Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Synthesis of La(223Ra, 140Ba)VO4, La(223Ra)VO4, and LaVO4 Nanoparticles
2.3. Surface Modification of LaVO4 Nanoparticles
2.4. Characterization of LaVO4 Nanoparticles
2.5. Radionuclide Encapsulation within La(223Ra,140Ba)VO4 and La(223Ra)VO4 Nanoparticles
3. Results and Discussion
3.1. Characterization of LaVO4 NPs
3.2. Surface-Modified LaVO4 NPs
3.3. Encapsulation of 223Ra and Decay Daughters in La(223Ra)VO4 NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Note
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tafreshi, N.K.; Doligalski, M.L.; Tichacek, C.J.; Pandya, D.N.; Budzevich, M.M.; El-Haddad, G.; Khushalani, N.I.; Moros, E.G.; McLaughlin, M.L.; Wadas, T.J.; et al. Development of targeted alpha particle therapy for solid tumors. Molecules 2019, 24, 4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navalkissoor, S.; Grossman, A. Targeted Alpha Particle Therapy for Neuroendocrine Tumours: The Next Generation of Peptide Receptor Radionuclide Therapy. Neuroendocrinology 2019, 108, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Marques, I.A.; Neves, A.R.; Abrantes, A.M.; Pires, A.S.; Tavares-da-Silva, E.; Figueiredo, A.; Botelho, M.F. Targeted alpha therapy using Radium-223: From physics to biological effects. Cancer Treat. Rev. 2018, 68, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Hobbs, R.F.; Vakravelu, R.; Huso, D.L.; Esaias, C.; Apostolidis, C.; Morgenstern, A.; Sgouros, G. Radioimmunotherapy of breast cancer metastases with α-particle emitter 225Ac: Comparing efficacy with 213Bi and 90Y. Cancer Res. 2009, 69, 8941–8948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juzeniene, A.; Bernoulli, J.; Suominen, M.; Halleen, J.; Larsen, R.H. Antitumor activity of novel bone-seeking, α-emitting 224Ra-solution in a breast cancer skeletal metastases model. Anticancer Res. 2018, 38, 1947–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G. A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals 2015, 8, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Venetoclax and Lintuzumab-Ac225 in AML Patients—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03867682?term=actinium+pharmaceuticals&draw=2&rank=4 (accessed on 2 September 2020).
- Study to Evaluate the Safety, Tolerability,Pharmacokinetics, and Anti-Tumor Activity of a Thorium-227 Labeled Antibody-Chelator Conjugate, in Patients With Metastatic Castration Resistant Prostate Cancer—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03724747?term=NCT03724747&draw=2&rank=1 (accessed on 2 September 2020).
- First-in-Human Study of BAY2287411 Injection, a Thorium-227 Labeled Antibody-Chelator Conjugate, in Patients With Tumors Known to Express Mesothelin—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03507452?term=NCT03507452&draw=2&rank=1 (accessed on 2 September 2020).
- Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; REyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [Green Version]
- van der Doelen, M.J.; Mehra, N.; Smits, M.; van Oort, I.M.; Jansenn, M.J.R.; Haberkorn, U.; Kratochwil, C.; Gerritsen, W. Clinical experience with PSMA-Actinium-225 (Ac-225) radioligand therapy (RLT) in end-stage metastatic castration-resistant prostate cancer (mCRPC) patients. J. Clin. Oncol. 2018, 36, 344. [Google Scholar] [CrossRef]
- Sofou, S.; Thomas, J.L.; Lin, H.Y.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Engineered liposomes for potential α-particle therapy of metastatic cancer. J. Nucl. Med. 2004, 45, 253–260. [Google Scholar]
- Sofou, S.; Kappel, B.J.; Jaggi, J.S.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Enhanced retention of the α-particle-emitting daughters of actinium-225 by liposome carriers. Bioconjug. Chem. 2007, 18, 2061–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; de Kruijff, R.M.; Rol, A.; Thijssen, L.; Mendes, E.; Morgenstern, A.; Bruchertseifer, F.; Stuart, M.C.A.; Wolterbeek, H.T.; Denkova, A.G. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl. Radiat. Isot. 2014, 85, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, L.; Schaart, D.R.; De Vries, D.; Morgenstern, A.; Bruchertseifer, F.; Denkova, A.G. Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy: A feasibility study. Radiochim. Acta 2012, 100, 473–481. [Google Scholar] [CrossRef]
