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Abstract: In the evolving landscape of computer vision, the integration of machine learning algo-
rithms with cutting-edge hardware platforms is increasingly pivotal, especially in the context of
disruptive healthcare systems. This study introduces an optimized implementation of a Convo-
lutional Neural Network (CNN) on the Basys3 FPGA, designed specifically for accelerating the
classification of cytotoxicity in human kidney cells. Addressing the challenges posed by constrained
dataset sizes, compute-intensive AI algorithms, and hardware limitations, the approach presented in
this paper leverages efficient image augmentation and pre-processing techniques to enhance both
prediction accuracy and the training efficiency. The CNN, quantized to 8-bit precision and tailored for
the FPGA’s resource constraints, significantly accelerates training by a factor of three while consuming
only 1.33% of the power compared to a traditional software-based CNN running on an NVIDIA K80
GPU. The network architecture, composed of seven layers with excessive hyperparameters, processes
downscale grayscale images, achieving notable gains in speed and energy efficiency. A cornerstone
of our methodology is the emphasis on parallel processing, data type optimization, and reduced logic
space usage through 8-bit integer operations. We conducted extensive image pre-processing, includ-
ing histogram equalization and artefact removal, to maximize feature extraction from the augmented
dataset. Achieving an accuracy of approximately 91% on unseen images, this FPGA-implemented
CNN demonstrates the potential for rapid, low-power medical diagnostics within a broader IoT
ecosystem where data could be assessed online. This work underscores the feasibility of deploy-
ing resource-efficient AI models in environments where traditional high-performance computing
resources are unavailable, typically in healthcare settings, paving the way for and contributing to
advanced computer vision techniques in embedded systems.

Keywords: computer vision; applied artificial intelligence; IoT for healthcare; CNN; integer-based
architecture

1. Introduction

The recent advancements in machine learning (ML) techniques and their integration
into computer vision have become increasingly prominent, offering transformative benefits
for medical research and treatment. In particular, CNNs have emerged as a highly effective
approach for various image-based tasks, including medical image classification and diagno-
sis. CNNs excel at identifying patterns and features in image data, making them invaluable
for medical applications where accurate image analysis is crucial [1]. The advent of special-
ized hardware, such as Field-Programmable Gate Arrays (FPGAs), has further enhanced the
capabilities of CNNs by providing a platform for accelerated computation and improved
energy efficiency [2]. Deploying CNNs on FPGAs marks a significant advancement in
the field of medical image analysis. Traditional software implementations, while effective,
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are often limited by the processing speed and power consumption. In contrast, FPGAs
offer a flexible hardware solution that can be optimized for specific tasks, such as image
classification, resulting in faster processing times and reduced energy usage [3]. This paper
presents an optimized CNN implementation on a Basys3 FPGA designed specifically for
the classification of extracellular Ca2+ mutations in human proximal kidney cells (HK-2s).
The Basys3 FPGA device has a small form factor and is optimized for power efficiency. As
the CNN model proposed in this work is not too deep, it provides sufficient performance
and the model can fit well within the constraints of the Artix-7 architecture, offering fast
and parallelized computation at a low cost. Hence, the device used was selected primarily
for its balance between availability, affordability, and sufficient computational resources to
demonstrate the feasibility of an edge-compatible solution for medical diagnostics [4].

One of the main challenges addressed in this study is the utilization of a limited dataset
of light microscopy samples. Effective data augmentation and pre-processing are critical
in this context to maximize the utility of the available data and improve the performance
of the CNN. Techniques such as rotation, cropping, and histogram equalization were
employed to enhance the dataset’s quality and ensure that the CNN could achieve high
prediction accuracy. These pre-processing steps are essential for mitigating artefacts and
ensuring that the model can generalize well across different image conditions [5]. The use of
image augmentation techniques also helps in addressing the issue of overfitting, a common
problem when training deep learning models on small datasets [6]. The quantization of the
CNN to an 8-bit format was a key optimization strategy used to adapt the model for the
limited resources of the Basys3 FPGA. Quantization involves reducing the precision of the
model’s weights and activations, which can lead to significant reductions in memory usage
and computational requirements [7].

