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Abstract: In the Internet of Things (IoT) domain, vast numbers of smart devices are interconnected,
generating large volumes of data requiring advanced management mechanisms. One major challenge
in smart environments is the ability to accurately distinguish and categorize the various types
of objects within these systems. To address this issue, the study introduces a recurrent neural
network (RNN) model designed for classifying data from smart home devices. Using a dataset from
Kaggle, the research outlines the processes of data collection, loading, normalization, and model
development. The RNN, enhanced with long short-term memory (LSTM) layers, was trained and
evaluated, showing notable improvements in training and validation accuracy over ten epochs. The
model achieved a test accuracy of 83.25%, a loss of 35.4%, a precision of 85%, and a recall of 81%. The
evaluation of the model on the test set includes a detailed analysis using ROC curves, area under
the curve (AUC) scores for multi-class classification, and a confusion matrix. With an AUC score
of 0.9896, the model demonstrated exceptional performance in accurately classifying IoT device
categories. These results suggest that the LSTM-equipped RNN offers strong learning efficiency and
generalization, making it a highly suitable approach for IoT device classification. Additionally, the
article explores the concept of IoT and reviews recent advancements in using deep learning models
across various IoT sectors, including smart homes, industrial systems, and healthcare. Future research
could aim to improve the model’s real-time processing abilities and scalability and incorporate a
wider variety of IoT data types to enhance its practical applications and expand its utility across more
IoT environments.

Keywords: the Internet of Things (IoT); smart objects; recurrent neural network (RNN); long short-term
memory (LSTM)

1. Background

The Internet of Things (IoT) connects billions of physical devices or individuals to the
Internet and has become a trendy and innovative technology over the past decade [1]. These
physical devices are known as “things” or “objects” [2]. This intelligent methodology uses
various protocols to exchange information through sensing devices. It expands the Internet,
enabling the identification, location, and tracking of things. This approach allows for the
development of small-scale devices with unique identification and computing capabilities,
embedded with sensors and actuators and connected through wireless and wired sensor
networks. The main characteristics of IoT include:

- Perception: Involves using sensors, radio frequency identification (RFID), and bar-
codes for data collection. These technologies allow for the identification and tracking
of objects, facilitating the recognition of their properties and locations in various en-
vironments. RFID, for example, has been widely adopted for its ability to uniquely
identify objects and gather data about them, enabling applications beyond traditional
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identification purposes. Integrating RFID with wireless sensor networks (WSNs)
makes creating more complex IoT systems that enhance data acquisition capabilities
possible. Combining these technologies ensures more precise monitoring of environ-
ments and assets, which is crucial for advanced IoT applications like smart homes and
industrial automation [3,4].

- Transmission: Focuses on the reliable exchange of these collected data over com-
munication networks. IoT systems leverage advanced networking technologies to
ensure data are transmitted between devices, enabling machine-to-machine (M2M)
and mobile-to-machine interactions. This aspect is crucial in maintaining the seam-
less connectivity required for real-time monitoring and control in IoT applications.
Reliable data transmission ensures that insights derived from sensor data can be
accessed and utilized when needed, optimizing the responsiveness of IoT systems.
These perspectives are supported by studies highlighting the integration of RFID with
WSNs, which helps to overcome connectivity and energy efficiency challenges in IoT
settings. Additionally, advances in augmented RFID technologies are expanding the
potential of IoT systems, enabling more sophisticated sensing and data transmission
capabilities [3–5].

- Processing: Cloud computing facilitates the intelligent processing of IoT data. Service
providers use cloud computing to process millions or billions of data points [5].

IoT can be described as the “Internet of Everything” or the “Industrial Internet”. It
represents the latest technology that connects machines and devices. This field is crucial for
the future of technology and has garnered significant attention from users and industries
alike [2]. IoT provides innovative solutions to various challenges faced by businesses,
governments, and enterprises worldwide by utilizing smart devices and the internet.
IoT is increasingly becoming an integral part of our lives, evidenced by its widespread
presence. IoT integrates a vast array of smart systems, frameworks, intelligent devices, and
sensors [6,7].

IoT technology has become essential in our lives; it covers various applications, from
everyday consumer electronics to specialized industrial systems, such as fitness-tracking
wristwatches, transport logistics, smart cars, manufacturing, and smart grids. Depending
on their implementation, IoT devices can be used for real-time alerts, data archiving, trend
analysis, and forecasting by utilizing related technologies like cloud services. Additionally,
IoT has proven beneficial for both small- and large-scale networks, leading to a vast array
of enabling hardware and software of varying complexities. This technology has influenced
critical sectors like healthcare, smart water management, surveillance, biomedical appli-
cations, industrial processes, data center management, agriculture, body area networks
(BANs), and more [1,2,5,8].

