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Abstract: The rapid expansion of the Internet of Things (IoT) has steered in a new generation of
connectivity and data-driven decision-making across diverse industrial sectors. As IoT deployments
continue to expand, the need for robust and reliable data management systems at the network’s
edge becomes increasingly critical, especially for time-sensitive IoT applications requiring real-time
responses. This study delves into the emerging research area known as the Internet of Transactional
Things (Io2T) at the edge architecture, where the integration of transactional ACID properties
into IoT devices and objects promises to enhance data reliability and consistency in distributed,
resource-constrained environments. This paper investigates the reliability issues regarding Io2T
applications at the edge and tackles more specifically the service placement problem. A formalized
problem is proposed that aims to minimize the global response time of the Io2T services in edge
infrastructure. The concept of an allele is introduced to address service placement using a hybrid
approach for ordering transactional components. Furthermore, a demonstration is featured using a
smart transportation system as a proof-of-concept.

Keywords: service placement; intelligent edge; allele; Internet-of-Transactional Things; transactional
properties

1. Introduction

The IoT landscape is characterized by an ever-growing number of interdependent
and connected devices (e.g., sensors, actuators) that compile, process, and communicate
large amounts of data in real-time. These devices operate in diverse environments, from
industrial automation to smart cities and healthcare systems, producing data that drives
decision-making processes and improves operational efficiency. However, the surge in
IoT deployments has introduced several challenges, particularly concerning data integrity,
reliability, and consistency. Traditionally, databases with ACID properties (Atomicity,
Consistency, Isolation, Durability) have been the foundation of reliable data management
in centralized systems. ACID properties ensure that database transactions maintain data
integrity in the midst of failures. In the context of IoT, ensuring ACID properties in a
distributed and resource-constrained edge environment presents a unique set of challenges.

The convergence of IoT and edge computing has become pivotal in addressing the
limitations of centralized cloud-based solutions. In IoT applications demanding real-time
responses and marked by mission criticality, the latency introduced by transmitting data to
the cloud is deemed intolerable. Furthermore, data can be processed locally, circumventing
the need for cloud transmission. Edge computing brings computation closer to data sources,
reducing latency and bandwidth consumption while enabling real-time processing and
decision-making [1]. However, edge environments often suffer from network instability,
device failures, and limited computational resources, necessitating innovative solutions to
ensure data reliability and consistency.
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Handling the complexity of service placement within intelligent edge environments
and the diversity of IoT devices present some challenges. The placement of services re-
quires a careful balance between maximizing resource efficiency and meeting the demands
of applications, which becomes even more challenging with the added transactional re-
quirements in Io2T settings. To address these needs, an allele-based approach enables a
novel way of encoding service characteristics and constraints within a genetic algorithm
framework, leveraging alleles as units of functional attributes in the service placement
problem. This allele-based model allows the algorithm to represent and manipulate IoT
service requirements (such as latency constraints, atomicity levels, and resource needs) on
a granular level, optimizing service placement regarding both application needs and edge
infrastructure capabilities. By encoding transactional requirements coupled with resource
constraints, this approach can iteratively evolve service placements to reach an optimal
configuration that minimizes latency.

Transactional properties primarily serve to ensure the consistency and reliability of IoT
applications in the face of failures. In this particular study, we leverage transactional prop-
erties to guide IoT service placement in edge-based infrastructures. Internet of transactional
things (Io2T) refer to a specialized subset of IoT objects that are designed to adhere to the
principles of the ACID model. These objects are equipped with transactional capabilities to
ensure the reliability and integrity of their operations and data exchanges within the IoT
ecosystem. They have the ability to initiate, participate in, or respond as transactions. The
paradigm shift to internet of transactional things results from the empowerment of things
with transactional properties, enabling the delivery of reliable and fault-tolerant things.
In an earlier work [2], we presented the following properties, including pivot, retriable,
compensable, compensable-retriable, and pivot-retriable, and examined minutely the va-
lidity of binding these properties to the atomic features of things. Given that monitoring,
actioning, and communicating are key functionalities of things, service placement should
be guided by the transactional properties applicable to each thing’s feature.

In this study, we consider two atomicity levels: (i) strict atomicity (StrictA) and (ii) re-
laxed atomicity (RelaxA). StrictA asserts the success of a specific composition of a thing’s
features only if all features succeeded within the same composition. Alternatively, the
composition is considered as a failure, necessitating the compensation of all the successful
features. RelaxA allows the success of the overall thing’s feature combination even if one or
more features are not successfully executed. The thing’s features that do not have an impact
on the success of the overall application are referred to as non-critical. Therefore, all critical
features must succeed to ensure the overall success of the root application. Despite the
noteworthy studies [3–6] that address the reliability issues in the context of Io2T applica-
tions, to the best of our knowledge, none of these works exploits transactional properties to
tackle the aforementioned concerns in the realm of edge computing. The existing literature
largely overlooks the integration of transactional properties into placement algorithms
within edge environments and proposes mainly naive resolution approaches for service
placement based solely on infrastructure constraints.

