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Abstract: Internet of Things (IoT) devices are ubiquitous in various applications, such as smart homes,
asset and people tracking, and city management systems. However, their deployment in adverse
conditions, including unstable internet connectivity and power sources, present new cybersecurity
challenges through new attack vectors. The LoRaWAN protocol, with its open and distributed
network architecture, has gained prominence as a leading LPWAN solution, presenting novel security
challenges. This paper proposes the implementation of machine learning algorithms, specifically the
K-Nearest Neighbours (KNN) algorithm, within an Intrusion Detection System (IDS) for LoRaWAN
networks. Through behavioural analysis based on previously observed packet patterns, the system
can detect potential intrusions that may disrupt critical tracking services. Initial simulated packet
classification attained over 90% accuracy. By integrating the Suricata IDS and extending it through
a custom toolset, sophisticated rule sets are incorporated to generate confidence metrics to classify
packets as either presenting an abnormal or normal behaviour. The current work uses third-party
multi-vendor sensor data obtained in the city of Lisbon for training and validating the models. The
results show the efficacy of the proposed technique in evaluating received packets, logging relevant
parameters in the database, and accurately identifying intrusions or expected device behaviours. We
considered two use cases for evaluating our work: one with a more traditional approach where the
devices and network are static, and another where we assume that both the devices and the network
are mobile; for example, when we need to report data back from sensors on a rail infrastructure to a
mobile LoRaWAN gateway onboard a train.

Keywords: IoT; LoRaWAN; intrusion detection system; machine learning

1. Introduction

The Internet of Things (IoT) has experienced rapid growth and widespread adoption
across various sectors, from smart homes and cities to industrial systems and healthcare.
This proliferation of connected devices has revolutionized data collection, analysis, and
automation, enabling unprecedented levels of efficiency and insight. However, the sheer
scale and diversity of IoT deployments have introduced new challenges, particularly in
terms of communication protocols and network security.

Among the various communication protocols developed for IoT [1], Long-Range Wide
Area Network (LoRaWAN) has emerged as a leading solution, particularly for applications
requiring long-range low-power communication. LoRaWAN’s ability to transmit small
amounts of data over long distances while minimizing power consumption has made it
an attractive choice for a wide range of IoT applications, from agricultural monitoring to
urban infrastructure management [2].

The widespread adoption of LoRaWAN, driven by its decentralized and open network
architecture, has introduced significant security challenges that demand urgent attention.
These networks often carry sensitive data and control critical infrastructure, making their
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security paramount. LoRaWAN’s unique characteristics, such as low-bandwidth com-
munication, geographically dispersed nodes, and large-scale deployments, necessitate
specialized security measures that work within these constraints. However, the open
nature of the network and the resource limitations of IoT devices expose it to various vul-
nerabilities, including man-in-the-middle attacks, network flooding, traffic analysis, replay
attacks, and physical tampering with devices in remote or unsecured locations. Addressing
these issues is essential to safeguard the integrity and reliability of LoRaWAN deployments.

Traditional intrusion detection systems (IDS) are often ill-suited for LoRaWAN en-
vironments due to the unique characteristics of these networks [3,4]. The low data rates,
sporadic transmission patterns, and large-scale deployments typical of LoRaWAN networks
require specialized approaches to security monitoring. Moreover, the potential for network
disruption in critical applications, such as emergency response systems or industrial control
networks, makes timely and accurate intrusion detection crucial.

Security challenges in LoRaWAN are especially serious in situations with poor con-
nectivity or mobile deployments, like search and rescue operations in remote areas or
monitoring infrastructure in isolated locations. In these cases, relying on centralized, cloud-
based security solutions can cause delays or fail due to lack of network access. To ensure
the safety and reliability of these networks, strong and decentralized intrusion detection
systems that work well at the network edge are needed. Solving these problems is impor-
tant for protecting LoRaWAN systems, building trust in IoT technology, and encouraging
its wider use in critical applications.

Although IoT security has been extensively studied, the specific challenges posed
by LoRaWAN networks have received less attention. Most existing research focuses on
traditional security measures such as encryption, authentication protocols, and centralized
monitoring systems. While effective in some contexts, these approaches often fail to address
the unique constraints of LoRaWAN environments. Some researchers have explored the
use of machine learning for intrusion detection in IoT networks, demonstrating promising
results in identifying anomalies and potential threats [5–7]. However, applying these
techniques to the distinct traffic patterns and security challenges of LoRaWAN networks
remains limited. Moreover, many current solutions depend on centralized processing,
which can introduce latency and create single points of failure.

Recent studies highlight the potential of edge computing to improve IoT security
by reducing latency, enhancing privacy, and increasing resilience to network disruptions.
Edge-based solutions are particularly well-suited to LoRaWAN, given its constraints and
decentralized nature. However, the integration of edge computing with machine learning-
based intrusion detection systems for LoRaWAN presents a significant research gap. Ad-
dressing this issue could lead to more robust, efficient, and scalable security frameworks
tailored to LoRaWAN’s specific needs.

To address these critical gaps in LoRaWAN security, we propose a novel intrusion
detection system that leverages edge computing and machine learning techniques. Our
approach combines the strengths of decentralized processing with adaptive anomaly
detection to create a robust, efficient, and scalable security solution for LoRaWAN networks.

At the core of our system is a machine learning model based on the K-Nearest Neigh-
bours (KNN) algorithm, chosen for its effectiveness in classifying network traffic patterns
and its relatively low computational requirements. This model is trained on real-world
LoRaWAN network data, enabling it to accurately distinguish between normal traffic and
potential intrusions based on subtle variations in packet metadata and signal characteristics.

We integrate this machine learning model with the Suricata Intrusion Detection System
(IDS), a powerful open-source tool that we have extended and customized for LoRaWAN
environments. This integration allows us to combine traditional signature-based detec-
tion with our behaviour-based anomaly detection, providing a multi-layered approach to
identifying security threats.
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Our system is designed to both operate at the network core and edge, either near the
network server or implemented directly on or near LoRaWAN gateways. We consider that
the edge-based deployment offers several key advantages:

1. Reduced latency in threat detection and response;
2. Continued operation even in scenarios with limited or intermittent backhaul connectivity;
3. Enhanced privacy by processing sensitive data locally;
4. Improved scalability through distributed processing.

The edge scenario that considers a distributed gateway approach offers potential
benefits for low-latency LoRaWAN applications. Two illustrative use cases demonstrate
the advantages of this approach:

1. Mountain search and rescue: In emergency scenarios, response teams could employ
edge gateways in their vehicles to track hikers’ LoRaWAN GPS tracker signals in areas
with limited cellular and static LoRaWAN coverage. This allows for real-time location
tracking and rapid response in critical situations.

2. Railway safety monitoring: A train could be equipped with an edge gateway to
receive information directly from sensors deployed on slopes adjacent to the tracks.
These sensors could detect potential hazards such as rockfalls or ground sliding. By
processing these data in real-time on the moving train, the system could provide imme-
diate alerts to the train operator, enabling rapid response to potential dangers without
relying on centralized infrastructure or experiencing delays in data transmission.

These use cases highlight the flexibility and responsiveness of the distributed gateway
architecture, particularly in scenarios where low latency and local processing are crucial for
safety and efficiency. The ability to process data at the edge, whether on a mobile search
and rescue vehicle or a moving train, demonstrates the potential of this architecture to
enhance real-time decision-making and response in various critical applications.

Our system uses adaptive learning to adjust to changing network conditions and
evolving threats, making it suitable for dynamic environments like mobile or temporary
deployments in emergency scenarios. It also introduces a method to decrypt payloads at
the edge for thorough security analysis without breaking end-to-end encryption or adding
significant overhead. These features together create an efficient and flexible intrusion
detection system for LoRaWAN, addressing key gaps in current solutions and improving
the security of IoT deployments.

The primary objectives of this research are to develop a robust, edge-based intrusion
detection system specifically tailored for LoRaWAN networks. This study aims to lever-
age machine learning techniques, particularly the K-Nearest Neighbours algorithm, for
effective anomaly detection in LoRaWAN traffic patterns. Additionally, this research seeks
to design an adaptive system that is capable of operating effectively in both static and
dynamic network environments, including mobile and temporary deployments. Finally,
this study intends to validate the proposed system using real-world LoRaWAN network
data, ensuring its applicability and effectiveness in practical scenarios.

The key contributions of this work to the field of IoT and LoRaWAN security are sig-
nificant and multifaceted. We present a novel integration of edge computing and machine
learning, combining edge computing capabilities with machine learning-based intrusion
detection specifically optimized for LoRaWAN networks. This approach addresses latency
and connectivity challenges inherent in centralized security solutions.