Owing to the rapid growth in this field and the increasing number of diverse objects
connected to various aspects daily, this paper focuses primarily on identifying smart home
objects, which is necessary to distinguish each object from others. The approach utilizes a
recurrent neural network (RNN) with long short-term memory (LSTM). Applying RNNs to
smart home objects enhances the ability to transfer and use the same model to other smart
environments. These environments play a significant role in IoT applications, impacting
human safety, comfort, welfare, and security.

The rest of the paper is organized as follows: Section 2 presents previous work related
to the use of deep learning algorithms in the identification of smart objects. Section 3
discusses in detail the steps and procedures of the development process of the RNN model
for classifying smart home objects. Section 4 reports an analysis of the proposed model’s
outcomes. Section 5 provides the paper’s conclusion and recommendations for possible
future work.

2. Related Works and Studies

In recent years, numerous studies have focused on applying deep learning techniques
to identify smart objects within IoT environments. These studies highlight the effective-
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ness and versatility of deep learning in enhancing the functionality and intelligence of
smart systems. This section will briefly discuss some of the research efforts on IoT device
identification that are most relevant to this work.

The paper [9] explores generating embeddings for IoT devices in a smart home using
Word2Vec, termed IoT2Vec. The study aims to identify IoT devices based on their usage pat-
terns and to find suitable replacements for malfunctioning devices. The proposed method
involves creating word embeddings for IoT devices based on their activity footprints,
which can be utilized for applications such as identifying similar devices, determining
replacements, and building a location classifier based on IoT devices.

The authors review related work on applying machine learning to find similar IoT
devices and propose a model to encode usage patterns as word embeddings, which can
aid in identifying IoT devices based on their activity patterns. They also present a method
to identify the device type of an unknown IoT device from its activity logs based on the
similarity of its embeddings with stored embeddings of known devices.

The experimental validation involves analyzing a dataset from the CASAS Kyoto
dataset, creating word embeddings for various devices, and using these embeddings to
identify devices. The analysis includes examining trends in IoT device activations for
different session gaps and determining the contextual similarity of devices based on their
activity patterns.

The paper concludes that IoT devices in similar areas in a household exhibit identical
usage patterns, making it feasible to recognize IoT devices based on their embeddings.
Furthermore, the authors plan to investigate multiple datasets, generalize the approach, and
focus on the activity generated by smart IoT devices to gain a higher-level understanding of
users’ tasks. In conclusion, the paper presents a method to create word embeddings for IoT
devices based on their usage patterns, demonstrating the feasibility of recognizing devices
based on their activity. The proposed approach has potential applications in identifying
similar devices, determining replacements, and building location classifiers based on IoT
devices. The authors also outline further questions for analysis and plan to explore more
use cases and higher-level understandings of user tasks in future research [9].

The authors in [10] present a novel IoT device identification method called CBBI, which
uses a hybrid neural network model, Conv-BiLSTM, to learn spatial and temporal features
from network traffic automatically. The study addresses the security risks associated with
the increasing number of IoT devices connected to networks and the need to identify
these devices accurately. The proposed approach overcomes the limitations of traditional
methods that rely on manually extracted features and prior knowledge, increasing the
difficulty and reducing the real-time performance of device identification.

The document discusses the rapid growth of IoT technology and the vulnerabilities
associated with IoT devices, leading to increased potential attacks. It emphasizes the
importance of accurately identifying IoT devices for implementing network access control
and security measures. The challenges with existing methods, including the tedious and
time-consuming feature extraction process, the complexity of feature engineering, and the
limitations in recognizing subtle features, are highlighted.

The proposed CBBI approach consists of three modules: data preprocessing, data
augmentation, and Conv-BiLSTM. The data preprocessing module converts raw network
traffic into an input suitable for deep learning models, while the data augmentation module
addresses data imbalance in deep learning. The Conv-BiLSTM module utilizes a hybrid
deep learning model to learn spatial and temporal features simultaneously, improving the
accuracy and generalization ability of the model. The study evaluates the CBBI approach
using public and laboratory datasets, achieving accurate identification of IoT devices.
The main contributions of the proposed approach include eliminating the need for prior
knowledge in feature engineering, extracting spatial and temporal features, and using data
augmentation to solve data imbalance, resulting in improved model accuracy.

The study also provides an overview of related work on IoT device classification,
discussing various methods based on classification models and active detection. Addition-
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ally, it presents an in-depth explanation of the proposed framework, including the data
preprocessing algorithm, the FGAN module, and the Conv-BiLSTM model.

In summary, the document introduces the CBBI approach for identifying IoT devices
based on spatial and temporal features from network traffic. It addresses the limitations
of existing methods and provides a comprehensive evaluation of the proposed approach,
highlighting its potential to identify IoT devices accurately [10].

The authors in [11] present an effective machine learning-based IoT device identifica-
tion scheme, iotID. The scheme extracts 70 TCP flow features from three aspects: remote
network servers and port numbers, packet-level traffic characteristics like packet inter-
arrival times, and flow-level traffic characteristics like flow duration. The study considers
the imbalanced nature of network traffic generated by various devices in both the learning
and evaluation phases. The performance of iotID is evaluated on network traffic collected in
a typical smart home environment with both IoT and non-IoT devices, achieving a balanced
accuracy score above 99%. Future work will explore evaluating iotID with additional IoT
devices and studying deployment scenarios where one may be preferred over another [11].