The Io2T at the edge architecture represents an exciting frontier in IoT research. This
bring us to the concept of intelligent edge. The intelligent edge represents the convergence
of several technologies and practices to enable data processing, analytics, and decision-
making closer to the data source or the network’s edge, as opposed to relying solely on
centralized cloud servers. As a result, edge computing can reduce latency and response
time, lower the computational resource usage of devices, and enable more informed
context/location-aware decisions [1].

In spite of the advantages associated with intelligent edge computing, it remains a
contemporary subject of research and encounters numerous challenges. One prominent
challenge pertains to resource management, given the large-scale, distributed, dynamic,
and heterogeneous nature of edge environments [7]. The crux of our interest lies in solving
the service placement problem, a facet of resource management focused on determining
optimal locations [8–11]. To accomplish this aim, we probe into the following research
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questions that specifically address reliability issues in the management of Io2T objects at
the edge: (i) How can edge computing mapping models be optimized to better accommo-
date the requirements of reliability-sensitive applications in Io2T? (ii) How can decisions
regarding service placement be formulated to deploy multiple Io2T services within an
edge computing infrastructure while adhering to specific application semantics and infras-
tructure constraints? In the face of dynamic application loads, how can service placement
decisions be reevaluated, considering the costs associated with migrations of Io2T services?

In this paper, we initially tackle the service placement issue within a predefined edge
computing setting where all decision-making information is predetermined and remains
constant. The service placement problem can be formalized as an optimization problem,
integrating considerations of edge infrastructures and various application attributes, in-
cluding resource needs and transactional constraints. The aim of this formalized problem
is to minimize the collective response time of Io2T services within the edge infrastructure.
The key contributions of this study are outlined as follows: (i) Design a mapping model
involving Io2T components to place across multiple elements defined in the edge infras-
tructure, (ii) formalize the service placement problem as an optimization problem with an
objective to minimize the global latency of the Io2T application, (iii) introduce a hybrid
resolution approach for Io2T service placement in the edge, (iv) provide two heuristics for
transactional components and edge nodes ordering, and (v) conduct experimental use case
scenarios based on a smart traffic system.

The remainder of this paper is organized as follows. Section 2 provides a summary of
the pertinent literature and previous works. Section 3 formulates the service placement
problem and the mapping model. Section 4 details the proposed hybrid approach for
Io2T service placement in edge infrastructures and exhibits the two heuristics for ordering
components and edge nodes. Section 5 presents experimental scenarios demonstrating
the proposal. Section 6 summarizes key findings and delineates potential directions for
future research.

2. Literature Review

Our survey of the literature uncovered a scarcity of research works specifically dedi-
cated to exploring IoT reliability at the edge [12–14]. To solve the reliability issues, some
research [3–6] investigates the integration of transactional properties into IoT devices and
objects. For instance, study [3] underscores the significance of transactions in enhancing
self-healing of IoT applications. The authors introduced the notion of responsible things,
a concept that amalgamates transactional and self-awareness properties. However, these
works do not directly cope with the reliability concerns prevalent in edge environments
and do not produce a resolution strategy for service placement in the IoT.

For the Io2T service placement problem, we have investigated many service placement
algorithms, such as metaheuristics (e.g., genetic algorithm, particle swarm optimization, ant
colony optimization), exact algorithms (e.g., mixed-integer linear programming, exhaustive
search), and heuristics for component ordering.

Study [15] suggests subdividing the service placement problem into a series of sub-
problems, with each dedicated to finding a placement solution that is optimal for an
individual component. The objective is to minimize the overall latency associated with
storing and retrieving data. Paper [16] provides an ILP solver to guarantee the QoS
requirements and minimize the overall latency. As long as exact algorithms are concerned,
obtaining a precise solution can be exceedingly time-intensive and impractical for extensive
problems, such as those found in edge environments. Consequently, the predominant
emphasis in the literature is on developing rational approximations, heuristics, or meta-
heuristic approaches. These methods enable the computation of suboptimal solutions
within a shorter timeframe.

Different meta-heuristic algorithms are outlined in the existing literature. For instance,
the authors in [14] proposed RAP-G, a genetic algorithm that considers the reliability of
network links and distributes services between the cloud and the edge. Another work [17]
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proposed ACO to make placement decisions. Based on the probability calculated for the
mapping of each component to a specific device, the proposed metaheuristic generates
iteratively placements with respect to the device’s resources and bandwidth consumption.
However, the performance of some metaheuristics can be sensitive to the initial solution
provided. The algorithm might converge to different solutions based on the starting point,
and finding a good initial solution can be non-trivial.