Our research develops and implements an adaptive KNN model for LoRaWAN traffic
analysis, effectively classifying network traffic to distinguish between normal patterns and
potential intrusions. The model is trained on real-world data, enhancing its accuracy and
relevance in operational environments.

We extend the open-source Suricata IDS to work effectively with LoRaWAN protocol
specifics, creating a powerful hybrid system that combines signature-based and anomaly-
based detection methods. Our decentralized security architecture enables autonomous
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operation at the network edge, improving resilience and reducing dependence on constant
backhaul connectivity.

This study provides comprehensive evaluation insights from testing in both stationary
and mobile scenarios, offering valuable data on edge-based intrusion detection performance
in varying network conditions.

Importantly, our work offers real-world validation by utilizing data from an op-
erational LoRaWAN network in Lisbon, providing empirical evidence of the system’s
effectiveness in real-world conditions. This represents a significant step beyond simulated
or small-scale testbed evaluations.

Our research methodology encompasses several key components and phases. We
began with data collection and analysis, utilizing real-world LoRaWAN network data from
a gateway operated by the Lisbon Polytechnic Engineering School (ISEL), Portugal. This
dataset, comprising over 500,000 messages from thousands of devices, was thoroughly
analysed to understand typical traffic patterns and characteristics.

The system was evaluated in both centralized and edge scenarios, including gateway
mobility, using metrics such as detection accuracy, false positive rates, and processing
latency. Adaptive learning mechanisms were implemented, enabling periodic model
retraining and dynamic threshold adjustments to handle changing network conditions and
evolving threats. By combining theoretical analysis with practical implementation and real-
world testing on actual LoRaWAN data, the methodology ensures both academic rigour
and practical relevance, offering insights applicable to real-world IoT security challenges.

The remainder of this work is organized as follows: Section 2 reviews related work on
IoT security, LoRaWAN security challenges, and machine learning in network intrusion
detection; Section 3 covers system implementation, including data preprocessing, model
training, and Suricata customization; Section 4 analyses the detection model performance;
and, Section 5 concludes with key contributions and future research directions.

2. Related Work

The rapid proliferation of Internet of Things (IoT) devices and networks has intro-
duced new security challenges, particularly in low-power wide-area network (LPWAN)
protocols like LoRaWAN. As these networks become increasingly prevalent in various
applications, from smart cities to industrial systems, ensuring robust security measures
becomes paramount. This section reviews relevant literature on intrusion detection sys-
tems (IDS) for IoT environments, with a particular focus on LoRaWAN networks and the
application of machine learning techniques.

We begin by examining general approaches to IDS in IoT contexts, followed by
LoRaWAN-specific security challenges and solutions. We then explore various machine
learning algorithms applied to network security, particularly in the realm of intrusion detec-
tion. Finally, we consider the emerging paradigm of edge computing and its implications
for IoT security. Through this review, we aim to identify current trends, challenges, and
gaps in the research landscape, providing context for our proposed KNN-based intrusion
detection system for LoRaWAN networks.

2.1. Intrusion Detection Systems for IoT Networks

The proliferation of Internet of Things (IoT) devices has introduced new security
challenges to network infrastructures, necessitating specialized Intrusion Detection Systems
(IDS). Unlike traditional networks, IoT ecosystems are characterized by heterogeneous
devices, constrained resources, and diverse communication protocols, requiring unique
approaches to security [6].

Conventional IDS solutions are often inadequate in addressing the complexities of
IoT networks, particularly in detecting unauthorized access attempts and novel attack
vectors [8]. This inadequacy has driven research towards more sophisticated detection
mechanisms, often leveraging artificial intelligence and machine learning techniques to
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provide deeper insights into system behaviour and enhance the detection of novel at-
tack patterns.

Recent advancements in IDS for IoT have explored various machine learning algo-
rithms. Ref. [9] presents a comprehensive comparison of Logistic Regression (LR), Support
Vector Machines (SVMs), Decision Trees (DTs), and Artificial Neural Networks (ANNs)
for implementing anomaly-based IDS, utilizing public datasets such as IoTID20 [10] and
BoT-IoT [11] to evaluate their efficacy in detecting common IoT network attacks.

The application of K-Nearest Neighbours (KNN) and Decision Tree-based classification
for IoT intrusion detection has been explored in [7], though challenges in real-time detection
due to data normalization requirements have been noted. Ref. [12] further demonstrates
the effectiveness of KNN in network intrusion detection for IoT environments, specifically
as a Network-based Intrusion Detection System (NIDS).

An innovative approach by Mohammed Baz [13] introduces SEHIDS, a self-evolving
host-based intrusion detection system employing artificial neural networks within individ-
ual IoT nodes. While promising, this approach raises concerns about feasibility in highly
resource-limited devices.

The distinction between Host-based Intrusion Detection Systems (HIDS) and Network-
based Intrusion Detection Systems (NIDS) in IoT contexts is discussed in [14], which
incorporates LoRaWAN-specific radio data (RSSI-SNR) into the detection process. However,
this approach does not account for gateway location, which could be particularly relevant
in mobile edge computing scenarios.

As the IoT landscape continues to evolve, so too must the approaches to securing
these networks. The integration of machine learning algorithms into IDS frameworks
represents a promising direction in adapting security measures to the dynamic nature
of IoT threats [15]. These intelligent systems offer the potential for more accurate threat
detection, reduced false positives, and improved overall network resilience in the face of
increasingly sophisticated cyber attacks.

Future research should focus on developing lightweight, distributed IDS that can
operate effectively across heterogeneous IoT devices and protocols, as well as exploring
the integration of context-aware and collaborative IDS approaches to further enhance the
security posture of IoT networks.

2.2. LoRaWAN-Specific Security Challenges and Solutions

As LoRaWAN emerges as a prominent LPWAN technology for IoT applications, it
brings unique security challenges that require specialized attention. The open and dis-
tributed nature of LoRaWAN networks introduces vulnerabilities that differ from tradi-
tional network architectures.

In [16], the authors provide a comprehensive overview of various attacks specific
to LoRaWAN networks, including Man-in-the-Middle (MITM) attacks, network flooding
attacks, network traffic analysis, physical attacks, Radio Frequency (RF) jamming attacks,
and self-replay attacks. While software-based defences can address many of these threats,
physical attacks that compromise gateway access remain a significant concern, highlighting
the need for multi-layered security approaches.

The vulnerabilities of the LoRaWAN protocol to replay, jamming, wormhole, and
flipping attacks have been identified and analysed in [17]. This research particularly
focuses on jamming attacks as a denial-of-service vector against IoT devices. The study
employs advanced algorithms, including Kullback–Leibler divergence and Hamming
distance measures, to achieve high accuracy in traffic analysis and attack detection.

Addressing the need for LoRaWAN-specific security solutions, [5] explores the appli-
cation of artificial intelligence algorithms for analysing LoRaWAN device behaviours. Their
approach combines two analysis techniques: an initial k-means algorithm to group devices
with similar behavioural patterns, followed by Decision Tree (DT) and Long Short-Term
Memory (LSTM) models to predict expected behaviour. This dual-layer approach enhances
the ability to detect anomalies and potential security breaches in LoRaWAN networks.
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The unique characteristics of LoRaWAN, such as its use of unlicensed spectrum and
long-range capabilities, necessitate security measures that can operate effectively within
the constraints of low-power devices and limited bandwidth.

The integration of machine learning techniques with LoRaWAN-specific security
measures shows promise in enhancing threat detection capabilities. By leveraging the
unique characteristics of LoRaWAN traffic patterns and device behaviours, ML-based
intrusion detection systems can potentially identify subtle anomalies that might indicate
security breaches or attempts at unauthorized access.

2.3. Machine Learning Algorithms for Network Security

The application of machine learning algorithms in network security, particularly for
intrusion detection systems, has gained significant traction in recent years. These algorithms
offer the potential for more accurate, adaptive, and efficient threat detection compared to
traditional rule-based systems.

The K-Nearest Neighbours (KNN) algorithm has emerged as a popular choice for
network intrusion detection due to its simplicity and effectiveness. Ref. [18] demonstrates
the use of KNN for intrusion detection in conventional network environments, testing it on
network traffic data from an air force local area network. The algorithm’s ability to classify
data points based on their proximity to known samples makes it particularly suitable for
identifying anomalous network behaviour.

Building upon this, [19] provides a detailed implementation of KNN for data classifi-
cation in network security contexts. The study highlights KNN’s method of calculating
the probability of a point being close to other points, effectively quantifying relationships
between data points. This characteristic is particularly useful in distinguishing between
normal and anomalous network traffic patterns.