To validate the efficacy of iotID, the authors conduct performance studies utilizing
network traffic data collected from a typical smart home environment, comprising a mix
of IoT and non-IoT devices. The results demonstrate that iotID achieves an outstanding
balanced accuracy score exceeding 99%. This underscores its robust capability to accurately
identify IoT devices within complex network environments, showcasing its potential for
practical implementation in real-world scenarios [11].

The research article [12] discusses the framework for identifying and classifying IoT
devices for security analysis in a heterogeneous network. The study focuses on the chal-
lenges posed by Internet of Things (IoT) technology and the need to secure and protect the
data exchanged by IoT devices. It emphasizes the importance of distinguishing between
IoT devices and non-IoT devices and classifying legitimate IoT devices into their specific
categories to ensure better quality of service management in the network. The proposed
framework utilizes a hierarchical deep neural network (HDNN) to achieve higher accu-
racy in distinguishing and classifying IoT devices. The paper outlines the structure and
functionality of IoT networks, highlighting the diverse nature of IoT devices and the chal-
lenges posed by their presence in the network. It discusses the vulnerabilities and security
risks associated with IoT devices, emphasizing the need for robust security solutions and
classification mechanisms to identify unauthorized devices and ensure data security. It
also delves into the details of the methodology employed, including data construction and
modeling, hyperparameter setting, and performance evaluation of the proposed framework
using a hierarchical deep neural network. It provides a detailed analysis of the accuracy
and loss curves, as well as confusion matrices and classification reports, to demonstrate
the effectiveness of the proposed framework in accurately identifying and classifying IoT
devices in a heterogeneous network.

In conclusion, the document presents a comprehensive overview of the research article,
emphasizing the significance of the proposed framework for identifying and classifying IoT
devices in a heterogeneous network. It highlights the superior performance of the hierarchi-
cal deep neural network in achieving high accuracy in distinguishing and classifying IoT
devices, making it a valuable contribution to IoT security and network management [12].

Some papers have highlighted the use of deep neural networks in classification tasks
such as text classification, such as the article [13], which discusses the development of tiny
recurrent neural network (RNN) models for on-device text classification tasks, aiming to
address the challenges of deploying deep neural networks (DNNs) on mobile devices due
to high computational and memory requirements. The paper proposes a new training
scheme that minimizes information loss during model compression by maximizing the
mutual information between the feature representations learned from large and tiny models.
Additionally, a certifiably robust defense method, named GradMASK, is introduced to
defend against character-level perturbations and word substitution-based attacks. The
proposed method involves masking a certain proportion of words in an input text, guided
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by the gradient values and uses the average logits produced by the large model from the
masked adversarial examples for soft label knowledge distillation in the training scheme.
The paper presents extensive experiments demonstrating the approach’s effectiveness by
comparing the tiny RNN models with compact and compressed RNN models in clean and
adversarial test settings.

The paper’s introduction mentions the importance of mobile artificial intelligence
(AI) in various domains. It discusses the obstacles in deploying deep neural networks on
mobile devices due to high computational and memory requirements. The paper focuses
on designing tiny RNN models for text classification tasks to address these challenges,
particularly in natural language processing (NLP) applications. The proposed tiny models
are designed to reduce the parameters of the embedding layer, and a new training scheme
is introduced to minimize information loss during model compression by maximizing the
mutual information between the features learned from large and tiny models. Additionally,
the paper presents a certifiably robust defense method, named GradMASK, which masks a
certain proportion of words in an input text to defend against adversarial attacks. The pro-
posed method is evaluated through extensive experiments demonstrating its effectiveness
compared to other compact and compressed RNN models.

The experimental results demonstrate the superiority of the proposed tiny RNN mod-
els over other compact and compressed RNN models in terms of clean sample accuracy
and adversarial robustness. Furthermore, an ablation study is conducted to examine the
effectiveness of the critical components in the proposed model, revealing that all compo-
nents contribute to improving the tiny model’s classification performance and adversarial
robustness. Additionally, the paper investigates the effect of embedding dimension and
latent feature size on model compression performance, selecting the most miniature model
with an embedding dimension of 5 and a latent feature size of 5 as the final tiny model
to be deployed on mobile devices. The document also includes comparisons with other
state-of-the-art methods and discusses the significance of the proposed approach in the
context of on-device NLP applications [13].

The research article [14] presents a deep learning approach for identifying known
and unauthorized IoT devices in network traffic, with over 99% accuracy. The method
is simple, requires no feature engineering, and applies to any IoT device, regardless of
the communication protocol. Future research plans to explore applications to different
network protocols without a TCP/IP network stack. The increasing use of IoT devices in
organizations has increased the risk of attacks owing to their less secure nature. To address
this, organizations often implement security policies allowing only white-listed IoT devices.
Organizations must identify connected IoT devices to monitor adherence to these policies,
mainly unknown ones. The study applies deep learning to network traffic to automatically
identify connected devices, achieving over 99% accuracy in identifying 10 different devices
and traffic of smartphones and computers [14].