From another perspective, heuristics often generate solutions quickly, making them
suitable for real-time applications where fast decision-making is essential. Although
metaheuristics yield better results than heuristics, it may also require more iterations and
computational time to converge to high-quality solutions. As an example of heuristics
approaches, we highlight the work [8], which employs two heuristics, namely fail first and
fail last, to determine the optimal resource in terms of physical proximity and identify the
devices capable of supporting them. Study [18] utilize a first fit strategy in a decreasing
fashion to place services within device communities, subsequently prioritizing services
with the most immediate deadlines. Paper [19] perform sequential quadratic programming
to minimize computational complexity and the response time. The authors in [20] propose
three heuristics to minimize the average response time based on the notion of an anchor. The
work in [21] minimizes end-to-end latency based on computational latency and network
transfer latency. Paper [22] gives priority first to the resource that is in short supply
followed by the one closer to the source device. Study [23] propose two heuristics that
rank tasks based on their deadlines and rank devices according to the minimum remaining
computation capacity. The authors in [12] provide a proactive service placement based on
latency and reliability constraints.

The majority of the studied works consider different metrics, such as latency, band-
width, application-specific metrics, end-to-end processing delay, energy consumption, and
battery life cycle without considering application semantics in terms of transactional prop-
erties. Placement decisions for each device-related component should be done according to
its transactional properties (pivot, compensable, retriable, etc.). Additionally, each metric
in most works is envisaged solely as a unique objective. From another perspective, the
spatial dependencies are marginally addressed in the selected works. Considering an I2oT
application, which involves different devices with multiple interdependent functionalities
(sensing, actuating, communicating), the consideration of their locations is imperative when
deciding on placements. Furthermore, due to a substantial number of components to be
placed in an infrastructure with devices having limited resources, these methods can result
in extended execution times and simultaneously do not take result quality into account.

Despite significant progress in IoT service placement, the existing literature largely
overlooks the application of transactional properties (such as pivot, compensable, and
retriable) into placement algorithms within edge environments. Current research pri-
marily addresses service placement based on resource availability, latency, and energy
consumption, often missing the transactional integrity essential for reliable IoT operations.
Furthermore, placement decisions in most studies focus on single objective metrics, dis-
regarding the application specific semantics that require multi-objective optimization to
guarantee both reliability and efficiency. Thus, a significant gap remains in developing
comprehensive placement strategies that support both transactional properties and the
demands of IoT applications at the edge.

3. Problem Formulation
3.1. Mapping Model

Addressing a placement problem entails the process of making decisions about the op-
timal mapping of a set of software components onto a specified set of hardware components.
The exhaustive range of conceivable mappings, or placements, constructs a comprehensive
search space. Within this expansive search space, the pivotal task is to meticulously select a
singular placement that best aligns with the specified criteria and requirements.

Formally, we define the service placement problem as follows:
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Given a set of C Io2T software components that requires resources from a collection
of N edge nodes, the objective is to find a mapping M: C→ N that minimizes the total
response time while satisfying resource constraints and ensuring reliable communication
among the components. The response time for a service ci ∈ C when mapped to an edge
node nj ∈ N is defined as follow:

RT
(
ci, nj

)
= LTCPROC

(
ci, nj

)
+ LTCNTW

(
ci, nj

)
(1)

Here,
LTCPROC denotes the processing latency of the component on the selected edge node.
LTCNTW represents the network latency associated with the binding to the selected

edge node.
The service placement problem involves the following:

• Resource consumption of a group of IoT devices encapsulating a set of software
functionalities to be placed, which necessitate and utilize the resources provided by
the infrastructure.

• A collection of edge nodes that offer resources for hosting Io2T services.

Similarly, an edge infrastructure encompasses two types of hardware components:

• Resource edge servers/nodes that furnish processing and storage resources.
• IoT sensors, actuators, etc. that deliver sensing, actuating, and communicating fea-

tures and provide cognitive functionalities (e.g., learning, recognizing, reasoning) as
outlined in a previous work [2].

Additionally, the infrastructure comprises bindings that allow communication and
data exchange between services (i.e., software components) and links that interconnect de-
vices (i.e., hardware components), facilitating the provision of network resources. Through-
out the remainder of this paper, we refer to a component as any Io2T service or soft-
ware component.

Deriving from this model specification, an Io2T application involving multiple services
can be modeled as a graph, where each vertex symbolizes IoT devices encapsulating
components to be placed, and the edges indicate binding between them. The same logic
can be applied to an infrastructure that is modeled as a graph, where vertex are edge nodes
and edges are links. A placement maps each component onto an edge node. The mapping
model is illustrated in Figure 1.
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The mapping model defines the features of each specified element in the service
placement problem as follows:

• PROCReq, indicating the CPU, RAM, and storage capacities required by a component.
• A neighbored area (NA), representing a geographical area comprising a set of edge

nodes that align with the requirements of components based on various edge node
characteristics (e.g., physical proximity to the IoT device, environmental constraints,
reliability, security, etc.).

• BDWREQ designates the bandwidth requirement for a specific link.
• LTCNTW represents the maximum acceptable network latency for data transmission

between components through a specific binding, ensuring timely communication in
IoT applications.

• LTCPROC denotes the minimal processing latency of a component when executed
on a specific edge node, which is critical for understanding the response time for
service requests.