- de Kruijff, R.M.; Drost, K.; Thijssen, L.; Morgenstern, A.; Bruchertseifer, F.; Lathouwers, D.; Wolterbeek, H.T.; Denkova, A.G. Improved 225Ac daughter retention in InPO4 containing polymersomes. Appl. Radiat. Isot. 2017, 128, 183–189. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.F.; Woodward, J.; Boll, R.A.; Rondinone, A.J.; Mirzadeh, S.; Robertson, J.D. Gold-coated lanthanide phosphate nanoparticles for an 225Ac in vivo alpha generator. Radiochim. Acta 2013, 101, 595–600. [Google Scholar] [CrossRef]
- Rojas, J.V.; Woodward, J.D.; Chen, N.; Rondinone, A.J.; Castano, C.H.; Mirzadeh, S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nucl. Med. Biol. 2015, 42, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Toro-González, M.; Dame, A.N.; Foster, C.M.; Millet, L.J.; Woodward, J.D.; Rojas, J.V.; Mirzadeh, S.; Davern, S.M. Quantitative encapsulation and retention of 227Th and decay daughters in core-shell lanthanum phosphate nanoparticles. Nanoscale 2020, 12, 9744–9755. [Google Scholar] [CrossRef]
- Woodward, J.; Kennel, S.J.; Stuckey, A.; Osborne, D.; Wall, J.; Rondinone, A.J.; Standaert, R.F.; Mirzadeh, S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjugate Chem. 2011, 22, 766–776. [Google Scholar] [CrossRef]
- Toro-González, M.; Dame, A.N.; Mirzadeh, S.; Rojas, J.V. Gadolinium vanadate nanocrystals as carriers of α-emitters (225Ac, 227Th) and contrast agents. J. Appl. Phys. 2019, 125, 214901. [Google Scholar] [CrossRef]
- Toro-González, M.; Copping, R.; Mirzadeh, S.; Rojas, J.V. Multifunctional GdVO4:Eu core-shell nanoparticles containing 225Ac for targeted alpha therapy and molecular imaging. J. Mater. Chem. B 2018, 6, 7985–7997. [Google Scholar] [CrossRef]
- Mokhodoeva, O.; Vlk, M.; Málková, E.; Kukleva, E.; Mičolová, P.; Štamberg, K.; Šlouf, M.; Dzhenloda, R.; Kozempel, J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016, 18, 1–12. [Google Scholar] [CrossRef]
- Cędrowska, E.; Pruszyński, M.; Gawęda, W.; Zuk, M.; Krysiński, P.; Bruchertseifer, F.; Morgenstern, A.; Karageorgou, M.A.; Bouziotis, P.; Bilewicz, A. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225Ac as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer. Molecules 2020, 25, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchánková, P.; Kukleva, E.; Nykl, E.; Nykl, P.; Sakmár, M.; Vlk, M.; Kozempel, J. Hydroxyapatite and Titanium Dioxide Nanoparticles: Radiolabelling and In Vitro Stability of Prospective Theranostic Nanocarriers for 223Ra and 99mTc. Nanomaterials 2020, 10, 1632. [Google Scholar] [CrossRef] [PubMed]
- Cędrowska, E.; Pruszynski, M.; Majkowska-Pilip, A.; Męczyńska-Wielgosz, S.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. J. Nanopart. Res. 2018, 20, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowska, A.; Męczyńska-Wielgosz, S.; Majkowska-Pilip, A.; Koźmiński, P.; Wójciuk, G.; Cędrowska, E.; Bruchertseifer, F.; Morgenstern, A.; Kruszewski, M.; Bilewicz, A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017, 47, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Leszczuk, E.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy. J. Nanopart. Res. 2013, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reissig, F.; Zarschler, K.; Hübner, R.; Pietzsch, H.; Kopka, K.; Mamat, C. Sub-10 nm Radiolabeled Barium Sulfate Nanoparticles as Carriers for Theranostic Applications and Targeted Alpha Therapy. ChemistryOpen 2020, 9, 797–805. [Google Scholar] [CrossRef]
- Reissig, F.; Hübner, R.; Steinbach, J.; Pietzsch, H.J.; Mamat, C. Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg. Chem. Front. 2019, 6, 1341–1349. [Google Scholar] [CrossRef]