The Internet of Things (IoT) allows physical objects to communicate but poses battery,
power, connectivity, and security issues. To address these, an automated system is needed
to identify and report abnormalities, distinguish between approved and legitimate devices,
and isolate malicious and non-malicious traffic sources. The research in [15] proposes a
framework-based convolutional neural network (CNN) to address battery/power, com-
munication, and security challenges in Internet of Things (IoT) devices. The CNN can
identify allowed and authentic devices, segregate hostile and malicious IoT devices, and im-
prove QoS management. The system accurately categorizes IoT devices and differentiates
between IoT and non-IoT devices, ensuring compliance and security [15].

3. Methodology
3.1. Introduction to Deep Neural Networks (DNNs)

This section provides a comprehensive background on deep neural networks (DNNs),
starting from foundational concepts and progressing toward more advanced depths. It
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aims to build a thorough understanding by covering the fundamental principles before
delving into the details of the proposed model.

Artificial neural networks (ANNs) are a subset of artificial intelligence (AI) that mimic
the structure and behavior of the human brain. AI-driven data analysis techniques, includ-
ing machine learning (ML) and deep learning (DL) algorithms, can process extensive data
volumes, such as those generated in IoT environments, yielding valuable insights. ANNs
rely on three fundamental components: input and activation functions, weights associated
with each input connection, and summation function. Deep learning (DL) algorithms, a
recent evolution from machine learning and soft computing techniques, leverage ANNs to
outperform traditional ML methods by analyzing intricate data without extensive human
intervention. DL has heightened power and flexibility owing to its ability to efficiently
process many features and exhibit enhanced classifier performance when confronted with
large datasets [16–20].

Deep learning has witnessed an unprecedented surge in interest and development
in recent years, revolutionizing the landscape of artificial intelligence (AI) applications.
Inspired by the intricate neural networks of the human brain, deep learning methods
have demonstrated remarkable capabilities in tackling complex problems across diverse
domains. The following points provide a brief overview of various deep learning methods
and their applications.

1. Convolutional neural networks (CNNs): CNNs have proven instrumental in image
recognition, computer vision, and pattern analysis. Recent advancements in CNNs,
such as attention mechanisms and transfer learning, have significantly improved
their performance in tasks ranging from medical image analysis to autonomous
driving [21].

2. Recurrent neural networks (RNNs): Recurrent neural networks (RNNs) are specifically
designed to recognize handwritten text, speech recognition, time series analysis, and
other sequential data types. They are renowned for their power and versatility and
are among the most valuable types of neural networks. Moreover, RNNs can even
be applied to images that can be decomposed into patches and treated as sequential
data, showcasing their adaptability across various domains and data formats. The
introduction of long short-term memory (LSTM) and gated recurrent unit (GRU)
architectures has enhanced the ability of RNNs to capture long-term dependencies,
addressing challenges in various applications. RNNs have various architectures:

➢ Stacked RNN: The stacked RNN architecture comprises multiple RNN layers
stacked together, with each layer possessing its memory unit. Unlike the simple
RNN, which consists of a single hidden layer, the stacked RNN architecture
allows for deeper networks, enhancing the model’s ability to capture context
and temporal dependencies.

➢ Bidirectional RNN: Bidirectional RNNs combine two RNNs, one processing
the input sequence normally and the other in reverse time order. This con-
figuration enables the neural network to simultaneously leverage past and
future information, aiding in more comprehensive sequence understanding.
The outputs of the two RNNs are later merged to form the final output.

➢ LSTM (long short-term memory) Networks: LSTM networks address issues
encountered in training conventional RNNs, such as vanishing or exploding
gradients. They incorporate memory cells and gate mechanisms (input, out-
put, and forget gates) to retain and utilize information over long sequences
effectively. LSTMs can be stacked to create deeper architectures, improving
performance in tasks requiring long-term dependencies.

➢ GRU (gated recurring unit) networks: Similar to LSTMs, GRU networks utilize
gated mechanisms to control the flow of information. However, they have
fewer parameters than LSTMs owing to the absence of an output gate. While
LSTMs generally excel on larger datasets, GRUs offer a more lightweight
alternative with competitive performance [22,23].
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3. Generative adversarial networks (GANs): GANs are a deep learning framework that
consists of two models: a generative model (G) and a discriminative model (D). The
objective of G is to capture the distribution of target data, while D aids in training
G by comparing the generated data to actual data. GANs were first introduced
by Goodfellow et al. in 2014 as a pair of simple neural networks. The often used
analogy of GANs is counterfeit moneymaking, with G as the counterfeiter and D as the
bank trying to identify fake bills. GANs have succeeded in computer vision, feature
representation, and natural language processing tasks. GANs have gained prominence
in generating realistic and high-quality synthetic data. This has applications in image
generation, style transfer, and data augmentation. Recent research on GANs has
focused on improving training stability, diversity, and controllability, expanding their
utility in creative fields and data synthesis [24,25].