3.2. Objective Function

As mentioned earlier, the primary goal of this study is to optimize the reliability of
mission-critical and time-sensitive Io2T applications, with a special focus on minimizing
response times. The response time for a given request encompasses both processing delay
within components and communication delay for message transfer. A service placement
problem can yield various possible solutions, from which only one can be nominated as
the optimal placement decision. As depicted in (2), the selection of this solution is guided
by the objective function below the mean weighted global latency (MWGoL), which is
designed to minimize the response times of Io2T applications.

• CumulativePROC indicates the cumulative sum in terms of processing capacity require-
ments for all the specified components within each transactional thing.

• CumulativeBDW indicates the cumulative sum in terms of bandwidth requirements
for all the predefined infrastructure bindings.

• LTCPROC represents component processing latency on a particular edge node vis-à-vis
the assessed solution.
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• LTCNTW represents network latency for a specific binding as per the analyzed solution.

Min : MWGoL = ∑
component

component.
(

PROCReq
)

CumulativePROC
× node.(LTCPROC) + ∑

binding

binding.
(

BDWReq
)

CumulativeBDW
× binding.(LTCNTW) (2)

Given that the response time for a given request encompasses both processing delay
within components and communication delay for message transfer, the goal of the objective
function is to minimize the global latency of the Io2T application represented by each
component processing latency and the associated binding network latency. Considering
that a component with a high processing requirement (PROCReq) can have a substantial
influence on application’s execution delay, the processing latency for each component on a
specific edge node (i.e., LTCPROC) is adjusted by a ratio of its PROCReq in relation to the
cumulative processing requirements. Similarly, given that a high bandwidth requirement
(BDWReq) for a specific binding can significantly affect an application’s communication
delay, the network latency for each binding (i.e., binding.LTCNTW) is adjusted by a ratio of
its BDWReq relative to the total cumulative bandwidth. By minimizing MWGol, we mitigate
global latencies characterized by substantial bandwidth and resource consumption, thereby
resulting in reduced Io2T applications’ response times. The ideal resolution to an Io2T
service placement problem involves selecting and returning the solution that exhibits the
minimal MWGoL.

4. Hybrid Approach for Io2T Service Placement
4.1. Resolution Strategy

Based on the investigations conducted in the literature review concerning resolution
approaches for the service placement problem, we found that first fit (FF) algorithm would
suit our placement problem as a basic resolution strategy. For a placement problem in-
volving c components and n edge nodes, the search space for this problem consists of
nc potential placements. The first fit (FF) approach, as a fundamental strategy, evaluates
edge nodes for each component in a random order. Likewise, components are randomly
ordered for consecutive placement. Consequently, FF lacks assurance regarding the min-
imum MWGoL values for the solutions it returns or the required number of tests. This
unpredictability can lead to diminished result quality and extended execution times. In
addition, transactional requirements are not taken into account for component placement.
To overcome FF’s drawbacks, we propose two heuristics manipulating edge nodes and
components order designed to optimize the aforementioned criteria while still maintaining
the basic principle of placing IoT devices on edge nodes with available resources. Here is a
refined algorithm for Io2T edge node placement as depicted in Figure 2, which illustrates
succinctly the enhanced FF hybrid approach for Io2T service placement:

• Initialize a list of edge nodes and their available resources (e.g., memory, CPU, network
bandwidth, storage).

• Initialize a list of IoT devices with their resource requirements and specific placement
requirements.

• Sort the list of IoT devices/transactional things in a certain order following the first
heuristic for component ordering (e.g., by resource requirements, transactional con-
straints, or criticality). The transactional requirements per thing are deducted from
the atomicity level of the composite transactional thing (C2T) according to the IoT
application semantics. In our approach, we consider two levels of atomicity: strict
atomicity and relaxed atomicity.



IoT 2024, 5 792IoT 2024, 5, FOR PEER REVIEW 8 
 

 

 
Figure 2. The enhanced first fit hybrid approach for Io2T service placement. 

• After initializing a list of edge nodes and their available resources, the process will 
first attempt to place each IoT device on an existing edge node. If no suitable edge 
node is found after evaluation, we consider creating a new edge node to accommo-
date the IoT device. 

• Update the available resources of the selected edge node to reflect the resource allo-
cation. 

• If no suitable edge node is found, create a new edge node if allowed, and place the 
IoT device on the newly created node. 

• Continue this process until all IoT devices are placed. 
The proposed strategy encompasses many enhancements and considerations: 

• Resource Optimization: This algorithm allows for a more sophisticated evaluation of 
edge node resources, considering CPU, memory, storage, and network bandwidth. 
It selects an edge node that best matches the device’s requirements, helping to opti-
mize resource utilization. 

• Priority and Order: The algorithm introduces the concept of sorting IoT devices 
based on priority, resource requirements, or other criteria, enabling more intelligent 
component placement. 

• Placement Requirements: It checks whether the IoT device has specific placement re-
quirements, such as geographic location, proximity to other devices, or security con-
siderations. 

• Resource Allocation: The algorithm tracks and updates the available resources on 
each edge node, preventing resource contention and ensuring efficient allocation. 