Decision trees represent another powerful machine learning approach for network
security. Ref. [20] implements a rules and decision tree-based intrusion detection system for
IoT environments. This research emphasizes the increasing sophistication of cyberattacks,
particularly those targeting critical infrastructure and sensitive information systems. The
hierarchical nature of decision trees allows for interpretable decision-making processes,
which can be crucial in understanding and explaining detected threats.

Sparse Logistic Regression (SLR) offers a unique approach to network intrusion de-
tection, as demonstrated in [21]. By incorporating lasso regularization into the logistic
regression framework, SLR introduces sparsity into the model. This feature enables auto-
matic selection of the most relevant features from the data, allowing key indicators that
distinguish between normal and abnormal network activities to be identified efficiently.

The integration of machine learning algorithms with existing IDS frameworks has
also shown promising results. Ref. [22] combines the Suricata IDS with KNN to classify
IoT botnet attacks on resource-constrained devices like Raspberry Pi. This approach
demonstrates the potential for implementing sophisticated ML-based intrusion detection,
even in environments with limited computational resources.

However, it is important to note that the effectiveness of machine learning algorithms
in network security can vary depending on the specific context and type of network.
For instance, while [18] focuses on traditional network traffic, the application of these
algorithms to IoT and specifically LoRaWAN networks presents unique challenges and
opportunities. The distinct characteristics of LoRaWAN traffic, including low data rates
and long transmission intervals, require adaptations to conventional ML approaches.

As network architectures become more complex and diverse, particularly with the
advent of edge computing and 5G networks, the role of machine learning in network
security is likely to become even more critical. Future research should focus on developing
ML algorithms that can operate effectively across heterogeneous network environments
while maintaining high accuracy and low false positive rates.
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2.4. Edge Computing in IoT Security

The emergence of edge computing has introduced new paradigms in IoT security,
particularly in the context of intrusion detection systems. By bringing computation and
data storage closer to the source of data generation, edge computing offers potential benefits
in terms of reduced latency, improved privacy, and enhanced security for IoT networks.

In [23], the authors provide an overview of attack vectors in edge computing environ-
ments and propose the use of machine learning systems for threat detection. However, it is
important to note that this research primarily focuses on Multi-Edge Access Computing
(MEC) in the context of NB-IoT and 5G networks, which differs from the LoRaWAN context
of our study.

The implementation of IDS at the edge presents both opportunities and challenges. On
the one hand, edge-based IDS can potentially detect and respond to threats more quickly
due to their proximity to the data source. This is particularly relevant for time-sensitive IoT
applications where rapid threat detection is crucial [14].

However, edge devices often have limited computational resources compared to cen-
tralized cloud infrastructure. This constraint necessitates the development of lightweight,
efficient IDS solutions that can operate effectively within these limitations. Ref. [8] high-
lights the importance of considering resource constraints when designing security solutions
for IoT environments, which is equally applicable to edge computing scenarios.

In the context of LoRaWAN networks, edge computing can play a significant role in
enhancing security. By implementing IDS functionalities at the gateway level, it becomes
possible to analyse traffic patterns and detect anomalies closer to the source, potentially
before malicious traffic reaches the core network. Ref. [14] touches on this concept by
considering radio data (RSSI-SNR) in their IDS approach, though they do not fully explore
the implications of gateway mobility in edge scenarios.

The integration of machine learning algorithms with edge-based IDS presents promis-
ing opportunities for enhancing IoT security. For instance, the KNN algorithm, which has
shown effectiveness in IoT intrusion detection, as demonstrated by [12], could potentially
be adapted for edge deployment. However, careful consideration must be given to the algo-
rithm’s computational requirements and the need for frequent model updates in dynamic
IoT environments.

Furthermore, edge computing introduces new challenges in terms of maintaining consistent
security policies across distributed nodes. The decentralized nature of edge architectures requires
innovative approaches to key management, device authentication, and access control that can
operate effectively in environments with intermittent connectivity [24].

As edge computing continues to evolve, there is a growing need for research into
adaptive, scalable IDS solutions that can leverage the benefits of edge architecture while
addressing its unique challenges. Future work should focus on developing edge-native
security frameworks that can provide robust protection for IoT networks without compro-
mising the performance benefits that edge computing offers [25].

2.5. Research Gaps

Our review of the current literature reveals several key areas for future research in
IoT and LoRaWAN security. There is a need for better integration of LoRaWAN charac-
teristics with edge computing capabilities in IDS solutions, as well as the development
of lightweight, adaptive ML algorithms for edge-based intrusion detection. Work should
also focus on creating context-aware and real-time adaptive IDS solutions to address the
dynamic threat landscape.

Holistic security approaches combining traditional IDS with physical layer security
techniques remain underexplored. The field would benefit from standardized benchmarks
and datasets specifically for LoRaWAN security research, as well as investigations into
collaborative and distributed IDS architectures for large-scale deployments.

Notably, current research largely assumes static gateway positions, overlooking sce-
narios with mobile LoRaWAN gateways. There is a significant gap in developing security
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solutions for mobile applications, such as gateways onboard moving vehicles or in other
dynamic environments.

Addressing these gaps is crucial for developing robust security solutions that can
effectively protect the growing ecosystem of IoT and LoRaWAN networks, particularly as
they become increasingly integral to critical infrastructure and services.

3. Implementation

This section details the design and implementation of our proposed Intrusion Detec-
tion System (IDS) for LoRaWAN networks. We begin by outlining the system architecture,
followed by a comprehensive analysis of real-world LoRaWAN data that informed our
approach. We then describe the core components of our system, including the open-source
IDS, database, and machine learning algorithms. The implementation process is explained
in detail, covering aspects such as data preprocessing, model training, and packet classifica-
tion. Finally, we discuss the adaptation of our system for edge computing environments,
highlighting the benefits and challenges of this approach. Throughout this section, we
emphasize the rationale behind our design choices and the techniques employed to enhance
the security and efficiency of LoRaWAN networks.

3.1. System Architecture

Our Intrusion Detection System (IDS) for LoRaWAN networks is designed to operate
at the IoT device level, utilizing behavioural analysis through machine learning models.
The system architecture accommodates two potential deployment configurations:

1. IDS installed on/or near each LoRaWAN gateway;
2. IDS installed at the Network Server (NS), receiving packets from all gateways.

Figures 1 and 2 illustrate these two architectural approaches:

Network Server Environment

Network Server
Intrusion Detection System Database

LoRaWAN Network

Sensor 1

Sensor 2

Sensor 3

LoRa Gateway

Application Server

LoRa

LoRa

LoRa

IP Network

Figure 1. Architecture for IDS in the NS.

Gateway with Edge Computing

LoRa Gateway

Intrusion Detection System Local Database

LoRaWAN Network

Sensor 1

Sensor 2

Sensor 3

Network Server Application Server

LoRa

LoRa

LoRa IP Network

Figure 2. Architecture for IDS in or near each LoRaWAN gateway.
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In the centralized network server deployment (Figure 1), multiple gateways may for-
ward identical messages at varying times, introducing an additional analysis dimension not
addressed in this study. Conversely, the distributed gateway deployment (Figure 2) reduces
latency associated with LoRaWAN Network Sever (NS) communication but requires each
gateway to possess packet decryption capabilities.

The data flow in our system begins with sensor data transmitted via the LoRaWAN
protocol to the gateways. These gateways encapsulate device payloads into IP packets using
Semtechś packet forwarder format for relaying to the network server. Our IDS analyses
these packet streams post-gateway, regardless of the chosen deployment configuration.

3.2. Data Analysis

To ensure the realism and effectiveness of our machine learning models, we utilized
real-world device data in our implementation. This section details our data source, prepro-
cessing methods, and key findings from our analysis.

We obtained sample data from a LoRaWAN gateway operated by Instituto Superior
de Engenharia de Lisboa (ISEL), located in Lisbon’s Amoreiras Towers. This gateway,
connected to The Things Network (TTN), receives an average of 500,000 messages monthly
from thousands of devices.

The dataset was preprocessed using the Pandas Profiling library [26] to generate a
comprehensive analysis report. This preprocessing was performed on Google Colab to
facilitate collaboration.

Our examined sample is from June 2020, during the peak of COVID-19 spread in
Portugal. The dataset consists of 509,042 messages sent from 2876 devices to the net-
work server. From the various message parameters, we selected the most relevant for
distinguishing devices.

