary value
Stage 0: Up-Down Counter ▷ controlled by inputs A and B and synchronized with the CLK signal.
The counter produces the value count.
Stage 1: Comparator ▷ Compare the count value with v
Stage 2: Multiplexer ▷ 2-to-1 multiplexer controls the LEDs.
Logic Computations:
Assign Z = {z0, z1, . . ., z6} ▷ with the corresponding circuit design
Assign LEDS ▷ Z
Begin Process
#based on count, the corresponding LED segments are activated
When count is “000”
Activate leds ▷ “1000000”
When count is “001”
Activate leds ▷ “1111001”
When count = “010”
Activate leds ▷ “0100100”
When count = “011”
Activate leds ▷ “0110000”
When count = “100”
Activate leds ▷ “0011001”
When count = “101”
Activate leds ▷ “0010010”
When count = “110”
Activate leds ▷ “0000010”
When count = “111”
Activate leds ▷ “1111000”
Otherwise
Activate leds ▷ “1111000”
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