• Dynamic Scaling: It has the ability to create new edge nodes when necessary, allow-
ing for dynamic scaling of the infrastructure to accommodate new devices. 

• Transactional Constraints Handling: Consider incorporating constraints handling, 
like avoiding overloading specific edge nodes or ensuring that critical devices receive 
priority placement. 
This enhanced algorithm is more sophisticated than the basic first fit approach and is 

designed to make better placement decisions based on a wider range of criteria and con-
straints. It can be adapted to specific IoT deployment scenarios, depending on the priori-
ties and requirements of the use case. 

4.2. Atomicity-Based Transactional Components Ordering 
In order to align more effectively with the objective function, a component that exerts 

a greater influence on MWGoL will be granted privilege, indicating it should be primary 

Figure 2. The enhanced first fit hybrid approach for Io2T service placement.

For each IoT device in the sorted list:

• Sort the list of edge nodes in a certain order following the second heuristic for edge
node ordering (e.g., by node capacity, physical proximity).

• Evaluate the available resources of the selected edge node to ensure it can accommo-
date the IoT device without resource contention.

• After initializing a list of edge nodes and their available resources, the process will
first attempt to place each IoT device on an existing edge node. If no suitable edge
node is found after evaluation, we consider creating a new edge node to accommodate
the IoT device.

• Update the available resources of the selected edge node to reflect the resource allocation.
• If no suitable edge node is found, create a new edge node if allowed, and place the IoT

device on the newly created node.
• Continue this process until all IoT devices are placed.

The proposed strategy encompasses many enhancements and considerations:

• Resource Optimization: This algorithm allows for a more sophisticated evaluation of
edge node resources, considering CPU, memory, storage, and network bandwidth. It
selects an edge node that best matches the device’s requirements, helping to optimize
resource utilization.

• Priority and Order: The algorithm introduces the concept of sorting IoT devices
based on priority, resource requirements, or other criteria, enabling more intelligent
component placement.

• Placement Requirements: It checks whether the IoT device has specific placement
requirements, such as geographic location, proximity to other devices, or security
considerations.

• Resource Allocation: The algorithm tracks and updates the available resources on each
edge node, preventing resource contention and ensuring efficient allocation.

• Dynamic Scaling: It has the ability to create new edge nodes when necessary, allowing
for dynamic scaling of the infrastructure to accommodate new devices.

• Transactional Constraints Handling: Consider incorporating constraints handling,
like avoiding overloading specific edge nodes or ensuring that critical devices receive
priority placement.

This enhanced algorithm is more sophisticated than the basic first fit approach and
is designed to make better placement decisions based on a wider range of criteria and
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constraints. It can be adapted to specific IoT deployment scenarios, depending on the
priorities and requirements of the use case.

4.2. Atomicity-Based Transactional Components Ordering

In order to align more effectively with the objective function, a component that exerts
a greater influence on MWGoL will be granted privilege, indicating it should be primary
placed. For instance, a component linked by multiple bindings with substantial bandwidth
requirements could significantly elevate MWGoL if placed at a distant location. Therefore,
a component’s impact on MWGoL is gauged by its bandwidth and processing capacity
requirements as well as their criticality for the overall Io2T composition success. In light
of all these considerations, components should be ranked in descending order based on
their bandwidth requirements and processing capacity constraints with respect to their
transactional properties and then placed one by one.

Components ordering depends on the atomicity level of the IoT application, which
dictates the transactional properties of each IoT device:

• If the required atomicity level is strict atomicity, pivot components are placed first,
followed by compensable and retriable ones.

• If the atomicity level is relaxed atomicity, critical components are placed first, then non-
critical ones following the same priority order for pivot, compensable, and retriable
components.

Algorithm 1 describes the transactional component ordering heuristic called ConstAL
driven by the resource constraints and the atomicity level of each IoT device.

The transactional component ordering algorithm ranks IoT devices based on scores
reflecting their capacity, latency, and transactional requirements, using an AtomicityLevel
parameter to adjust the scoring criteria. Each IoT device is first assessed for Bandwidth-
Score (latency) and CapacityScore (processing capability). If the atomicity level is strict, the
algorithm calculates a TotalScore that combines these with weighted scores for essential
transaction types, including PivotScore (mandatory operations), CompensableScore (re-
versible operations), and RetriableScore (retriable operations). For a relaxed atomicity level,
the TotalScore differentiates further by adding critical and non-critical versions of these
scores, reflecting more flexible consistency requirements. This structured scoring enables
the selection of IoT devices best suited to meet the application’s transactional demands,
balancing performance, and consistency. The final scores for each device are stored in a
dictionary, offering a ranked view of device suitability for specific tasks.