Despite the potential trade-off in accuracy, the careful design and optimization of the
quantized model can mitigate these effects and allow for efficient FPGA implementation.
Significant model pruning and data reallocation were performed to fit the CNN, with its
seven-layer architecture and 13,464 hyperparameters, into the FPGA’s block RAM (BRAM)
constraint. The performance of the FPGA-implemented CNN was evaluated against a
software-based CNN running on an NVIDIA K80 GPU [8]. The FPGA implementation
demonstrated a threefold increase in the initial training speed while consuming only 1.33%
of the power, approximately 4 watts. This substantial improvement in both speed and
power efficiency highlights the advantages of FPGA-based implementations, particularly
in scenarios where computational resources and power availability are limited for broader
IoT-based solutions. The low-power and high-speed capabilities of the FPGA make it an
attractive option for real-time medical diagnostics, where rapid and efficient analysis is
crucial [9]. This paper also discusses the broader implications of these advancements for
medical image classification. The ability to perform training and classification tasks on
unseen images with minimal hardware resources and power consumption is particularly
relevant in clinical settings where access to a high-performance computing infrastructure
is limited [10]. By optimizing the CNN architecture for FPGA deployment, this work
demonstrates a viable approach for achieving both speed and energy efficiency in low-
power medical diagnostics [11,12]. Integrating deep learning with FPGA technology
significantly advances medical image classification. The optimized CNN implementation
on the Basys3 FPGA not only enhances the training efficiency and power consumption but
also contributes to the broader understanding of hardware-specific adaptations in machine
learning. This approach has the potential to advance medical diagnostics by providing a
cost-effective and efficient IoT-based solution where imaging datasets could be hosted on
cloud platforms for analysis and diagnostics [13].

The primary objectives and significant contributions of this paper are as follows:

1. Quantizing the CNN to 8-bit precision and leveraging FPGA-specific optimization for
toxicity classification.

2. Demonstrating the use of FPGA technology for healthcare engineering and its poten-
tial in clinical settings.
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3. Offering a viable solution for real-time, low-cost medical diagnostics.

The rest of this paper is organized as follows: Section 2 presents the software design
and image pre-processing techniques. Section 3 discusses the hardware design, the forward
pass algorithm, caching, and backpropagation for training an integer-based CNN. Section 4
presents the hardware and software results, followed by the discussion, future work and
limitations, and conclusion in Sections 5–7, respectively.

2. Materials and Methods

When implementing the hardware-based Convolutional Neural Network (CNN), sev-
eral critical factors were considered to optimize both performance and efficiency. One of the
primary considerations was parallelism, a crucial aspect for accelerating CNN operations on
an FPGA. The FPGA’s architecture inherently supports parallel processing, which is ideal
for the parallelizable nature of CNN computations, including convolutions and pooling op-
erations [14]. By leveraging this parallelism, the design aimed to significantly enhance the
processing speed and overall efficiency. Another significant factor was the optimization of
data types. To address the constraints of FPGA resources, the CNN implementation utilized
8-bit integers for data representation. This quantization strategy was instrumental in re-
ducing the memory footprint and power consumption of the FPGA implementation. Prior
research has demonstrated that binary and fixed-point precision algorithms can achieve
high accuracy while optimizing hardware efficiency [15,16]. The use of 8-bit quantization
adopted in this research allowed for a more compact model that fits within the FPGA’s lim-
ited resources without a substantial loss of accuracy. This approach enables the CNN to be
effectively deployed on resource-constrained FPGA hardware. The speed and throughput
were also paramount in the design of the FPGA-based CNN. The implementation sought
to accelerate both the training and inference processes by employing techniques such as
pipelining and parallel processing. These methods maximize throughput by processing
multiple image segments simultaneously, thus reducing the overall computation time [17].
The FPGA-based CNN demonstrated a threefold increase in the training speed compared
to a software implementation running on a personal laptop HP ZBook containing NVIDIA
K80 GPU [8]. This reduction in the training time was achieved through efficient hardware
utilization and optimized computation [18]. Additionally, the reduction in the training time
was a critical objective. The FPGA implementation provides a significant advantage over
traditional software-based methods by minimizing the time required for model training.
The efficient use of FPGA resources, coupled with optimized computation techniques, facil-
itates faster training processes compared to conventional software implementations [19]. In
the data pre-processing stage, several techniques were applied to enhance feature extraction
and improve classification performance. For multiclass classification tasks, effective image
processing is essential for segmenting and highlighting relevant features within the images.
The pre-processing involved histogram equalization, enhancing contrast and improving
the features’ visibility. Then, median filtering was applied to reduce noise and preserve
important edges [20,21]. Afterwards, grayscale conversion was performed to simplify the
image data by focusing on intensity values, which reduces the computational complex-
ity [20]. These pre-processing steps not only enhance the quality of the input images but
also contribute to faster training times. By simplifying the data and reducing the need
for extensive computations, the pre-processing techniques act as a form of quantization,
optimizing the use of available FPGA resources [22]. The combination of these methods
ensures that the CNN can process high-quality data efficiently, leading to improved model
performance and a reduced training time.