- Salvanou, E.A.; Stellas, D.; Tsoukalas, C.; Mavroidi, B.; Paravatou-petsotas, M.; Kalogeropoulos, N.; Xanthopoulos, S.; Denat, F.; Laurent, G.; Bazzi, R.; et al. A proof-of-concept study on the therapeutic potential of Au nanoparticles radiolabeled with the alpha-emitter actinium-225. Pharmaceutics 2020, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Mirzadeh, S.; Kumar, K.; Gansow, O.A. The Chemical Fate of 212Bi-DOTA Formed by β− Decay of 212Pb(DOTA)2–. Radiochim. Acta 1993, 60, 1–10. [Google Scholar] [CrossRef]
- de Kruijff, R.M.; van der Meer, A.J.G.M.; Windmeijer, C.A.A.; Kouwenberg, J.J.M.; Morgenstern, A.; Bruchertseifer, F.; Sminia, P.; Denkova, A.G. The therapeutic potential of polymersomes loaded with 225Ac evaluated in 2D and 3D in vitro glioma models. Eur. J. Pharm. Biopharm. 2018, 127, 85–91. [Google Scholar] [CrossRef] [PubMed]
- de Kruijff, R.M.; Raavé, R.; Kip, A.; Molkenboer-Kuenen, J.; Morgenstern, A.; Bruchertseifer, F.; Heskamp, S.; Denkova, A.G. The in vivo fate of 225Ac daughter nuclides using polymersomes as a model carrier. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Neumeier, S.; Arinicheva, Y.; Ji, Y.; Heuser, J.M.; Kowalski, P.M.; Kegler, P.; Schlenz, H.; Bosbach, D.; Deissmann, G. New insights into phosphate based materials for the immobilisation of actinides. Radiochim. Acta 2017, 105, 961–984. [Google Scholar] [CrossRef]
- Rafiuddin, M.R.; Grosvenor, A.P. Probing the effect of radiation damage on the structure of rare-earth phosphates. J. Alloys Compd. 2015, 653, 279–289. [Google Scholar] [CrossRef]
- Huignard, A.; Gacoin, T.; Boilot, J.P. Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chem. Mater. 2000, 12, 1090–1094. [Google Scholar] [CrossRef]
- Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [Green Version]
- Toro-González, M.; Dame, A.N.; Mirzadeh, S.; Rojas, J.V. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochim. Acta 2020, 108, 967–977. [Google Scholar] [CrossRef]
- Ropp, R.C.; Carroll, B. Precipitation of rare earth vanadates from aqueous solution. J. Inorg. Nucl. Chem. 1977, 39, 1303–1307. [Google Scholar] [CrossRef]
- Ansari, A.A.; Alam, M.; Labis, J.P.; Alrokayan, S.A.; Shafi, G.; Hasan, T.N.; Syed, N.A.; Alshatwi, A.A. Luminescent mesoporous LaVO4:Eu3+ core-shell nanoparticles: Synthesis, characterization, biocompatibility and their cytotoxicity. J. Mater. Chem. 2011, 21, 19310–19316. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L. One-pot syntheses and cell imaging applications of poly(amino acid) coated LaVO4:Eu3+ luminescent nanocrystals. Inorg. Chem. 2013, 52, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Tamilmani, V.; Kumari, A.; Rai, V.K.; Unni Nair, B.; Sreeram, K.J. Bright Green Frequency Upconversion in Catechin Based Yb3+/Er3+ Codoped LaVO4 Nanorods upon 980 nm Excitation. J. Phys. Chem. C 2017, 121, 4505–4516. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Zhang, F.; Li, G.; Zhang, W.; Yan, Y.L. Phase-Dependent Enhancement of the Green-Emitting Upconversion Fluorescence in LaVO4:Yb3+,Er3+. Inorg. Chem. 2015, 54, 7325–7334. [Google Scholar] [CrossRef] [PubMed]
- Salavati-Niasari, M.; Saleh, L.; Mohandes, F.; Ghaemi, A. Sonochemical preparation of pure t-LaVO4 nanoparticles with the aid of tris(acetylacetonato)lanthanum hydrate as a novel precursor. Ultrason. Sonochem. 2014, 21, 653–662. [Google Scholar] [CrossRef]
- Fan, W.; Bu, Y.; Song, X.; Sun, S.; Zhao, X. Selective synthesis and luminescent properties of monazite- and zircon-type LaVO4:Ln (Ln = Eu, Sm, and Dy) nanocrystals. Cryst. Growth Des. 2007, 7, 2361–2366. [Google Scholar] [CrossRef]
- Ansari, A.A.; Labis, J.P.; Alrokayan, S.A.H. Synthesis of water-soluble luminescent LaVO4:Ln3+ porous nanoparticles. J. Nanopart. Res. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Ropp, R.C.; Carroll, B. Dimorphic lanthanum orthovanadate. J. Inorg. Nucl. Chem. 1973, 35, 1153–1157. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, W. Novel dumbbell-like LaVO4:Eu3+ nanocrystals and effect of Ba2+ codoping on luminescence properties of LaVO4:Eu3+ nanocrystals. J. Sol-Gel Sci. Technol. 2014, 73, 133–140. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Hu, W.; Zhao, M.; Sun, L.; Zheng, J.; Yan, T.; Li, L. Control Over the Crystallinity and Defect Chemistry of YVO4 Nanocrystals for Optimum Photocatalytic Property. Eur. J. Inorg. Chem. 2011, 2011, 2211–2220. [Google Scholar] [CrossRef]