Algorithm 1: Transactional Component Ordering

Input: AtomicityLevel, IoTDevices
Output: TotalScore
For each IoTDevice in IoTDevices do

BandwidthScore← CalculateDistanceScore(MaxLatency)
CapacityScore← CalculateCapacityScore(MinProcessingCapacity)
IF AtomicityLevel is Strict THEN

TotalScore← (BandwidthWeight * BandwidthScore) + (CapacityWeight * CapacityScore) +
(PivotWeight * PivotScore) + (CompensableWeight * CompensableScore) +
(RetriableWeight * RetriableScore)

IF AtomicityLevel is RELAXED THEN
TotalScore← (BandwidthWeight * BandwidthScore) + (CapacityWeight * CapacityScore) +

(CriticalPivotWeight * CriticalPivotScore) + (CriticalCompensableWeight *
CriticalCompensableScore) + (CriticalRetriableWeight * CriticalRetriableScore) +
(NonCriticalPivotWeight * NonCriticalPivotScore) + (NonCriticalCompensableWeight *
NonCriticalCompensableScore) + (NonCriticalRetriableWeight * NonCriticalRetriableScore)

Scores[IoTDevice]← TotalScore
End
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4.3. Allele-Based Edge Node Ordering

In the edge node ordering step, for each component, we will calculate its allele, which
refers to the geographically closest edge node with computing capacity compliant to the
resource requirements of that component. Then, the nodes are ordered accordingly.

An allele refers to one of the gene’s variant forms that exist at a specific position on a
chromosome. As segments of DNA, genes that code for distinct characteristics and specific
traits come in pairs, with one allele inherited from each parent. Alleles can vary in terms of
their specific DNA sequence. By drawing an analogy to genetic terminology, we use the
concept allele to define a potential edge node that would minimize our objective function in
order to find the first fit edge node to component test ordering. In our edge node ordering
approach, a component has two alleles in initial placement: (i) a recessive allele that will be
used as an anchor to determine the ordered list of other edge nodes, and a dominant allele,
which is the first selected edge node for component placement.

Specifically, an edge node that best minimizes MWGoL is granted higher priority in
the placement sequence. Through the determination of a component’s allele that represents
the nearest edge node to a central node of the IoT device network communication while
accounting for node capacity to host a component, we exploit the allele of each component
to establish the testing order of edge nodes for the placement of the component.

The proposed heuristic for edge node ordering determines first the component’s allele,
then calculates a score that considers node capacity and network latency relative to a
component’s allele, and sorts the edge nodes accordingly. The scoring mechanism can be
adjusted based on any specific optimization goals, such as minimizing communication
latency, maximizing load balancing, or optimizing energy consumption.

To calculate a score for alleles (i.e., edge nodes that are in the proximity of the IoT device
central node while considering minimal latency and approximate processing capacity), we
use a weighted scoring algorithm. This algorithm can help prioritize edge nodes based on
both distance and processing capacity. The central node is associated with the edge node
that reduces the average network latency for communication with the IoT device.

Algorithm 2 exhibits the edge node ordering heuristic called ALLele. The edge node
ordering algorithm aims to assign IoT devices to edge nodes based on proximity and
processing capacity, optimizing resource usage and meeting service-level constraints. It
begins by identifying a central reference node for all IoT devices. For each device, it finds
the nearest edge node (stored as an allele) and calculates a CapacityScore to determine
which node can best meet the device’s processing needs. Once the best alleles are selected,
the algorithm loops through each edge node to compute two scores: DistanceScore (based
on node-to-device latency) and CapacityScore (based on processing capacity). These scores
are combined into a TotalScore using weighted factors. Each edge node’s TotalScore is
stored in a dictionary, ranking nodes by suitability for hosting IoT devices. The algorithm
then returns this ranking, facilitating the optimal placement that minimizes resource usage
while ensuring performance requirements are met.

It is important to note that an IoT device/component with a core function that is
compensable and/or retriable may require additional processing power and capacity
compared to a device with a simpler function. A compensable function typically involves
error detection, correction, and recovery mechanisms. In case of potential failures, the
device may need to take corrective actions to ensure that the task is completed successfully.
This can involve additional processing overhead. A retriable function means that the
device can attempt the task multiple times in case of failure. Each retry attempt consumes
resources, and the device needs to keep track of the number of retries and manage the retry
logic; hence, it can increase resource usage.

IoTDevice represents the component for which we intend to calculate the scores.
EdgeNodes is a list of available edge nodes, each is associated with attributes like dis-
tance and processing capacity vis-a-vis a specific allele for the IoTDevice. NearestN-
ode(CentralNode) delivers edge nodes in the vicinity of the IoT device that minimizes
LTCNTW to the central node. The set of the returned edge nodes are located in the neigh-
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bored area of the IoT device. CalculateDistanceScore and CalculateCapacityScore are
functions that calculate scores based on distance and processing capacity, respectively.
DistanceWeight and CapacityWeight are weights assigned to distance and capacity scores
to balance their contributions to the total score. MinProcessingCapacity represents the
minimum processing capacity required for the IoTdevice/allele. MaxLatency represents
the maximum tolerable latency for the IoT device’s allele.