To increase the diversity of the images, data augmentation was performed using
Keras’s “ImageDataGenerator” class. As shown in Figure 1, the image was randomly
rotated within a range of ±40 degrees, introducing rotational variation. It was horizontally
and vertically shifted by 20% of its width and height to incorporate slight repositioning.
Furthermore, shear transformations were applied to distort the image by zooming ran-
domly by 20%. The image was flipped horizontally to create a mirrored version of the
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original image, and the nearest pixel value was used to fill any new areas created by
these transformations. The results of the augmented image processing can be observed
in Figure 1. In this figure, only one sample of the highly stressed images is shown. How-
ever, the authors’ previously published work [8] provides a detailed description of the
data acquisition technique, as well as the image samples for normal, moderately stressed,
and highly stressed conditions. The original images were rotated by 45 degrees in both
clockwise and counter-clockwise directions. This rotation introduced artefacts around the
edges of the augmented images as illustrated in Figure 2. Furthermore, it was noted that
the pixel distributions of the non-cropped augmented images were too similar in range and
depth, which could hinder the efficiency of training with the custom CNN. To address this,
a histogram analysis of the pixel distribution was performed, highlighting the differences
between the cropped and non-cropped images as shown in Figure 2. The goal was to
ensure a more diverse and informative feature set for training, thus enhancing the CNN’s
ability to generalize from the data. Given the memory and computational constraints of our
low-power, cost-effective FPGA, it was crucial to extract as many meaningful features from
the dataset as possible. The dataset images, being of low resolution, necessitated the appli-
cation of specific image processing techniques. To improve the feature extraction process,
high-contrast and band-pass filters were employed to increase the pixel distribution levels.
These techniques were essential for creating a more distinct feature set and improving
the model’s performance. Additionally, methods such as segmentation and masking, as
detailed in previous works [23–25], were utilized to further refine the feature extraction
process. These techniques helped in isolating relevant features from the dataset images,
which is vital for effective training on a resource-constrained FPGA platform. The aim was
to optimize the image pre-processing pipeline to balance feature richness with the FPGA’s
limited computational resources, ultimately achieving a better classification performance.
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Figure 1. Augmented highly stressed image. Figure 1. Augmented highly stressed image.

Figure 2 illustrates the original augmented image rotated by 45 degrees. The rotation
introduces a stretching effect at the corners of the image, which can negatively impact both
the accuracy and speed of the training process. This distortion creates artefacts that may
interfere with the CNN’s ability to learn effectively. To address this issue, a histogram
analysis of the pixel values was performed. The histogram demonstrates the distribution
and separation of pixel values. By enhancing this separation, the goal was to improve
the contextual segmentation of the pixels, which helped in refining feature extraction and
boosting the overall performance of the CNN.
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Figure 3 illustrates the overall pipeline for the CNN training process, detailing the flow
from the user’s PC to the FPGA. All pre-processing tasks were performed on the client’s
PC using custom software, which applies various filters and augmentation procedures
to a large dataset. This software converts the grayscale images into 8-bit, 40 × 40 binary
images. The converted images are then saved to an SD card, which is inserted into the
FPGA. The performance evaluation of the SD card read operation is measured to be
approximately 62.5 µs per image. While this does add latency, the impact on the overall
throughput is mitigated by pipelining the data transfer process with the FPGA-based
CNN inference, ensuring minimal bottlenecks. This additional latency does not impact
the overall performance of the inference time needed for classification or training. The
FPGA is also connected to the PC and recognized by the custom software. The binary files
are organized sequentially, with the class labels aligned with the corresponding images.
These files are randomized and fed into the FPGA-based CNN for training. The training
process continues until a stopping condition is met, which is determined based on the loss
rate during backpropagation. Training halts when the loss rate does not decrease below
a specified threshold over five passes of the dataset. The proposed implementation of
the FPGA-based CNN focuses on local image processing for medical diagnostics. Future
work will expand its integration with the IoT ecosystem. Currently, medical image data are
transferred to the FPGA using an SD card, allowing for offline operation. To fully leverage
the benefits of the IoT, future work aims to extend the system to include cloud connectivity,
enabling seamless real-time data transmission. Cloud-based storage and processing would
facilitate remote monitoring and enable the aggregation of medical data, addressing key
challenges such as network connectivity, power consumption, and data scalability in IoT
environments. This future integration would enhance the scalability, accessibility, and
real-time capabilities of the proposed solution, making it more suitable for deployment in a
variety of healthcare settings.
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2.1. Model of the Custom CNN