3.2.1. Key Parameters Analysis

The selection of Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR),
Spreading Factor (SF), and payload length as key parameters for analysis is based on their
availability and relevance in LoRaWAN networks, particularly in the context of encrypted
payloads. These parameters provide quantifiable metrics for network behaviour analysis
without compromising payload confidentiality. RSSI and SNR offer quantitative measures
of signal quality and strength, enabling the detection of anomalies in transmission patterns.
SF, a core parameter in LoRa modulation, allows for the identification of changes in device
configuration. Payload length serves as a potential indicator of abnormal behaviour, as
deviations from expected message sizes may signify unauthorized transmissions. This
parameter set enables the development of an intrusion detection system that maintains the
integrity of LoRaWAN payload encryption while facilitating effective security monitoring
through analysis of readily available metadata.

Signal-to-Noise Ratio (SNR) and Received Signal Strength Indicator (RSSI)

Figure 3a–d illustrate the trends in SNR and RSSI across the samples and illustrate the
details for one of the devices. Our analysis revealed that the signal-to-noise ratio clusters
around −15 dB, while the RSSI values are notably concentrated around −118 dBm. These
findings suggest that the majority of devices are in fixed geographical positions.

Spreading Factor (SF), Bandwidth (BW), and Payload Length

Figure 3e shows the distribution of SF and BW values in the sample. Our analysis
shows that the most common configuration uses a Spreading Factor (SF) of 12 and Band-
width (BW) of 125, which is related to the fact that the Adaptive Data Rate (ADR) bit is
active in frame control. Indicating that it intends to make ADR, the network server is able
to change the SF, BW, or transmission power of the device in order to optimise binary
throughput, propagation time, and power consumption. Figure 3f indicates the distribution
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of payload lengths in the sample. The payload lengths predominantly cluster around
70 bytes.

(a) SNR values (db) (b) RSSI values (dBm)

(c) SNR values (db) for device 0000BF53 (d) RSSI values (dBm) for device 0000BF53

(e) SF and BW (f) Payload length (bytes)

Figure 3. Dataset characteristics.

3.2.2. Parameter Correlations

To assess the utility of various parameters for our learning model, we conducted an
inter-parameter correlation analysis. Figure 4 illustrates the derived Phik correlations,
providing insight into the relationships between categorical and ordinal variables within
our dataset. This correlation method is designed to work with mixed data types. The
advantages include working with both continuous and categorical variables, handling
non-linear relationships, and being less sensitive to outliers [27].

The correlation analysis revealed several key findings that inform our understanding
of the data structure and its implications for our model. As anticipated, the parameters
demonstrated the highest correlations with themselves, serving as a baseline for comparison.
As expected, we observed a strong inter-correlation between the “chan” (channel) and
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“freq” (frequency) parameters, which is consistent with their representation of essentially
the same information in different formats.

Figure 4. Phik correlation between different variables of the dataset.

Of particular interest was the behaviour of the payload size parameter “data”. This
parameter exhibited elevated correlations with several signal metrics, including “snr”
(signal-to-noise ratio), “datr” (data rate), and “rssi” (received signal strength indicator).
This relationship aligns well with the fundamental principles of LoRaWAN functionality,
where payload size can influence and be influenced by various transmission characteristics.

Interestingly, the timestamp parameter “tmst” stood out for its lack of correlation
with any other parameter when considered in isolation. This independence suggests
that temporal factors in our dataset may not have a strong direct relationship with other
measured variables, potentially indicating consistent network behaviour over time or the
need for more complex temporal analysis (e.g., periodicity) in future work.

These correlation findings provide valuable insights into the interdependencies within
our dataset and will guide our feature selection and model development processes in
subsequent stages of our research.

3.3. System Components

Our implemented intrusion detection system comprises three main components: an
open-source Intrusion Detection System (IDS), a database, and Python 3.8 or higher soft-
ware for executing machine learning algorithms. This section details each component and
its role within the system.

3.3.1. Open-Source IDS: Suricata

In the selection of an Intrusion Detection System (IDS) for our LoRaWAN security
implementation, we conducted a comprehensive evaluation of various open-source options,
including Snort and Zeek [28,29]. After careful consideration, Suricata emerged as the
optimal choice due to its unique combination of features and capabilities that align closely
with the requirements of our research.

Suricata’s robust packet-level analysis capabilities enable detailed examination of
network traffic through signature-based intrusion detection (SIDS).

The architecture of Suricata offers several advantages that are particularly relevant to
our research objectives. Its multi-threading support, designed to fully utilize multi-core
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processors, enables efficient processing of high-volume traffic—a feature especially bene-
ficial for scalable LoRaWAN deployments. Furthermore, Suricata’s extensibility through
Lua scripting facilitates seamless integration with databases and supplementary Python
scripts, allowing us to tailor the IDS specifically to LoRaWAN protocol characteristics. This
feature aligns well with our research approach, which aims to enhance detection capabilities
through advanced analytical techniques. This support streamlines the incorporation of
our custom machine learning models, potentially improving the overall effectiveness of
our IDS.

Performance considerations also played a significant role in our selection process.
Benchmark studies have demonstrated Suricata’s competitive performance in terms of
throughput and detection capabilities when compared to alternatives such as Snort. This
performance edge is critical for maintaining the efficiency of our intrusion detection system
in real-world LoRaWAN environments.

Additionally, the active open-source community and comprehensive documenta-
tion surrounding Suricata provide valuable resources for ongoing development and trou-
bleshooting. This ecosystem support is crucial for the long-term viability and improvement
of our research implementation.

While other IDS solutions like Snort offer comparable features, Suricata’s unique
combination of performance, extensibility, and community support made it the most
suitable choice for our LoRaWAN-focused implementation. The ability to seamlessly
extend Suricata’s functionality through Lua scripts and integrate it with our custom Python-
based machine learning models was a decisive factor, aligning closely with our research
methodology and objectives.

3.3.2. Database: CrateDB

For the database component of our system, we evaluated several time-series databases
including InfluxDB, TimescaleDB, and CrateDB. We ultimately selected CrateDB, as it best
aligns with the specific requirements of our research [30]. CrateDB’s SQL-based architecture
was a key factor in our decision, as it employs familiar SQL syntax for query operations
and data management while providing built-in time-series optimization. This combination
offers an ideal balance of usability and performance for analysing temporal patterns
in LoRaWAN traffic compared to the custom query languages required by alternatives
like InfluxDB.

The scalability of CrateDB was another important consideration, given the potential
high message volume characteristic of LoRaWAN networks. Its distributed architecture
allows for seamless scaling across nodes, which is crucial for handling large-scale de-
ployments that may involve thousands of devices. While TimescaleDB offers similar
scaling capabilities, CrateDB’s design provides additional flexibility in managing large
data volumes, which is essential for processing and analysing the extensive network traffic
generated in our study.

Furthermore, CrateDB’s optimization for time-series data proved particularly relevant
to our research needs. This feature aligns well with the temporal nature of network traffic
data, enabling more effective storage and retrieval of time-stamped information. The
database’s support for real-time querying and analysis is essential for our IDS implementa-
tion, enabling rapid detection of potential security threats. Additionally, CrateDB’s ability
to handle both structured and semi-structured data accommodates the varying metadata
parameters in LoRaWAN packets while maintaining query performance.

These features collectively provide a robust foundation for managing and analysing
the complex data generated in our LoRaWAN security research, supporting both our
current analytical needs and potential future expansions of our work.

3.3.3. Machine Learning: Python Programs

For the implementation of our machine learning algorithms, we utilized Python due
to its robust ecosystem of libraries and frameworks designed for data analysis and model
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development. This choice allowed us to leverage powerful tools throughout our research
process, from initial data processing to final model deployment. Our data preprocessing
phase employed custom Python scripts to extract and prepare relevant parameters from
the LoRaWAN packets. These scripts were designed to efficiently handle the unique charac-
teristics of LoRaWAN data, ensuring that the extracted features were optimally formatted
for subsequent analysis and model training. For model training and evaluation, we primar-
ily utilized the scikit-learn library [31], a widely-recognized tool in the machine learning
community. Scikit-learn provided us with a comprehensive set of algorithms (e.g., KNN)
and evaluation metrics, enabling us to develop and assess our intrusion detection models.
This approach allowed for systematic comparison of different modelling techniques and
hyperparameter configurations. The final component of our Python-based machine learn-
ing implementation focused on real-time classification. We developed Python programs
capable of performing rapid classification of incoming packets based on our trained models.
This real-time processing capability is crucial for the practical application of our intrusion
detection system in live LoRaWAN environments. By utilizing Python throughout our
machine learning pipeline, from data preprocessing to real-time classification, we were
able to create a cohesive and efficient system for LoRaWAN intrusion detection. This
integrated approach facilitated seamless data flow between different stages of our anal-
ysis and allowed for flexible iteration and improvement of our models throughout the
research process.