Algorithm 2: Edge Node Ordering

Input: IoTDevice, EdgeNodes
Output: Scores

getAllele (IoTDevice)
center← infrastructure.centerNode(app.IoTDevices())
for each IoTDevice do

alleles[IoTDevice]← IoTDevice.NearestNode(CentralNode)
for each allele do

CapacityScore← CalculateCapacityScore (allele, IoTDevice, MinProcessingCapacity)
allele← calculateAllele(alleles, CapacityScore)

return allele // with High CapacityScore
For each EdgeNode in EdgeNodes do

DistanceScore← CalculateDistanceScore (Allele, EdgeNode, MaxLatency)
CapacityScore← CalculateCapacityScore (Allele, EdgeNode, MinProcessingCapacity)

TotalScore← (DistanceWeight * DistanceScore) + (CapacityWeight * CapacityScore)
Scores[EdgeNode]← TotalScore

End For
Return Scores

End

Prior to testing edge nodes for component placement, ALLele ranks edge nodes in
descending order based on a score-weighted function that considers network latency and
processing capacity relative to the component’s allele. The algorithm calculates scores for
each edge node based on distance and processing capacity, combines these scores with
appropriate weights, and returns the scores, which can then be used to prioritize edge
nodes for hosting the IoT device based on their suitability.

Allele-based edge node ordering aims to optimize the allocation of computing and
processing tasks in edge environments by strategically designating certain nodes as alleles
based on their roles, resources, and network characteristics. This contributes to improve
the reliability of the edge computing network, especially in scenarios where low latency
and reliable data processing are critical, such as in Io2T applications.

5. Experiments
5.1. Case Study

The following use case is centered around the reliable placement of a smart traffic
IoT application. In this scenario, a smart city employs a sophisticated traffic management
system that utilizes various sensors and actuators to optimize traffic flow, reduce congestion,
and enhance safety. Smart traffic mainly involves the following key components:

• Traffic Flow Sensors: These sensors are embedded in the road surface and at intersec-
tions to monitor the speed and density of traffic.

• Vehicle Presence Sensors: These sensors are installed at traffic signals and pedestrian
crossings to detect the presence of vehicles and pedestrians.

• CCTV Cameras: High-resolution cameras positioned at key points to monitor traffic
conditions and capture incidents.

• Weather Sensors: These sensors measure weather conditions like temperature, humid-
ity, rainfall, and visibility.
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• Smart Traffic Lights: The lights are equipped with actuators to adjust signal timing
based on real-time traffic data.

• Variable Message Signs: Digital signs that display real-time traffic updates and alter-
nate routes to drivers.

• Traffic Management Center: A centralized control hub that collects data from all
sensors, cameras, and weather sensors and makes real-time decisions.

In terms of reliability, we pinpoint instances highlighting the significance of integrating
transactional properties to the execution behaviors of specific things:

• Traffic flow, vehicle presence and weather sensors, and cameras are considered as
retriable entities. Likewise, the reliability of cameras ensures successful streaming
across several retry attempts.

• Smart traffic lights will be triggered repeatedly to reinstate traffic, underlining the
traffic light’s compensable nature.

• Variable message signs are responsible for providing real-time information to drivers.
This is accomplished in conjunction with alternative communication methods. Con-
sequently, the failure of the variable message signs is not a significant issue and is
therefore considered pivot.

• Smart traffic lights and CCTV cameras are considered as critical entities; hence, each
traffic point must be equipped with these types of devices.

The infrastructure for this use case includes cloud, edge servers (ES), edge nodes (EN),
and IoT devices. Devices such as sensors, cameras, and screens are wirelessly connected
through gateways at each traffic point. There are two main types of appliances: cameras that
offer image-capturing services and screens that provide display services. An illustration of
the infrastructure is presented in Figure 3. Every traffic point is furnished with a camera, a
screen, and a smart traffic light. Traffic point 2 also has weather and traffic flow sensors.
Traffic point 3 also has weather and vehicle presence sensors.
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5.2. Evaluation

To carry out the evaluation process, we developed scripts that generate the inputs for
placement algorithms, notably, the infrastructure model and application semantics. Each
edge node provides specific RAM, CPU, and storage resources as shown in Table 1. We
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display in Table 2 the specified ranges for bandwidth and network latency corresponding
to the category of each link.

Table 1. Maximal capacity of each infrastructure device type.

Infrastructure Devices Max CPU (GFlops) Max RAM (GB) Max Storage (GB)

EN 3 6 400

ES 200 600 6000

Cloud ∞ ∞ ∞

Table 2. Capacity ranges of each infrastructure link type.

Infrastructure Links LTC (ms) BDW (MBps)

IoT device—Gateway 1∼7 0∼2000

EN—ES 15∼30 0∼200

ES—ES 5∼15 0∼2000

Cloud—ES 40∼200 0∼2000

Following the Io2T service configuration, each component functionality requires
distinct storage and processing resources. The resource demands for each component
according to the IoT device are presented in Table 3. Additionally, resource requirements in
terms of each binding’s communications are documented in Table 4.

Table 3. Capacity requirements of each IoT device as per component functionality.