4. Unsupervised pre-trained networks (UPN): Unsupervised pre-trained networks
(UPN) are deep neural networks trained using unsupervised learning techniques
before fine-tuning with supervised learning. These networks initialize their parame-
ters using unsupervised learning algorithms like autoencoders or RBMs. They then
use supervised learning methods like backpropagation to adapt their representations
for tasks like classification or regression. UPNs capture meaningful patterns and
structures in data without relying on labeled examples, improving performance on
downstream tasks and avoiding issues like overfitting [26].

5. Deep belief networks (DBNs): DBNs are a type of deep learning with a multi-layered
generative graphical model consisting of both restricted Boltzmann machines (RBMs)
and autoencoders or other unsupervised learning methods, along with a final layer
for supervised learning, such as a softmax classifier. DBNs are typically composed of
two main components: the generative pre-training and fine-tuning phases. During
the generative pre-training phase, each layer of the DBN is trained greedily in an
unsupervised manner, where each layer learns to represent the data hierarchically.
This pre-training process initializes the network weights and allows it to learn useful
features from the input data. Once the pre-training phase is complete, the DBN is
fine-tuned using supervised learning techniques like backpropagation. During fine-
tuning, the entire network is trained jointly to minimize a loss function, which enables
it to learn to classify or regress on the input data [22].

6. Transformers: Transformers have emerged as a groundbreaking architecture in natural
language processing, enabling breakthroughs in machine translation, text summa-
rization, and language understanding. The attention mechanism in transformers has
paved the way for models like bidirectional encoder representations from transform-
ers (BERT) and generative pre-trained transformers (GPTs), setting new benchmarks
in language-related tasks [27].

7. Autoencoders: Autoencoders play crucial roles in unsupervised learning and data
compression. Recent advancements in variational autoencoders (VAEs) and denois-
ing autoencoders have enhanced their ability to learn meaningful representations,
contributing to applications in anomaly detection and feature learning [25].

The Basic Mathematics Used in Deep Learning

Deep learning (DL), with its many domains such as computer vision, natural language
processing, speech recognition, healthcare and biomedicine, environmental science, gaming,
etc. requires a solid foundation in mathematical concepts. Linear algebra, denoted by
Rm×n, lies at the core of continuous mathematics, encompassing scalars, vectors, matrices,
tensors, norms, eigen decompositions, singular value decompositions, and more [22].

Optimization theory, crucial for model training, aims to minimize training errors
by adjusting model weights. It involves understanding derivatives. Loss functions

[
d
dθ

]
concerning parameters are essential for gradient descent optimization. Knowledge of
gradients (∇), Hessians, convergence criteria, and related concepts are pivotal.
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Probability and statistics (P(x), µ, σ) play an indispensable role in handling uncertain
data in machine intelligence. Probability theory aids in addressing uncertainty-related
problems, while statistics facilitates normalization, distribution analysis, computation of
means, and standard deviations, contributing to faster convergence [22].

Multivariable calculus, applicable in deep learning, is relevant for error minimization
and data extrapolation. While single-variable calculus deals with the functions of one
variable y = ( f (x)), multivariable calculus extends to functions of multiple variables
y = ( f (x, y)). This extension enables the application of calculus principles to scenarios in
three-dimensional and higher-dimensional spaces, adapting methodologies from single-
variable calculus to analogous situations in multiple dimensions. Presently, deep learning
finds application across diverse domains, including intelligent video analytics, hyper-
spectral imagery analysis, image recognition, natural language processing, automatic email
responses, machine translation, fraud detection, and healthcare. The key advantages of deep
learning lie in its simplicity, versatility, rapid development cycle, and high-performance
capabilities [18,22].

In the Internet of Things (IoT) context, DL algorithms play a pivotal role, offering
significant advantages in applications such as intelligent transportation systems, smart
manufacturing, traceable logistics, and enhanced social networks. Despite their transfor-
mative potential, DL algorithms face challenges. Training DL models requires substantial
time due to learning from extensive data, and their execution often demands specialized
computing hardware like graphics processing units (GPUs) or tensor processing units
(TPUs) for optimal performance. Furthermore, DL models tend to have substantial sizes,
leading to increased storage and computational expenses. These stringent requirements
impede the widespread adoption of DL in IoT scenarios, where devices frequently possess
limited computing and storage capacities [16,17].

There are two primary reasons why an LSTM-based RNN is a well-suited choice for
IoT device classification:

Effective Handling of Sequential Data: IoT device data often exhibit temporal pat-
terns that are essential for accurate classification. These patterns could represent daily or
weekly usage cycles, specific activation sequences, or variations in sensor readings over
time. LSTM networks, by design, are adept at processing such sequential information.
They can capture the order and relationships within the data, leading to more robust
device identification.