The proposed custom CNN drew inspiration from the modified LeNet architecture, as
described in previous work [26]. This CNN was substantially scaled down to fit within the
memory constraints of the Basys3 FPGA. The input to the FPGA consists of 40 × 40 pre-
processed binary images. These images are processed in banks of 3 × 3 matrices, which slide
across the image to perform convolution operations, effectively emulating the convolutional
layer (Conv1) depicted in Figure 4. Following the Conv1 layer, a max pooling layer is
employed to reduce the number of lower value activations. This pooling operation shrinks
the output matrix, preparing it for further convolutional processing in the Conv2 layer,
which consists of 38 × 38 matrices to reduce the computational load and memory usage. It
was observed that reducing the size further leads to a loss of spatial details and important
features. This negatively impacts the model’s ability to distinguish between different classes
or detect fine-grained patterns in the image. If the matrix becomes too small, the network
might not have enough capacity to learn complex features, which could lead to overfitting if
the model becomes too tailored to the training data. The activations and pixel locations are
stored in weight matrices, which are updated with each pass of the dataset. A second max
pooling layer is applied to further decrease the number of activations, leading to the final
classification stage, which utilizes a softmax layer to determine the output categories. The
final classification results are categorized into three classes: normal, moderately stressed,
and highly stressed. The CNN model was first compiled and tested on a CPU and GPU using
MATLAB version 9.12 (R2022a) (https://www.mathworks.com/products/matlab.html).
These initial tests provided valuable performance benchmarks, which were subsequently
used to guide the HDL synthesis for FPGA implementation.

2.2. Flow Chart

Figure 5 illustrates the flowchart of the Basys3 CNN training process. The workflow is
divided into three distinct subprocesses: pre-processing, FPGA training, and monitoring
and validation, which occur sequentially. Feedback regarding the status of each subprocess
is provided through the console window. Commands to control the process are issued
via UART, while the images are loaded onto an SD card, which is inserted into the FPGA,

https://www.mathworks.com/products/matlab.html
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as shown in Figure 6. The Microblaze processor on the FPGA reads the images from the
SD card and passes them to the hardware CNN block for processing. The FPGA system
provides feedback through interrupt lines configured as active-low, signalling when a
sample has been processed and a valid result has been produced. This setup ensures
efficient communication and monitoring throughout the training process.
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Figure 6. (a) Control software on the PC connected to the FPGA. (b) PMOD SD card reader connected
to the Basys3 FPGA. (c) PC connected to the Basys3 FPGA via a micro-USB.

2.3. Simulation Results

The simulations were conducted using Xilinx Vivado 2021.1, specifically employing
its built-in simulation suite to verify functional correctness and evaluate timing metrics.
The timing figures were obtained under typical conditions configured in Vivado using
post-implementation timing analysis. The simulation results indicate that the average
time to classify a single image is 163.795 microseconds, as shown in Figure 7. The output,
Output 1, as shown in Figure 7, displays the number of activations computed, which were
subsequently processed by the softmax layer to produce the final classification result. This
specific output corresponds to a healthy sample. The input arrays consisted of values fed
into the FPGA from binary files, which were converted from pre-processed grayscale images.
Backpropagation methods were evaluated by testing the CNN with 1000 samples from each
category: highly stressed, moderately stressed, and normal. In total, there were three output
classes (normal, moderately stressed, and highly stressed) where backpropagation was used
to help manage the complexities of the learning process by systematically updating weights
throughout the network, ensuring that each layer contributed effectively to the learning
process. Figures 8–10 illustrate the simulation results, showing both correct and incorrect
classifications of the dataset images. As shown in Figure 7, “output1” is the fully connected
layer’s final value, “prediction” is the predicted class, and “clk” represents the base clock.
Figure 8 shows the correct counts value, which represents the number of correctly predicted
samples. This test shows the accuracy of the highly stressed image classification samples,
where 97.5% accuracy was achieved. Figure 9 shows the classification performance of the
moderately stressed samples. The correct counts were measured at 985, which equates
to 98.5% accuracy, while Figure 10 shows the classification process of normal samples.
The correct counts’ waveforms changed consistently during the classification process,
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incrementing after each successful prediction. As shown in Figure 10, an 86.4% accuracy
was achieved, which translates to 864 out of 1000 normal samples classified correctly.
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Figure 10. Normal sample classification performance.

Figures 8–10 demonstrate that the backpropagation algorithm achieves an average
accuracy of approximately 95% during training. The time required to classify 1000 samples
of each image type averages 163.5 milliseconds, representing a threefold improvement over
the software-based CNN solution.