3.3.4. K-Nearest Neighbours (KNN) Algorithm

For our intrusion detection system, we selected the K-Nearest Neighbours (KNN)
algorithm due to its demonstrated effectiveness in classification tasks and its particular
suitability for the characteristics of LoRaWAN network data. KNN is a non-parametric,
instance-based learning algorithm that has shown robust performance in various network
security applications [12,18]. Non-parametric models offer advantages in security threat
detection through their ability to identify attack patterns. Unlike parametric models, which
rely on fixed parameters and distributions, implementations like K-nearest neighbours and
decision trees adapt dynamically to new attack signatures [32].

The selection of KNN was based on several key factors that align well with the re-
quirements of our research. Firstly, the simplicity and interpretability of KNN’s approach
facilitate easy implementation and interpretation, which is crucial for the ongoing main-
tenance and updating of the IDS. This transparency in decision-making is particularly
valuable in security applications where understanding the rationale behind classifications
is often as important as the classifications themselves.

KNN’s effectiveness with smaller datasets was another significant consideration.
LoRaWAN networks typically generate less-voluminous data (per device) compared to
traditional IP networks, and KNN’s ability to perform well with limited training data
makes it particularly suitable for our use case. This characteristic allows us to develop
effective models, even in scenarios where extensive historical data may not be available.

The algorithm’s natural ability to handle multi-class problems was also a key factor
in our decision. This capability is beneficial for distinguishing between various types of
network behaviours and potential intrusions, allowing for more nuanced classification
beyond simple binary (normal/intrusion) categorization.

Furthermore, KNN’s status as a lazy learning algorithm, requiring minimal training
time, aligns well with the dynamic nature of network security. This low training overhead
allows for quick adaptation to new patterns in network traffic; a crucial feature in the
rapidly evolving landscape of cybersecurity threats.

Lastly, KNN’s suitability for continuous learning was a significant advantage. The
algorithm can easily incorporate new instances, facilitating ongoing learning and adaptation
to evolving network conditions. This feature is particularly valuable in the context of
LoRaWAN networks, where new devices and usage patterns may emerge over time.
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While we considered other machine learning algorithms such as Support Vector
Machines (SVMs) and random forests, KNN’s balance of simplicity, effectiveness, and
adaptability made it the most suitable choice for our LoRaWAN intrusion detection system.
Our implementation builds upon the work of Liao and Vemuri [18], who demonstrated
KNN’s effectiveness in network intrusion detection, and extends it to the specific context of
LoRaWAN networks. This approach allows us to leverage proven methodologies while
adapting them to the unique characteristics of LoRaWAN environments.

3.3.5. System Integration

Figure 5 illustrates how these components interact within our system:

1. Suricata analyses incoming network packets and triggers the preprocessing module.
2. The preprocessing module extracts relevant parameters from LoRaWAN packets

relayed by the packet forwarder.
3. Python scripts insert the processed data into the CrateDB database.
4. Machine learning models, implemented in Python, analyse the data stored in CrateDB

to detect potential intrusions.
5. The results of the analysis are fed back into Suricata for alert generation and further action.

Data Processing

Preprocessing Module

Python Scripts

CrateDB

Machine Learning ModelsLoRaWAN Network

Suricata IDS

Alert System

Packets

Trigger

Extracted Parameters

Insert Data

Retrieve Data

Analysis Results

Alerts

Figure 5. Functional architecture.
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This integrated approach allows for efficient, real-time intrusion detection in Lo-
RaWAN networks, combining the strengths of signature-based detection (through Suricata)
with the adaptability of machine learning-based anomaly detection.

3.4. Evaluation Setup

This section details the step-by-step process of implementing our Intrusion Detection
System (IDS) for LoRaWAN networks. We describe the configuration of Suricata, the packet
classification process, and the integration of our machine learning model.

3.4.1. Suricata Configuration

Our Suricata configuration was tailored to detect and analyse LoRaWAN packets
efficiently. The configuration process involved three key components: signature implemen-
tation, Lua script integration, and Python integration.

For signature implementation, we developed a custom signature specifically designed
to identify LoRa gateway packets destined for the network server. This signature serves as
the initial filter for incoming network traffic, ensuring that only relevant LoRaWAN packets
are processed further.

Upon detection of a matching signature, our system triggers a Lua script for prepro-
cessing. This script is responsible for initial parsing and preparation of the received packet
contents, extracting relevant features for subsequent analysis.

The final stage of our configuration utilizes Python for database integration. We
chose Python due to its comprehensive libraries, which facilitate efficient insertion of
preprocessed parameters into our CrateDB database.

Our current implementation processes packets individually as they traverse from
the gateway to the network server. While bulk processing might seem more efficient in
other contexts, the relatively low data rates characteristic of LoRaWAN networks make this
packet-level analysis approach feasible. To optimize performance and minimize intrusion
detection latency, we leverage Suricata’s multi-core CPU processing capabilities.

3.4.2. Packet Classification Process

The packet classification process in our system follows a structured approach designed
to efficiently identify potential intrusions in LoRaWAN traffic. This process is initiated
when Suricata flags a new packet, triggering our custom classification algorithm.

Upon detection of a new packet, the system retrieves the corresponding pre-trained
model from our database, based on the packet’s DevAddr. This device-specific model,
trained on historical data, forms the basis for our classification.

The core of our classification process is the probability prediction phase, where our
prob_predict function evaluates the likelihood of the packet being an intrusion. This
function applies the retrieved model to the packet’s features, generating a probability score.

The classification decision is then made based on this probability score. Packets with a
probability exceeding 50% are classified as intrusions, prompting a Suricata alert and an
update to the database flag. For probabilities between 0% and 50%, the system marks the
packet for manual review, allowing for human verification of borderline cases. Packets with
a 0% probability are classified as normal traffic and require no further action. This tiered
approach to classification allows for a nuanced treatment of network traffic, balancing
automated detection with human oversight for ambiguous cases. Figure 6a provides a
visual representation of this classification process, illustrating the decision flow from initial
packet detection to final classification.
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Figure 6. Packet classification flowcharts.

3.4.3. Model Retraining Process

To maintain the effectiveness of our intrusion detection model over time, we have
implemented a retraining process that allows for periodic updates. This process is designed
to adapt the model to potential changes in network behaviour and emerging threat patterns.
The current implementation focuses on core functionality of model retraining and updating,
as illustrated in Figure 6b.

The retraining process begins with data retrieval from our database, specifically
accessing the most recent data for the device in question. This step ensures that the model
is updated with the latest available information, potentially capturing new patterns or
behaviours that have emerged since the previous training session.

Following data retrieval, the model retraining phase is executed using the fit function.
This process updates the model’s parameters based on the new data, enabling it to adapt to
changes in the network’s behaviour or threat landscape. Once retraining is complete, the
newly trained model is stored in the database, replacing the previous version to ensure all
future predictions utilize the most current model.

Currently, the initiation of the retraining process is manual, providing flexibility in
determining when updates are necessary. This approach allows system administrators to
schedule retraining based on various factors such as significant changes in network infras-
tructure, the emergence of new threat types, or as part of regular maintenance routines.

While our current implementation does not include an automated confidence scor-
ing system, it establishes a foundation for maintaining model relevance over time. The
straightforward nature of this approach facilitates quick updates when needed, ensuring
the intrusion detection system can adapt to evolving network conditions.

Future enhancements may include the implementation of automated triggers for
retraining based on performance metrics or time intervals. However, the current manual
initiation allows for careful control and observation of the retraining process, providing
valuable insights into the model’s behaviour and the network’s changing characteristics
over time.

This retraining methodology aims to balance the need for model adaptability with the
requirement for controlled and interpretable updates in the context of network security.
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3.4.4. Initial Training Phase

Our implemented model requires an initial training phase on normal network traffic
and behaviour. This phase establishes baseline metrics, enabling the system to detect
deviations that may constitute intrusions. Only after this initial learning period can the
model accurately distinguish between expected and suspicious activity.

3.4.5. Relevant Parameters

Table 1 lists the key parameters we use for intrusion detection:

Table 1. Relevant parameters for intrusion detection.

Parameter Description

tmst Timestamp
latitude Gateway latitude
longitude Gateway longitude
chan Communication channel
bw Bandwidth
sf Spreading factor
rssi Received signal power
snr Signal-to-noise ratio
chanlenpayload Payload length in bytes
payload Payload content
flag Intrusion indication

The “flag” parameter is initially set by Suricata to classify the packet as non-intrusive.
After analysis by our algorithm, this flag may be updated to indicate an intrusion if detected.