Learning Long-Term Dependencies: Historical usage data can be precious for differ-
entiating between different types of IoT devices. LSTM cells, with their ability to remember
and utilize past information, can effectively learn these long-term dependencies. For in-
stance, an LSTM model might discover that a sudden spike in power consumption followed
by a sustained period of low activity indicates a specific smart appliance [26,27].

The following section represents the construction of a deep neural network (DNN)
model for classifying smart home objects using a recurrent neural network (RNN) with
long short-term memory (LSTM) architecture.

3.2. The Data and Method

This part presents the development process of the RNN model for classifying IoT
device data. Figure 1 depicts the critical steps in constructing and assessing the proposed
model. The diagram visually represents the main procedural stages, highlighting the model
development and evaluation process.
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3.2.1. Data Preparation and Loading

This paper utilizes a dataset available on Kaggle, which can be accessed through the fol-
lowing URL: [https://www.kaggle.com/datasets/fanbyprinciple/iot-device-identification
(30 September 2024)]. According to Kaggle, this dataset is derived from Chapter 5 of the
Machine Learning Cookbook for Cyber Security. It includes network traffic analysis data from a
smart home environment, encompassing various IoT devices, and was initially generated
by other researchers.

The data come in two separate CSV files: the test and training files. To explore
the content of each file, both files are loaded into Google Colab. The dataset contains
900 rows × 298 columns; rows represent the total number of instants, while columns repre-
sent the attributes.

Table 1 shows an array of strings containing the names of different smart home devices.
The array is one-dimensional and has 10 elements. Each component is a string representing
a device’s name. It represents the label or the class feature.

Table 1. The array string of “device_category” in the dataset.

Title of Device in Array Format Total Number

array([‘baby_monitor’, ‘lights’, ‘motion_sensor’,
‘security_camera’,

‘smoke_detector’, ‘socket’, ‘thermostat’, ‘TV’, ‘watch’,
‘water_sensor’], dtype = object)

10

3.2.2. Split the Dataset

At least three methods are employed for computing a classifier’s accuracy. One
approach involves splitting the training set. The cross-validation technique partitions the
training set into mutually exclusive and equally sized subsets. For each subset, the classifier
is trained on the combination of all other subsets, and the average error rate across these
subsets provides an estimate of the classifier’s error rate. Leave-one-out validation is a
specific instance of cross-validation where each test subset consists of a single instance.
While computationally more intensive, this validation method is valuable when the most
precise estimate of a classifier’s error rate is necessary [23]. In this study, we employ
percentage split as the evaluation method, where the dataset is split into 20% for testing
and 80% for training.

3.2.3. Build and Evaluate the Model

This section will explore the details of using TensorFlow and Keras to construct a
recurrent neural network (RNN) featuring long short-term memory (LSTM) architecture.

The main step in constructing the model is reconfiguring the input features for the
training and test sets into a three-dimensional format. The prescribed format for LSTM net-
works is [samples, time steps, features], which ensures effective handling of the sequential
structure inherent in the data.

The model defines the architecture of the RNN model, which consists of two LSTM
layers with dropout for regularization and a dense layer with softmax activation for the
output layer in a multi-class classification scenario. Here is an explanation of each step of
the model:

➢ Model Initialization: A sequential model is initialized, creating a structure in which
each layer is directly connected to the next, ensuring a straightforward data flow
through the model.

➢ Adding the First LSTM Layer: The command ‘model. add (LSTM (200, return se-
quences = True, input shape = (X train. shape [1], X train. shape [2])))’ adds the first
long short-term memory (LSTM) layer to the model. This layer consists of 200 units
(neurons) and uses the ‘return sequences=True’ parameter, which is necessary when
stacking multiple LSTM layers to ensure that the output maintains a sequence format.

https://www.kaggle.com/datasets/fanbyprinciple/iot-device-identification
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The ‘input shape’ parameter specifies the dimensions of the input data, where ‘X_train.
shape [1]’ indicates the number of time steps, and ‘X train. shape [2]’ indicates the
number of features.

➢ Dropout Layer: A dropout layer is introduced with a dropout rate of 0.2. Dropout is a
regularization method that randomly sets a portion of the input units to zero during
training. This helps to mitigate overfitting by preventing the model from becoming
too dependent on specific neurons.

➢ Adding the Second LSTM Layer: A second LSTM layer with 200 units is added to the model.
Unlike the previous LSTM layer, this one does not require ‘return sequences = True’ because
it is the final LSTM layer in the sequence and does not need to maintain the sequence
output for further layers. This includes another dropout layer with a dropout rate of
0.2 for regularization.

➢ Adding a dense (fully connected) layer with several units equal to the number of
classes in the output. The activation function is set to ‘softmax’, which is typical for
multi-class classification problems.

➢ Configuring the model for training. It specifies the optimizer as ‘Adam’, the loss
function as ‘categorical_crossentropy’ (suitable for multi-class classification), and
includes accuracy as the evaluation metric.