3. Hardware Design

The high-level block diagram shown in Figure 11 illustrates the general layout and
operation of the hardware CNN. The FPGA is fed three 3 × 1 input values from the binary
images, which are used as inputs for the parallelized convolution process. The kernel
weights are stored in separate BRAMs and are updated after a single pass from the MAC
operations to the softmax classification result. The hardware synthesis schematic diagrams
shown in Figures 12 and 13 demonstrate how the high-level diagram was translated to



IoT 2024, 5 910

produce a functional solution, while Figure 11 shows that the values passed into the FPGA
via SPI are fed into three kernel BRAMS. These contain the weights of the filters used in the
convolution layer. They are multiplied by the SPI input and the kernel weight values. The
results are sent to the adder/activation map generator. The block performs the calculation
of the batch normalization of values after the map is fully populated to 38 × 38 matrices as
explained in Section 3.

Binary file (SD Card)

SPI Bus

Frame Buffer
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(Weight Matrix Stores 

3x1 16-bit Values)

Kernel BRAM 
(Weight Matrix Stores 

3x1 16-bit Values)

Kernel BRAM 
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pooling blocks.

Frame buffer BRAM values (SD card
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parallel with three separate weight
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are 3 separate 8-bit pairings to make 6
overall values. This results in 3 16-bit
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Figure 11

Figure 11. High-level parallelization block diagram.
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As shown in Figure 11, the parallelization design approach involves the custom CNN’s
implementation on the FPGA device. It involves the input of binary data from the SD card
into the FPGA CNN classifier. The binary file data are transferred via a 3 × 1 matrix of
16-bit values split into six 8-bit values (as input data) and are multiplied by the contents of
the kernel BRAM weights. The binary files are reconstructed to match the behaviour of a
convolution shift after each forward pass. This was accomplished to reduce the number
of logic gates used where extra resources would be needed to create a separate module to
perform convolutions. Data are shifted sequentially, six values simultaneously at a time,
into the classifier module’s input. These values are multiplied by the weights in the kernel
BRAMs. The outputs from these MAC operations are transferred to the respective ReLU
modules for each activation map generated. The filtered activations are passed on to the
max pooling modules to further reduce most activations into smaller resolution tensor maps.
These are finally passed to the fully connected layer, which determines the final classification
output class. The FPGA logic diagrams are shown in Figures 12 and 13, respectively.

With this custom CNN implementation, minimizing latency was paramount. The
layout of the MAC modules, BRAMs, and logic gates was designed to ensure low-latency
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signal connections, preventing the disruption of the critical path. Operating at 100 MHz,
this configuration achieves optimal power efficiency and the lowest overall latency and
resource utilization as shown in Tables 1 and 2, respectively.

Table 1. Timing characteristics.

Setup 2.837 ns
Worst Hold Stack 0.136 ns

Pulse Width 4.5 ns

Table 2. Utilization metrics.

LUTs 202 (20,800 available)
FFs 260 (41,600 available)
DSP 12 (90 available)

BRAMs 8

The dynamic power could be calculated based on the expression stated in Equation (1),
where the capacitive load, Cload, FPGA Voltage, V, and clock frequency, f, were taken into
account by the Xilinx Power Estimator (XPE), which is an integrated part of the Xilinx
Vivado design suite.

Pd = Cload × V2 × f (1)

The dynamic power was calculated to be 0.074 W, and the static power was calculated
to be 0.039 W. The combined power for the CNN modules was estimated at 0.113 W. The
entire system, which includes the external peripherals of the Basys3, Microblaze softcore,
and the PMOD SD card, was estimated at a total of 4 W.

The combined total on-chip power was measured to be 0.113 W, whereas the setup,
worst hold stack, and pulse width characteristics met the timing requirements for this
configuration at 100 MHz and a 1.8 V supply voltage. This solution significantly reduces
power during use compared to CPU- and GPU-based solutions. For example, training the
network on an Intel Core i7-10700T CPU at 2.00 GHz took approximately 13–18 h, and
when training on an NVIDIA GeForce GTX GPU, the network required 1000 epochs and
took around 6 h to complete [8].

3.1. Forward Pass Algorithm and Caching

During the forward pass stage of the training phase, the inputs, outputs, and weights
are saved to an addressable memory block (using block RAMs) and are updated for each
backpropagation stage. The convolutional layers and the softmax weights are updated with
the max pooling and ReLU inputs being saved during forward passes. Equation (2) shows
the activation algorithm for the MAC operations, where i (image pixel) and w (weight)
are multiplied together and added to b (bias). The final accumulated sum of activations is
transferred to the ReLU activation sequence shown in Equation (3).