This implementation process ensures a comprehensive and adaptive approach to
intrusion detection in LoRaWAN networks, combining the strengths of signature-based
anomaly detection with machine learning-based anomaly detection.

3.5. Edge Computing Implementation

This section details the adaptation of our Intrusion Detection System (IDS) for edge
computing environments, highlighting the benefits and challenges of this approach in the
context of LoRaWAN networks.

3.5.1. Edge Computing in LoRaWAN Context

Edge computing adopts a decentralized data processing approach, strategically de-
ploying computing resources near data sources. In our LoRaWAN context, this localizes
processing to the ingress via LoRaWAN gateways. This approach offers several advantages,
including reduced latency, improved privacy, enhanced security, and increased real-time
throughput capabilities. The traditional LoRaWAN architecture does not support this
model, requiring data to be reported back to a central application server. To achieve this,
we had to change the architecture to allow a minimal network server service at/near the
LoRaWAN gateways. This allows for intrusion detection at the payload level. However, our
work is focused more on intrusion detection considering an encrypted payload; therefore,
we have not included the decrypted payload as one of the parameters for the IDS, which
also allows for a more direct comparison between the two scenarios.

3.5.2. Architecture for Edge Computing

Implementing our IDS in an edge environment necessitates incorporating autonomous
detection within each gateway. Figure 7 illustrates this architecture:

In this architecture, sensors connect to gateways via LoRa radio technology. The data
are then received by an edge computing platform, ideally housed within the LoRaWAN
gateway, where it they are decrypted and processed. A central system connects all edge
computing platforms within the network, facilitating coordination and data sharing.
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Figure 7. Schematic of LoRaWAN connection between sensors and the network using an edge
computing environment.

3.5.3. Role of the Central Synchronization Server

The central server plays a crucial role in maintaining synchronization among the vari-
ous edge computing nodes. It enables the sharing of vital information such as device EUIs,
network IDs, network keys, and application keys among all gateways and edge computing
platforms. Additionally, it facilitates Over-the-Air Activation (OTAA) authentication, a
fundamental component of the LoRaWAN protocol, ensuring all edge computing platforms
and gateways are aligned with necessary network parameters.

3.5.4. Benefits and Challenges of Edge Computing in IDS

Implementing our IDS in an edge computing environment offers several advantages.
It reduces latency by processing data at the edge, eliminating delays associated with trans-
mitting the data to a central server for analysis. The approach improves reliability, as each
gateway functions independently, ensuring continued operation even if connectivity to the
central synchronization server is lost. It also enhances security by allowing sensitive data
to be processed locally, reducing the risk of interception during transmission. Furthermore,
edge computing enables real-time analysis of LoRaWAN traffic, allowing for immediate
detection and response to potential intrusions.

However, edge computing also presents challenges. Edge devices may have limited
computational resources compared to centralized servers, necessitating careful optimization
of our machine learning models and algorithms. Ensuring all edge devices have up-to-
date intrusion detection models can be challenging, requiring efficient model distribution
mechanisms. Coordinating intrusion detection across multiple edge devices demands
careful system design. Moreover, edge devices themselves may become targets for attacks,
requiring additional security measures.

3.5.5. Implementation Considerations

When implementing our IDS in an edge computing environment, we consider several
key factors. We focus on resource optimization, ensuring our machine learning models
and algorithms run efficiently on resource-constrained edge devices. We implement a
distributed learning approach where edge devices can contribute to model improvement
without centralizing all data. Secure communication is prioritized, with all communication
between edge devices and the central synchronization server being encrypted and authen-
ticated. Lastly, we implement fallback mechanisms to ensure continued operation in case
of connectivity issues with the central synchronization server.

By addressing these considerations, we can leverage the benefits of edge computing
to create a more efficient, responsive, and robust intrusion detection system for LoRaWAN
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networks. This approach allows us to harness the power of localized processing while
maintaining the coordination and oversight benefits of a centralized system.

3.6. Assumptions and Limitations

The development and implementation of our Intrusion Detection System (IDS) for
LoRaWAN networks is predicated on several key assumptions and is subject to certain
limitations. Understanding these factors is required for interpreting the system’s capabilities
and results, as well as for identifying areas for future research and improvement.

Our IDS implementation assumes the availability of a period of normal network
traffic for initial model training. This assumption is fundamental to establishing baseline
behaviour patterns against which potential intrusions can be detected. The importance of
this initial training period cannot be overstated, as it directly impacts the system’s ability to
accurately distinguish between normal and anomalous network behaviour. However, this
assumption also presents a challenge in dynamic network environments where ’normal’
may be a moving target.

Another significant assumption is the relative stability of the network topology. While
LoRaWAN networks are generally more static compared to some other wireless network
types, any substantial changes in network structure may necessitate model retraining. This
assumption highlights the need for adaptive learning mechanisms in future iterations of
the system to accommodate network evolution without compromising detection accuracy.

The system also operates under the assumption of consistent device behaviour over
time. This premise allows for the establishment of behavioural profiles for legitimate
devices, with significant deviations from these profiles serving as potential indicators of
intrusion. However, this assumption may not hold in all cases, particularly for devices
with legitimately variable behaviour patterns, potentially leading to false positives.

In terms of limitations, our current implementation faces challenges in detecting highly
sophisticated, adaptive attacks that gradually alter their behaviour to mimic legitimate
traffic patterns. This limitation is common to many machine learning-based security
systems and underscores the ongoing arms race between security measures and evolving
attack methodologies. Addressing this limitation will require the development of more
nuanced, possibly unsupervised learning techniques that can detect subtle, long-term
behavioural shifts.

False positives represent another significant limitation of our system, as with many
IDS implementations. While our approach strives to minimize false alarms, the system
may still flag legitimate but unusual network behaviour as potentially malicious. This
limitation highlights the delicate balance between sensitivity and specificity in intrusion
detection, as well as the need for continuous model tuning and refinement based on
operational feedback.

The system’s reliance on metadata and traffic pattern analysis, while preserving data pri-
vacy, also limits its effectiveness against attacks that do not significantly alter these observable
characteristics. This constraint is particularly relevant in the context of encrypted communi-
cations, where payload analysis is not feasible. Future research could explore methods of
incorporating encrypted payload analysis without compromising data confidentiality.

Scalability presents another challenge, particularly in large-scale LoRaWAN deploy-
ments. The volume of data and number of devices in such deployments may strain
computational resources, especially in edge computing implementations. This limitation
points to the need for more efficient algorithms and possibly hierarchical or distributed
processing approaches to manage large-scale networks effectively.

Lastly, the effectiveness of our machine learning models is inherently dependent on
the quality and quantity of available historical data. In scenarios with limited or non-
representative historical data, the system’s detection accuracy may be compromised. This
limitation underscores the importance of data collection and curation in the deployment of
machine learning-based security systems.
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Looking ahead, our research will focus on addressing these limitations and expanding
the system’s capabilities. Key areas for future work include the development of more
adaptive models that are capable of automatically adjusting to gradual changes in network
behaviour, the implementation of advanced techniques for false positive reduction, the
exploration of privacy-preserving methods for encrypted payload analysis, the investiga-
tion of distributed learning techniques for improved scalability, and the development of
strategies for effective operation with limited historical data.

In conclusion, while our IDS for LoRaWAN networks represents a significant step
forward in securing these increasingly important networks, it is crucial to understand its
underlying assumptions and current limitations. This understanding not only allows for
more effective deployment and interpretation of results but also guides the direction of
future research and development efforts in this critical area of network security.

4. Results and Discussion

This section presents the experimental results of our proposed Intrusion Detection
System (IDS) for LoRaWAN networks, implemented in two distinct environments: a
conventional network-connected server and an edge computing platform. We evaluate the
performance of our machine learning-based approach using standard metrics including
accuracy, recall, and F1 score. The analysis is divided into two main parts: first, we examine
the results from the centralized server environment, then we explore the performance in the
edge computing scenario. For each environment, we provide both quantitative assessments
and qualitative interpretations of the data. Finally, we offer a comparative analysis of the
two approaches, highlighting their respective strengths and limitations in the context of
LoRaWAN security.

4.1. Experimental Setup

Our experiments were conducted in two distinct environments to evaluate the perfor-
mance and scalability of the proposed intrusion detection system:

1. Conventional network-connected server: This setup represents a traditional central-
ized architecture where all packet analysis is performed on a single server connected
to the LoRaWAN network.

2. Edge computing platform: In this configuration, the IDS is implemented directly on
LoRaWAN gateways, enabling localized packet analysis and intrusion detection at the
network edge.