The provided model architecture comprises two long short-term memory (LSTM)
layers with dropout regularization to prevent overfitting. The final layer is a dense layer
designed for multi-class classification, with the softmax activation function as shown in
Figure 2. The model is compiled using the Adam optimizer and the categorical cross-
entropy loss function, making it suitable for training on multi-class classification tasks. For
more explanation, Figure 3 shows the RNN structure with 200 units in LSTM layers.

y1 = so f tmax(wxx1 + whh0) (1a)

y2 = so f tmax(wxx2 + whh1) (1b)

. . .

yn = so f tmax(wxxn + whhn−1) (1n)

The study employs an RNN with LSTM layers owing to their effectiveness in handling
sequential data, such as time series and network traffic. LSTM layers are particularly suited
for capturing long-term dependencies within the data, making them ideal for tasks where
the information order is crucial. To mitigate the risk of overfitting, dropout layers are
included after each LSTM layer, randomly deactivating specific neurons during training.
This approach encourages the model to learn more generalized and robust features. The
model concludes with a dense output layer that uses a softmax activation function, a
standard choice for multi-class classification problems. The softmax function converts
the output into a probability distribution, ensuring that the predicted probabilities for all
classes sum to one, thereby representing the likelihood of each class.
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3.2.4. Train the Model

The previously defined LSTM model was trained using the fit method. Here are the
details of each parameter:

➢ X_train and y_train: These represent the training data, where X_train consists of the
input features, and y_train contains the corresponding target labels.

➢ Epochs = 10: The number of epochs indicates how many times the entire training
dataset is passed through the neural network in both forward and backward directions.
In this case, the model will be trained over 10 epochs.

➢ Batch size = 32: The batch size specifies the number of samples used in each iteration
for updating the model weights. A batch size of 32 means that 32 samples from the
training dataset will be utilized in each iteration.

➢ Validation split = 0.2: This parameter allocates 20% of the training data as a validation
set. The model’s performance on this subset is monitored during training, providing
insights into its generalization capabilities.

➢ Verbose = 2: This parameter controls the verbosity of the training process. A value of
2 means that training progress will be displayed after each epoch, providing detailed
feedback on the training process.

➢ The output returns two values: test loss and test accuracy. Test loss measures how
well the model’s predictions match the actual values in the test dataset. Lower test
loss indicates better performance. Test accuracy measures the percentage of correct
predictions made by the model on the test dataset. Higher test accuracy indicates
better performance. The training output is illustrated in Figure 4.
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3.2.5. Evaluate the Model

After training a model, assessing its performance on unseen data is essential to deter-
mine how well it generalizes. We present the ROC curve, the area under the curve (AUC),
accuracy, recall, F score, and the confusion matrix to evaluate the model’s effectiveness.

The ROC Curve and the Area Under the Curve (AUC)

This study examines the receiver operating characteristic (ROC) curve, a two-dimensional
classification performance metric. The focus is on the scalar measure, the area under the
ROC curve (AUC), which evaluates a specific performance aspect [28].

The paper concludes that the AUC effectively distinguishes the ten IOT device cate-
gories; it obtains an output of micro-average ROC score = 0.9896. The ROC AUC score of
0.9896 indicates that the classifier performs excellently distinguishing between different
classes. This means that the classifier can correctly classify many positive and negative
examples across all classes.

A micro-average ROC AUC score of 0.9896 signifies a highly effective and discrimina-
tive model across various classes. However, a more in-depth analysis is recommended for
a nuanced interpretation and insights into specific class performance.

The following figure shows the plot of the ROC curves for a multi-class IoT device
classification problem.

The plot illustrated in Figure 5 provides a comprehensive visualization of the model’s
performance in a multi-IoT devices classification setting using ROC curves. It allows for
assessing how well the model distinguishes between classes, with the micro-average offer-
ing an overall measure. The diversity of colors aids in distinguishing between individual
class curves.
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To further substantiate its performance, we calculated additional metrics: accuracy
(0.8395), precision (0.8503), recall (0.8117), and F1-score (0.7938). These results are shown
in Table 2 and Figure 6. They affirm the classifier’s robustness in achieving high accuracy,
precision, recall, and a strong F1-score.

Table 2. IoT device classifier evaluation metrics.

Accuracy Precision Recall F1-Score

0.8395 0.8503 0.8117 0.7938
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The Confusion Matrix

The confusion matrix is a crucial tool for evaluating the performance of classification
models, especially in the context of multi-class classification problems. It provides a detailed
overview of how well a model distinguishes between different classes by presenting a
matrix format that summarizes true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) predictions for each class. For multi-class classification, each matrix
row represents the instances in an actual class, while each column represents the instances
in a predicted class [29].