(a)c =
n

∑
k=0

ixiywxwy + b (2)

Dot matrix multiplications are performed where i is the pixel of the image, w is the
weights, and b is the bias. This is performed concurrently in a 3 × 3 kernel with the last
three elements excluded to reduce the footprint of the MAC logic blocks. Equation (3) states
the MAC result. If the value is above the threshold, the pixel is considered to be activated;
otherwise, no activation is recorded. Equation (4) calculates the overall activations for the
40 × 40 image. The summation of all activations and the current activation is realized by
Equations (4) and (5).

Axy =

{
1, axy > Ta
0, axy ≤ Ta

(3)
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rt =
n m

∑
x=0 y=0

Axy + rx (4)

mz = max
0≤x≤n

rt (5)

Max pooling is applied to the 40 × 40 convolution image to extract the most relevant
activations with a 2 × 2 kernel.

3.2. Backpropagation for Training an Integer-Based CNN

The softmax layer utilizes a backpropagation algorithm based on cached totals of
the weights, biases, and inputs. Since softmax relies on percentage values to calculate the
model accuracy, forward passes use signed 16-bit integers. A signed 1-bit base with a 14-bit
mantissa fixed-point representation is employed for updating the weights. The weights in
the convolutional layers are then converted back to signed integers.

L = −ln(Pc) (6)

Equation (6) shows the loss equation used in the softmax to determine the class of
the sample, where L is the loss and P is the probability. In hardware, the exponential
function requires a large amount of logic space to be implemented. An approximation of
the exponential function is used to represent e using the Taylor series in Equation (7).

ex =
∞

∑
n=0

xn = 1 +
nx
1!

+
n(n − 1)x2

2!
+ . . . (7)

Ta =
∑s

i=0 a(n)
S

(8)

The calculation of the new threshold for the softmax is performed using Equation (8),
where a(n) is the summation of activations cached in the forward pass and S is the total
number of samples in the forward pass.

For the custom CNN hardware implementation, a bounded ReLU activation system is
used. The count of activations is cached in memory during a forward pass. When a certain
number of samples are passed, the gradient of the activations is calculated. A comparison
between the actual class and the predicted classes is performed by measuring the gradients
of the accuracies during classification. The weights of the convolutional layers and the
softmax layers are updated with each iteration of forward passes during the training phase.
This is represented in Equation (9), where Ta refers to the total activations and S is the
number of samples.

w(T) =
eTa(S − eTa)

S2 (9)

As shown in Figure 14, each coloured region represents a boundary within which a
sample is classified into a specific class. These boundaries are flexible and can change in size
based on their thresholds. The thresholds are calculated using the gradients of the totals of
a given dataset against the current thresholds. Over a given set of data samples, the regions
will shift to reduce the accuracy loss percentage. Since the dataset images are 40 × 40, a bit
width of 16 bits is used to cover every pixel in each sample. The total number of pixels in a
40 × 40 image is 1600. The total precision of signed 16-bit values ranges from −32,768 to
32,768. For the activation algorithm used in the softmax layer to function with the given
number of pixels, 16-bit precision is required. This modified softmax reduces the memory
space requirements typically found in larger CNNs designed for GPU or CPU platforms,
achieving a more compact method of classification with performance comparable to larger
CNN models. The equations for adjusting and calculating new weights during training are
shown in this section, with Equation (9) detailing the custom cross-entropy loss calculation
method. It is a first-order approximation of the standard cross-entropy model, designed for
this specific 16-bit fixed point.
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Figure 14 

Healthy Region Moderately Stressed Highly Stressed

0 65,536

Figure 14. Visual representation of the bounded ReLu activation-based softmax.

4. MATLAB and FPGA CNN Performance

After finalizing the most effective configuration to match the FPGA and MATLAB CNN
models, both were evaluated and compared in terms of classification and training performance.

4.1. MATLAB Custom CNN Performance

The custom CNN model was trained on 4587 images, with 1378 images used for
testing and 937 for validation in MATLAB. The parameters set for the training process
were as follows: a maximum of 30 epochs, 70 iterations per epoch, and a maximum of
2100 iterations. The learning rate was set to 0.001, and the GPU used was an NVIDIA K80.
The training accuracy progress is shown in Figure 15, and the final validation accuracy of
94.07% is presented in Figure 16.
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Figure 15. MATLAB custom CNN training accuracy and loss.