The IDS employs a KNN algorithm for anomaly detection, trained on features extracted
from LoRaWAN packet metadata, including signal strength (RSSI), signal-to-noise ratio
(SNR), and packet size. For the edge computing environment, we also incorporated gateway
GPS location data to account for its mobility.

We have established two datasets for each scenario, were each dataset is comprised of
all the messages for a single device. Each dataset was split into a training set (70% of the
messages) and a test set (30% of the messages).

On the test dataset, we introduced variations in packet size, SNR, and RSSI. These
variations were intentionally introduced to represent potential anomalies, as fixed sensors
typically exhibit limited fluctuations under normal conditions. Significant variations in
SNR and RSSI could indicate changes in device position, while alterations in bandwidth
and packet size might suggest modified messages or device configurations.

4.2. Performance Metrics

To comprehensively evaluate the effectiveness of our intrusion detection system, we
employed three standard performance metrics that are widely used in machine learning
and security applications:
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1. Accuracy: This metric represents the overall correctness of the model and is defined
as follows:

Accuracy =
NumberO f CorrectlyClassi f iedMessages

TotalNumberO f Messages
(1)

Accuracy provides a general measure of the model’s performance but can be mislead-
ing in cases of class imbalance.

2. Recall: Also known as sensitivity or the true positive rate, recall measures the model’s
ability to correctly identify all positive instances (in our case, intrusions). It is calcu-
lated as follows:

Recall =
NumberO f TruePositives

NumberO f ActualPositives
(2)

Recall is particularly important in intrusion detection, as it quantifies the system’s
capability to detect all potential threats.

3. F1 score: This is the harmonic mean of precision and recall, providing a balanced
measure of the model’s performance:

F1Score = 2 · Precision · Recall
Precision + Recall

(3)

where precision is defined as follows:

Precision =
NumberO f TruePositives

NumberO f PredictedPositives
(4)

The F1 score is valuable when seeking a balance between precision and recall, which
is crucial in intrusion detection to minimize both false positives and false negatives.

These metrics were chosen to provide a comprehensive view of our IDS performance.
Accuracy gives an overall performance measure, recall ensures we are not missing potential
intrusions, and the F1 score balances the trade-off between precision and recall. Together,
they offer a robust evaluation of the system’s effectiveness in both centralized and edge
computing environments.

4.3. Centralized Server Environment Results

This section presents the results of the IDS system when using the centralized
server approach.

4.3.1. Dataset Characteristics

For the centralized server environment, we used a subset of all messages from the
dataset comprising LoRaWAN packets selected for a single device. The dataset was further
divided as follows:

• Total messages: 590
• Training set: 413 messages (70%)
• Test set: 177 messages (30%)

4.3.2. Model Performance

Our machine learning-based IDS demonstrated robust performance in the central-
ized server environment. The overall classification accuracy consistently exceeded 90%,
indicating strong general performance. Specifically:

• Correctly classified non-intrusive messages: 556
• Accurately detected intrusions: 30
• Uncertain classifications: 4

4.3.3. Quantitative Analysis

We calculated the performance metrics as follows:
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Accuracy =
556 + 30

590
≈ 0.9932 or 99.32% (5)

Recall =
30
30

= 1.0 or 100% (6)

Precision =
30

30 + 3
≈ 0.9091 or 90.91% (7)

F1Score = 2 · 0.9091 · 1.0
0.9091 + 1.0

≈ 0.9524 or 95.24% (8)

These results indicate excellent performance, with perfect recall and high precision,
resulting in a strong F1 score.

4.3.4. Qualitative Analysis

Figure 8 illustrates the characteristics of the packets in our test dataset.
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Figure 8. Characteristics of the packets in the test dataset for the centralized server scenario.

Figure 9 displays the classification results for each packet. In this figure, the classifica-
tions are labelled as follows:

• 1: Non-suspicious packet
• 2: Suspicious packet (potential intrusion)
• 3: Uncertain classification

The model demonstrates robust performance in distinguishing between normal and
suspicious packets, even with the introduced variability in SNR and RSSI. This aligns
with the high accuracy and F1 score calculated in our quantitative analysis. The results
from the centralized server environment suggest that our IDS can effectively detect po-
tential intrusions in a LoRaWAN network, with high accuracy and recall. The system’s
ability to handle variations in packet characteristics while maintaining high performance is
particularly noteworthy.
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Figure 9. Intrusion detection results in the centralized server environment.

4.4. Edge Computing Environment Results

This section presents the results of the IDS system when used in the edge
computing environment.

4.4.1. Dataset Characteristics

In the edge computing scenario, we utilized a new subset of the dataset with the
following characteristics:

• Total messages: 595
• Training set: 417 messages (70%)
• Test set: 178 messages (30%)

In the current scenario, we simulated gateway mobility to assess the system’s per-
formance under dynamic conditions. This involved periodically changing the gateway’s
location during data collection and analysis, as shown in Figure 10.
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Figure 10. Locations of the gateway during the edge computing experiment.

4.4.2. Model Performance

The IDS implemented in the edge computing environment demonstrated good perfor-
mance, albeit with some challenges introduced by gateway mobility. The overall classifica-
tion accuracy was approximately 90%. Specifically:

• Correctly classified non-intrusive messages: 513
• Accurately detected intrusions: 25
• Uncertain or misclassified: 57

4.4.3. Quantitative Analysis

We calculated the performance metrics as follows:

Accuracy =
513 + 25

595
≈ 0.9042 or 90.42% (9)

Recall =
25
25

= 1.0 or 100% (10)
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Precision =
25
29

≈ 0.8621 or 86.21% (11)

F1 Score = 2 · 0.8621 · 1.0
0.8621 + 1.0

≈ 0.9259 or 92.59% (12)

These results indicate good performance, with perfect recall but lower precision
compared to the centralized environment, resulting in a slightly lower F1 score.

4.4.4. Qualitative Analysis

Figure 11 illustrates the characteristics of the packets in our edge computing test dataset.

0

5

10

15

20

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

Payload Size

(a) Payload size distribution (Bytes)

-5

0

5

10

15

1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

SNR

(b) Packet received SNR (dB)

-100

-80

-60

-40

-20

0

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

44
3

46
0

47
7

49
4

51
1

52
8

54
5

56
2

57
9

RSSI

(c) Packet RSSI (dBm)

Figure 11. Characteristics of the packets in the test dataset for the edge computing scenario.

This figure shows significant variations in RSSI and SNR due to the mobility of the
edge computing environment and sensors. These rapid changes pose challenges for the
model, as a sensor can experience a wider range of SNR and RSSI values compared to the
static centralized scenario.

Figure 12 displays the classification results for each packet in the edge environment.
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Figure 12. Intrusion detection results in the edge computing environment.
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As in the centralized environment, the classifications are labelled as follows:

• 1: Non-suspicious packet
• 2: Suspicious packet (potential intrusion)
• 3: Uncertain classification

The model maintains good performance in distinguishing between normal and suspi-
cious packets, but with an increased number of uncertain classifications compared to the
centralized environment.

The changing gateway positions contribute to the variations in RSSI and SNR observed
in Figure 11, presenting additional challenges for the IDS.

The results from the edge computing environment demonstrate that our IDS can effec-
tively detect potential intrusions in a mobile LoRaWAN network, maintaining high recall
but with reduced precision compared to the centralized setup. The system’s performance in
handling the increased variability introduced by mobility is promising, though it presents
opportunities for further optimization.

4.5. Comparative Analysis

To better understand the strengths and limitations of our IDS in different deployment
scenarios, we compare the performance metrics between the centralized server and edge
computing environments.

Table 2 summarizes the key performance metrics for both environments. Several
important observations can be made:

1. Accuracy: The centralized server environment achieved higher overall accuracy
(99.32% vs. 90.42%). This difference can be attributed to the more stable conditions in
the centralized setup, where network characteristics remain relatively constant.

2. Recall: Both environments maintained perfect recall (100%), indicating that the IDS
successfully identified all intrusions in both scenarios. This is a critical achievement
for a security system, as it suggests no threats were missed.

3. Precision: The centralized server showed higher precision (90.91% vs. 86.21%), mean-
ing it had fewer false positives. The lower precision in the edge environment can be
attributed to the challenges posed by mobility and varying signal strengths.

4. F1 score: The F1 scores, while both high, favour the centralized environment (95.24%
vs. 92.59%). This reflects the balance between the perfect recall in both scenarios and
the higher precision in the centralized setup.

Table 2. Performance comparison between centralized and edge computing environments.