Using a confusion matrix allows researchers and practitioners to gain insights into
a model’s specific strengths and weaknesses. It highlights areas where the model is per-
forming well and making errors, which can be particularly important for classes that are
underrepresented or imbalanced in the dataset. Metrics such as precision, recall, F1-score,
and overall accuracy can be derived from the confusion matrix, offering a comprehensive
view of the model’s performance for each class. For example, precision provides the ratio
of correctly predicted positive observations to the total predicted positives. At the same
time, recall measures the ability of the model to find all relevant instances of a class.

In multi-class scenarios, the confusion matrix helps to detect misclassification between
different classes, which is essential for fine-tuning models, such as neural networks or sup-
port vector machines, in applications like image recognition, text classification, and medical
diagnosis. Through its detailed error analysis, the confusion matrix aids in identifying
where a model might require further training or adjustment, ensuring more balanced and
accurate predictions across all classes [30].

These references provide insights into the confusion matrix’s application for multi-
class classification and its role in model evaluation and error analysis. Figure 7 displays the
confusion matrix for a multi-class IoT device classification problem, where an RNN with
an LSTM model was used.

The confusion matrix in Figure 7 shows that the model is highly accurate, as most of
the predictions are located on the diagonal. For example, the model correctly predicted
37 samples as security cameras (class 0). It incorrectly predicted one sample as a baby
monitor (class 6), which was actually a security camera. Looking at another example, the
model correctly predicted 37 samples as lights (class 8). It incorrectly predicted two samples
as sockets (class 9), which were actually sockets.
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All the string values in the “device_category” array, shown in Table 1, are mapped to
corresponding numerical representations. This transformation prepares the data for use in
the RNN model, as represented below:

- security_camera → 0.0
- TV → 1.0
- smoke_detector → 2.0
- thermostat → 3.0
- water_sensor → 4.0
- watch → 5.0
- baby_monitor → 6.0
- motion_sensor → 7.0
- lights → 8.0
- socket → 9.0

4. Results Analysis

This section critically evaluates the proposed model’s methodologies, architectures,
and results, offering insights into its strengths, weaknesses, and overall efficacy in real-
world applications. The proposed approach presents a comprehensive methodology for
developing and assessing a deep learning model specifically for IoT device classification. It
adopts a systematic process that is crucial for ensuring the reproducibility and reliability of
the research findings.

A significant focus of the analysis is on data handling, addressing potential discrepan-
cies between training and test sets to ensure the robustness of the model. This emphasis on
thorough data preprocessing and validation techniques aims to mitigate biases and prevent
overfitting, thus enhancing the model’s reliability. Furthermore, the model’s architecture
is centered around an LSTM-based recurrent neural network (RNN). The study details
the architectural choices and training parameters, highlighting how LSTM networks are
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particularly well-suited for sequence data. This indicates that the model is designed to
handle the temporal aspects inherent in IoT device data.

The training process achieves high accuracy on the training set, suggesting that the
model effectively learns from the data. However, challenges in generalizing to new, unseen
data underscore the need for robust evaluation metrics beyond training accuracy. The
evaluation of the test set includes metrics such as ROC curves and AUC scores, with an
AUC score of 0.9896 demonstrating exceptional performance in distinguishing between
different IoT device categories. A confusion matrix is also provided, offering a deeper
analysis of the model’s performance.

The model demonstrates robust performance, with notable precision, recall, and F1-
score values of 0.8503, 0.8117, and 0.7938, respectively. These strong metrics underscore the
model’s overall proficiency in accurately classifying IoT devices.

The marginally superior precision relative to recall implies that the model may be
exercising prudence in minimizing false positives, which could lead to overlooking a
limited number of true positives. Importantly, the F1-score, as an equilibrium metric,
showcases the model’s capacity to strike an acceptable balance between mitigating false
positives and capturing true positives.

The research contributes a detailed guide for developing and evaluating deep learning
models in the context of IoT device classification. This has important implications for
a range of IoT applications, including smart homes, industrial automation, and health-
care monitoring, highlighting the potential impact of the proposed methodology across
various domains.

5. Conclusions

This research presents a comprehensive framework for developing and evaluating
deep learning models specifically designed for IoT device classification. By addressing
potential biases in the training data and employing a well-suited LSTM-based RNN archi-
tecture, the proposed model demonstrates strong performance in distinguishing between
various IoT device categories.

The model achieved an accuracy of 0.8395, precision of 0.8503, and recall of 0.8117,
indicating its effectiveness in accurately classifying IoT devices. These metrics, combined
with the high AUC score of 0.9896, demonstrate the model’s ability to achieve a balance
between avoiding false positives and capturing true positives.

The study’s findings highlight the potential of deep learning techniques in advancing
IoT device classification. The proposed framework, with its emphasis on data handling,
model architecture, and rigorous evaluation, offers a valuable resource for researchers and
practitioners working in this field.

As the IoT landscape continues to evolve, the development of accurate and reliable
classification models will be essential for unlocking the full potential of IoT applications.
This research offers a valuable contribution to the field of IoT device classification. By
employing a robust LSTM-based RNN, the model demonstrates exceptional performance,
implying significant potential for more efficient and reliable IoT applications.
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