Confusion matrices were generated for the MATLAB implementation, including all
three classes. Figure 17 presents the results from a smaller unseen test dataset consisting
of 18 normal images, 19 moderately stressed images, and 7 highly stressed images. The
MATLAB model achieved an overall accuracy of 94.07%, with its weakest classification
performance observed in distinguishing between moderately stressed and normal images,
as well as highly stressed images, as shown in Figure 17.
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4.2. Custom CNN FPGA Performance

Figure 18 shows a confusion matrix generated from the results of the FPGA’s cus-
tom CNN. These matrices were compiled based on classifications between two categories
at a time. Darker sections of the matrices represent higher percentage values between
the two categories, while lighter sections indicate lower percentage values. The FPGA
CNN model demonstrates a stronger capability to differentiate between normal samples
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and both moderately and highly stressed samples. However, it is less effective at distin-
guishing between moderately stressed and highly stressed samples. When combining all
confusion matrices, the classification accuracy for unseen images is approximately 91%.
Each test case was evaluated with the same unseen test dataset used for the MATLAB
CNN implementation.
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The next metric measured was the CNN’s training capability. The FPGA CNN was
trained on 4587 images, with 1378 images used for testing and 937 for validation. The plots
shown in Figures 19 and 20 display the accuracy percentage over time and the model’s loss
rate, respectively. Figure 19 illustrates an optimum progression in accuracy, confirming that
the backpropagation algorithms operate as intended, even with applied approximations
and quantization. After epoch 15, the model reaches saturation, and the loss no longer
decreases, leading to the cessation of training. Each epoch takes 1.45 s to complete in the
FPGA, resulting in a total training time of 1 min and 46 s to achieve 91.3% accuracy.
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The overall resource utilization is 4% of the FPGA, and the scalability to add additional
modules for different use cases or image datasets is feasible. The modular design of each
module allows for the reconfigurability of the model, as well as scalability for larger and
deeper CNN designs. The dataset used in this study was augmented to create both training
and test samples. This augmentation process was essential in overcoming the challenge
posed by the limited size of the original dataset available in the biotechnology lab due to
the manual data imaging technique used. While data augmentation did help improve the
generalization of the CNN model, the accuracies between highly and moderately stressed
classes differ due to the nature of the data augmentation and the inherent characteristics
of the classes themselves. In hardware-based classification, where the quantization of
the CNN model to 8-bit precision provided speed improvements, it did result in a minor
trade-off in classification accuracy. Nonetheless, it was demonstrated that the optimization
for hardware did not substantially impact the classification accuracy, which was the main
focus of this research.

5. Discussion

The proposed FPGA-accelerated CNN offers significant advantages in medical image
classification, particularly in scenarios where high-performance computing resources are
unavailable, one of the requirements for low-power IoT-based healthcare systems. The low-
power, high-efficiency nature of FPGAs makes them an ideal choice for real-time diagnostics
in resource-constrained environments, such as remote or underserved healthcare facilities.
In particular, this study demonstrates how the parallel processing capabilities of FPGAs can
be leveraged to accelerate CNN operations, leading to a threefold increase in the training
speed and a significant reduction in power consumption compared to traditional CPU- and
GPU-based approaches. One of the primary advantages of FPGA-based implementations is
their ability to operate with significantly lower power consumption, making them suitable
for deployment in IoT-based environments where energy efficiency is paramount. FPGAs
are inherently more energy-efficient than GPUs and CPUs, particularly when tailored for
specific tasks like image classification. The findings of this study indicate that the entire
FPGA implementation, including all external modules in the power profile, was estimated
to draw approximately 4 W overall. In comparison, the software-based CNN running on
an NVIDIA K80 GPU consumes 300 W [27]. This represents a significant improvement
in power efficiency, with the FPGA-based implementation using only about 1.33% of
the power consumed by the GPU-based implementation. The ability to maintain high
classification accuracy while operating under such low-power conditions underscores the
potential of FPGAs in medical diagnostics, particularly in scenarios requiring continuous,
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real-time analysis without the support of an HPC infrastructure. Another merit of the
proposed FPGA solution is its adaptability to edge computing paradigms in healthcare.
Edge computing, which involves processing data closer to the source rather than relying on
centralized HPC systems, is increasingly being recognized for its potential to revolutionize
medical diagnostics. Edge intelligence enables faster decision-making and reduces the
latency associated with transmitting large datasets to distant servers for processing. The
FPGA-based CNN demonstrated in this study exemplifies this trend, providing a low-
cost, offline solution for the automated diagnosis of cytotoxicity in calcium cells. By
interfacing with a simple software program via UART, the FPGA can operate independently,
offering real-time classification and data collection capabilities, which are essential for
timely medical interventions.