IoT Devices CPUREQ (GFlops) RAMREQ (GB) StorageREQ (GB) NA

Weather Sensor 0.1 0.1 0 Traffic Point 2
Traffic Point 3

Camera 0.3 0.3 20 Infrastructure

Traffic Light 0.5 0.5 20 Infrastructure

Screen 0.1 0.2 0.1 Infrastructure

Vehicule Presence Sensor 0.2 0.2 0 Traffic Point 3

Traffic Flow Sensor 0.2 0.2 0.1 Traffic Point 2

Table 4. Network resource requirements of each binding type.

Iot Devices Binding LTCREQ (ms) BDWREQ (MBps)

Weather Sensor->-Retrieval Comp 25 0.1

Camera->-Recognition Comp 25 0.6

Traffic light->-Reasoning Comp 50 0.01

Screen->-Recommender Comp 25 0.01

Vehicule Presence Sensor->-Retrieval Comp 25 0.3

Traffic Flow Sensor->-Retrieval Comp 50 0.1

We conducted an evaluation of different placement algorithms, namely, first fit (FF),
ant colony optimization (ACO), and mixed integer linear programming (MILP) compared
to the enhanced first fit introducing the heuristics ConstAl and ALLele. We adapted the
code of these algorithms to suit our specific case requirements, allowing a more tailored
comparison in our evaluation. Each algorithm is assessed based on response time dealing
with the same placement problem. A battery of ten tests is carried out to capture the
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response time resulting from the random order of components, which displays the optimal
placement decision. Furthermore, in order to explore the spectrum of resource capacities
provided in Table 2, we consider ten generated placement problems. The testbed was
conducted under the following environment configuration: 3.50 GHz CPU, 16 GB RAM,
and a Linux operating system. Service placement algorithms are implemented using
JAVA 11. A smart traffic management (STM) application is generated based on the SimGrid
simulation platform [24]. Response times of each placement solution are obtained according
to the initial placement problem with the following specifications: 1 cloud, 2 edge servers,
3 gateways, 26 edge nodes, and 52 IoT devices. The proposed algorithm is evaluated under
the strict and relaxed atomicity contracts (i.e., ConstSAL, ConstRAL).

Figure 4 exhibits the obtained response times according to MWGol values. The results
show a positive correlation for the proposed heuristics up to 0.928, which assesses the
effectiveness of the objective function in achieving the goal of minimizing response time.

FF may not always result in optimal placements, as it prioritizes the first available
slot without considering global optimization. This can lead to suboptimal placements
and potentially higher response times (up to 2.15 s). ACO has the potential to discover
more optimal placements by considering a combination of exploration and exploitation.
However, it takes longer to converge to a solution, but the resulting placement leads to lower
response times (up to 1.56 s) compared with FF. MILP considers a more comprehensive
set of constraints and objectives, leading to placements that minimize response times
(up to 0.78 s). However, solving MILP problems can be computationally expensive and
may not scale well for large and dynamic environments. ConstSAL-ALLele outmatches
ACO and FF as it enacts optimal component ordering before the service placement phase.
It displays 30% lower response times compared with ACO (up to 1.09 s). ConstRAL-
ALLele enhances ConstSAL-ALLele since it considers non-critical components for optimal
placement decisions. Compared with MILP, ConstRAL-ALLele improves response times
(down to 0.45 s) considering that it reduces the search space among the available alleles.
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Figure 5 illustrates the average placement latency across different placement algo-
rithms for varying MWGol values. This figure highlights the latency differences among al-
gorithms, with ConstRAL-ALLele demonstrating the lowest latency, followed by ConstSAL-
ALLele and MILP, indicating their effectiveness in reducing placement time under various
conditions.
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6. Conclusions

This work tackles the service placement problem in edge infrastructure for Io2T
applications. The problem involves determining where to deploy specific IoT transactional
components within the edge infrastructure to optimize various metrics, with a primary
focus on reliability. Considering the reliability requirements of each component and
determining optimal placement to maximize system’s availability are crucial.

As mentioned previously, this work deals with initial component placement involving
placement decisions for an infrastructure without any previously placed Io2T application.
To cope with this problem, the ensuing findings are a notable aspect of this study: (i) a
model for the transactional component placement problem in edge infrastructure, (ii) a
comprehensive approach to component placement based on atomicity levels and a wide
range of constraints, and (iii) two proposed heuristics combined with each other (ConstAL,
ALLele) as enhancements to service placement algorithms.

This work has practical implications across domains like healthcare and smart cities,
where improved edge service placement enhances reliability and response times, reducing
downtime risks and supporting refined SLAs for IoT services.

In light of the current investigation into Io2T service placement within edge infras-
tructure, several avenues for future exploration emerge. We intend to (i) study advanced
algorithms and techniques for dynamic adaptation of transactional component placement
in response to changing workloads, network conditions, and resource availability; and
(ii) develop multi-objective optimization function that consider not only latency but also
energy efficiency, cost-effectiveness, and other key metrics to achieve a well-balanced
edge infrastructure.
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