Metric Centralized Server Edge Computing

Accuracy 99.32% 90.42%
Recall 100% 100%
Precision 90.91% 86.21%
F1 score 95.24% 92.59%

The impact of mobility on model performance is evident in the edge computing results.
The variations in RSSI and SNR due to changing gateway positions (as seen in Figure 11)
created more challenging conditions for accurate classification. This resulted in a higher
number of uncertain classifications and slightly lower precision.

However, it is important to note the trade-offs between these two approaches:

• Latency: The edge computing approach offers the potential for lower latency in threat
detection, as analysis occurs closer to the data source.

• Scalability: Edge computing can provide better scalability for large LoRaWAN de-
ployments by distributing the computational load.

• Robustness: The edge approach may offer greater robustness in scenarios with unreli-
able network connectivity to a central server.
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• Accuracy: The centralized approach currently offers higher accuracy and precision, ben-
efiting from a more stable environment and potentially more computational resources.

While the centralized server environment showed superior performance in terms of
accuracy and precision, the edge computing approach demonstrated resilience in a more
challenging, mobile scenario. The ability to maintain perfect recall and achieve a high
F1 score in the edge environment is particularly noteworthy, suggesting that our IDS can
effectively adapt to the dynamic conditions of mobile LoRaWAN deployments.

4.6. Computational Requirement Analysis

To evaluate the practical applicability of our KNN-based IDS in dynamic conditions,
we analysed its computational requirements based on our implementation data:

• Memory requirements: The KNN model’s memory footprint consists primarily of
training data storage, requiring approximately O(nd) of space [33], where n is the
number of training samples (417 messages in our implementation) and d is the number
of features (9 parameters per message, as detailed in Table 1).

• Algorithmic complexity: Our implementation has a search complexity of O(d log N),
where N is the number of training samples. With our training dataset of 417 messages,
this logarithmic complexity ensures efficient classification operations. This efficiency
is particularly relevant given that real-world LoRaWAN deployments typically have
low message rates due to duty cycle restrictions and the nature of IoT applications.

• Message processing rate: In practical LoRaWAN deployments, the message process-
ing requirements are manageable due to:

1. LoRaWAN duty cycle restrictions (1% for uplinks in EU868 band);
2. Typical IoT application patterns with periodic, rather than continuous, transmissions;
3. The inherent characteristics of Class A LoRaWAN devices, which limit transmis-

sion frequency.

• Model updates: For dynamic conditions with mobile gateways, our implementation
supports model retraining, as shown in Figure 6b, with the retraining process handling
the modest dataset efficiently due to its logarithmic complexity.

These computational requirements proved sufficient for maintaining the 90.42% ac-
curacy and 100% recall rates achieved in our edge computing experiments, even with
gateway mobility, as shown in Figure 10. The system successfully processed all 595 mes-
sages in our test deployment, with the logarithmic complexity and naturally low message
rates of LoRaWAN making it suitable for real-world applications with similar scales and
mobility patterns.

4.7. Limitations and Challenges

While our intrusion detection system demonstrated promising results in both central-
ized and edge computing environments, it is important to acknowledge the limitations of our
study and the challenges encountered during experimentation. These constraints not only
contextualize our findings but also highlight areas for future research and improvement.

A primary limitation of our study lies in the dataset characteristics. Although de-
rived from real-world LoRaWAN deployments, our dataset was relatively small for each
device, comprising 590 messages for the centralized environment and 595 for the edge
environment. This limited sample size may impact the generalizability of our results to
larger, more diverse LoRaWAN networks. Additionally, the intrusions in our dataset were
simulated based on known attack patterns, which may not fully capture the subtleties of
real-world attacks.

In our edge computing scenario, we simulated gateway mobility using discrete posi-
tion changes rather than continuous movement. While this approach provided valuable
insights into the challenges of mobile deployments, it may not fully represent the com-
plexities of real-world mobile LoRaWAN applications. Future work should consider more
diverse and complex movement patterns to better reflect real-world scenarios.
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The performance metrics used in our study, while standard in machine learning
evaluations, may have limitations in the context of network security. The high accuracy
achieved, particularly in the centralized environment, could be partially attributed to class
imbalance in our dataset. Future research should consider metrics that are more robust to
class imbalance, such as the Matthews Correlation Coefficient (MCC). Furthermore, while
we discussed potential latency benefits of edge computing, our current metrics do not
directly measure or compare detection speed between the two environments.

Our edge computing implementation faced several challenges that warrant further in-
vestigation. Resource constraints of edge devices, including memory and processing power
limitations, were not fully accounted for in our experiments. The energy consumption of
running the IDS on possibly battery-powered edge gateways, a critical consideration for
practical LoRaWAN deployments, was not evaluated. Additionally, our current imple-
mentation does not address the challenge of efficiently and securely updating the machine
learning model across distributed edge devices.

The generalizability of our findings to different LoRaWAN configurations and en-
vironmental factors presents another limitation. Our experiments were conducted with
specific LoRaWAN settings, and the effectiveness of the IDS across different spreading
factors, device types, and classes requires further investigation. Moreover, the impact of
various environmental factors, such as urban versus rural settings or indoor versus outdoor
deployments, on the IDS performance was not extensively explored in this study.

Addressing these limitations and challenges presents opportunities for future research
and improvements to our LoRaWAN intrusion detection system. Despite these constraints,
the current results provide valuable insights into the potential of machine learning-based
intrusion detection for both static and mobile LoRaWAN deployments. Future work
should focus on expanding the dataset, developing more sophisticated mobility models,
investigating the impact of different LoRaWAN configurations and environmental factors,
and addressing the specific challenges of edge computing in IoT security contexts.

5. Conclusions

This study presents a novel and effective approach to intrusion detection in LoRaWAN
networks using machine learning techniques, successfully implemented and evaluated in
both centralized and edge computing environments. Our findings demonstrate the robust
capability of the proposed Intrusion Detection System (IDS) in identifying potential security
threats, achieving impressive accuracy and recall rates in both static and mobile scenarios.
The centralized approach exhibited exceptional performance, with 99.32% accuracy and
an F1 score of 95.24%, while the edge computing implementation demonstrated strong
resilience under mobile conditions, achieving 90.42% accuracy and an F1 score of 92.59%.
These results strongly validate the potential of machine learning-based intrusion detection
for enhancing LoRaWAN security, particularly in diverse and dynamic IoT deployments.

Our research has identified valuable opportunities for further advancement of this
promising technology. While the edge computing implementation shows strong potential,
particularly in handling mobile scenarios, there are opportunities to enhance its precision be-
yond the current 86.21% to match the centralized environment’s 90.91%. This improvement
potential highlights the exciting possibilities for developing more sophisticated algorithms
that are specifically tailored to mobile LoRaWAN deployments.

The successful implementation of our system provides a strong foundation for scaling
to larger LoRaWAN deployments. Our edge computing approach has demonstrated the
viability of distributed processing, opening up promising avenues for handling extensive
IoT networks efficiently. The insights gained from our implementation with real-world
data, though currently focused on specific device samples, provide valuable guidance for
expanding to more diverse deployment scenarios.

Building on these successful outcomes, we identify several promising directions for
future research:
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• Enhanced mobility support: Development of advanced machine learning techniques
to further optimize performance in mobile LoRaWAN deployments, building on our
current strong results to achieve even higher precision in dynamic environments.

• Scalability advancement: Exploration of innovative hierarchical and distributed pro-
cessing architectures to extend our successful approach to larger-scale LoRaWAN de-
ployments while maintaining the high detection accuracy demonstrated in this study.

• Resource optimization: Refinement of our implementation for edge devices, focusing
on maintaining high performance while optimizing resource utilization, building on
our current effective edge computing approach.

• Extended validation: Expansion of our successful testing approach to include a
broader range of deployment scenarios and device types, further validating and
enhancing our system’s effectiveness.

• Environmental adaptation: Investigation of performance optimization across various
deployment environments, leveraging our current strong results to develop even more
adaptive and robust solutions.

• Continuous improvement: Development of efficient methods for model updates in
distributed environments, ensuring our system remains effective as threats evolve.

In conclusion, this work contributes to IoT security by demonstrating the effectiveness
of machine learning-based intrusion detection for LoRaWAN networks in both centralized
and edge computing paradigms. Our results show that high-performance intrusion detec-
tion is achievable in both static and mobile scenarios, providing a strong foundation for
securing modern IoT networks. As IoT deployments continue to expand and evolve, the
insights and methodologies developed in this study offer valuable guidance for the contin-
ued advancement of security measures for LoRaWAN and similar LPWAN technologies.
The promising results and identified opportunities for enhancement point to an exciting
future in IoT network security, where even more robust and adaptable solutions can be
developed building on this work.
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