However, while the FPGA’s low-power operation and efficiency are clear advantages,
the technology does come with certain limitations. FPGAs are less flexible than GPUs and
CPUs in handling a wide range of tasks, which could pose challenges when adapting the
FPGA to new diagnostic applications without significant reconfiguration. While FPGAs
excel in specific, highly optimized tasks, their re-programmability for different workloads
is more complex and time-consuming compared to software-based implementations. This
limitation means that while the FPGA-based CNN performs exceptionally well in its desig-
nated task, expanding its use to other diagnostic areas would require substantial redesign
and optimization efforts. In terms of hardware resource utilization, the quantization of the
CNN to 8-bit precision and its optimization for the FPGA’s limited resources allowed the
model to fit within the constraints of the Basys3 FPGA without a significant loss of accuracy.
Quantization techniques enable more compact models that can be deployed on resource-
constrained devices without compromising performance. This study further supports this
view by demonstrating that the careful design and optimization of the quantized model
can mitigate potential trade-offs in accuracy, allowing for efficient FPGA implementation
even in medical applications that demand high precision. While the FPGA-based CNN
offers numerous advantages, particularly in terms of energy efficiency and speed, it is also
important to consider the broader implications of this approach for medical diagnostics.
The ability to perform training and classification tasks on large datasets with minimal
hardware resources opens up new possibilities for deploying advanced diagnostic tools in
environments where traditional HPC resources are unavailable. This capability is particu-
larly relevant for remote and low-resource settings, where rapid and accurate diagnostics
are crucial yet access to a sophisticated computing infrastructure is limited.

Hence, the proposed FPGA-accelerated CNN represents a significant step forward
in applying AI-driven techniques to healthcare. By combining the energy efficiency and
speed of FPGAs with the precision of CNNs, this study offers a viable solution for real-time,
low-cost medical diagnostics. As healthcare systems continue to evolve and incorpo-
rate AI-driven tools, the role of specialized hardware is likely to expand, providing new
opportunities for rapid, efficient, and accessible medical diagnostics [28].

6. Future Work and Limitations

The study presented in this paper demonstrates the viability of accelerating CNN
models on reconfigurable hardware for medical diagnostics; there are several future re-
search avenues and associated limitations which require further research. To enhance the
speed and efficiency of the CNN model, further quantization and optimization techniques
could be explored. As accuracy is one of the key factors in medical imaging diagnostics,
the dataset could be extended to include a more diverse range of cytotoxicity conditions
in generalized clinical applications. The adaptability of FPGA devices is still a major chal-
lenge for diagnostic tasks; therefore, future efforts require more flexible architectures that
can be easily reconfigured for different applications, reducing the complexity associated
with redesigning new use cases. To address scalability, investigating the use of multiple
FPGAs could enhance processing capabilities and accommodate larger datasets. Real-time
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processing in clinical settings with a user interface could facilitate broader adoption by
developing custom-designed hardware for healthcare diagnostics [29–31].

7. Conclusions

In this study, we have successfully developed and optimized a CNN implemen-
tation on the Basys3 FPGA for the classification of cytotoxicity in human kidney cells
(HK-2s). By addressing the constraints of limited dataset sizes and hardware resources,
we achieved significant improvements in the training speed and energy efficiency. Our
approach incorporated efficient image augmentation and pre-processing techniques, which
played a critical role in enhancing prediction accuracy and model performance. The FPGA
implementation demonstrated a threefold increase in the training speed compared to a
software-based CNN on an NVIDIA K80 GPU, while consuming only 1.33% of the power.
The optimized CNN architecture, with its seven layers and 13,464 hyperparameters, pro-
cessed 40 × 40 grayscale images efficiently, achieving an accuracy of approximately 91% for
unseen images. This work underscores the potential of FPGA-based implementations for
rapid and resource-efficient medical diagnostics, especially in the context of IoT and edge
computing. The integration of deep learning with FPGA technology enables computing at
the edge, where traditional HPC resources may be unavailable or impractical. By quan-
tizing the CNN to 8-bit precision and leveraging FPGA-specific optimizations, we have
demonstrated a viable approach for deploying AI models in scenarios where traditional
high-performance computing resources are unavailable. The successful integration of
deep learning with FPGA technology presents a significant advancement in medical image
classification, paving the way for more accessible and efficient diagnostic solutions. In
scenarios where the automated diagnosis of large samples is required without access to
an HPC, a low-power FPGA (or array of FPGAs) can be used for local classification. It
provides an offline low-cost solution for fast and accurate automated diagnosis. The pro-
posed solution requires minimal hardware to operate. A software program that interfaces
with the FPGA via UART can read and write data, allowing for the collection of valuable
information. It is envisaged that the proposed FPGA-based CNN could be used for other
medical imaging diagnostics such as histopathology to broaden its utility in clinical settings.
Furthermore, integrating real-time data processing and cloud connectivity could enable
the CNN to learn more efficiently and robustly about new patient data, further improving
diagnostic accuracy.
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