- Yu, C.; Yu, M.; Li, C.; Zhang, C.; Yang, P.; Lin, J. Spindle-like lanthanide orthovanadate nanoparticles: Facile synthesis by ultrasonic irradiation, characterization, and luminescent properties. Cryst. Growth Des. 2009, 9, 783–791. [Google Scholar] [CrossRef]
- Da Silva, M.F.P.; Matos, J.R.; Isolani, P.C. Synthesis, characterization and thermal analysis of 1:1 and 2:3 lanthanide(III) citrates. J. Therm. Anal. Calorim. 2008, 94, 305–311. [Google Scholar] [CrossRef]
- Nash, K.L.; Brigham, D.; Shehee, T.C.; Martin, A. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media. Dalton Trans. 2012, 41, 14547–14556. [Google Scholar] [CrossRef]
- Runowski, M.; Dąbrowska, K.; Grzyb, T.; Miernikiewicz, P.; Lis, S. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. J. Nanopart. Res. 2013, 15. [Google Scholar] [CrossRef] [Green Version]
- Parchur, A.K.; Prasad, A.I.; Rai, S.B.; Tewari, R.; Sahu, R.K.; Okram, G.S.; Singh, R.A.; Ningthoujam, R.S. Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter. AIP Adv. 2012, 2, 032119. [Google Scholar] [CrossRef]
- Princz, E.; Szilágyi, I.; Mogyorósi, K.; Labádi, I. Lanthanide complexes of ethylenediaminotetramethylene-phosphonic acid. J. Therm. Anal. Calorim. 2002, 69, 427–439. [Google Scholar] [CrossRef]
- Buissette, V.; Moreau, M.; Gacoin, T.; Boilot, J.P.; Chane-Ching, J.Y.; Le Mercier, T. Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+·xH2O (Ln = Ce, Tb, Eu; x ≈ 0.7) nanocrystals. Chem. Mater. 2004, 16, 3767–3773. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Wang, L.; Zhou, C.; Ling, B.; Fu, J. A sensitive method for determination of trace amounts of chromate (III) with terbium (III) sodium hexametaphosphate chelate as fluorescent probe. Luminescence 2011, 26, 434–438. [Google Scholar] [CrossRef]
- Lloret, N.; Frederiksen, R.S.; Møller, T.C.; Rieben, N.I.; Upadhyay, S.; De Vico, L.; Jensen, J.H.; Nygård, J.; Martinez, K.L. Effects of buffer composition and dilution on nanowire field-effect biosensors. Nanotechnology 2013, 24, 035501. [Google Scholar] [CrossRef]
- Schomäcker, K.; Mocker, D.; Münze, R.; Beyer, G.J. Stabilities of lanthanide-protein complexes. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1988, 39, 261–264. [Google Scholar] [CrossRef]
- Nie, S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 2010, 5, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchánková, P.; Kukleva, E.; Štamberg, K.; Nykl, P.; Vlk, M.; Kozempel, J. Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH. RSC Adv. 2020, 10, 3659–3666. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Mho, S.-I. Enhanced photoluminescence of YVO 4:Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion. J. Lumin. 2007, 122, 99–103. [Google Scholar] [CrossRef]
Procedure | Tetragonal | Monoclinic | ||
---|---|---|---|---|
Fraction (%) | Crystallite Size (nm) | Fraction (%) | Crystallite Size (nm) | |
A | 66.1 | 34.6 | 33.9 | 36.9 |
B | 46.4 | 45.5 | 53.6 | 32.3 |
C | 17.6 | 61.9 | 82.4 | 38.3 |
Procedure | Dilution in Deionized Water | Dilution in PBS | ||
---|---|---|---|---|
Diameter (nm) | Zeta Potential (mV) | Diameter (nm) | Zeta Potential (mV) | |
A | 1186 ± 129 | 17.4 ± 1.8 | 1036 ± 101 | 28.1 ± 7.9 |
B | 1085 ± 97 | 17.6 ± 3.2 | 973 ± 12 | −19.2 ± 4.6 |
C | 995 ± 93 | −26.5 ± 8.4 | * | −3.9 ± 3.4 |
Wavenumber Range (cm−1) | Group Assignment |
---|---|
425.3–441.8 | La–O bond |
533.4–542.8 | PO4 bending vibration |
611.0–612.0 | PO4 bending vibration |
743.4–825.8 | V–O vibration |
998.2–1032.0 | PO4 stretching vibration |
1389.5–1407.7 | Symmetric vibration carboxylate groups (carbonate species) |
1434.2–1485.7 | Asymmetric vibration carboxylate groups (carbonate species) |
1553.2–1579.8 | Asymmetric carboxylate bidentate bond stretching |
1632.5–1638.6 | O–H bending |
3208.2–3382.2 | O–H stretching |
Stabilizing Compound | Dilution in Deionized Water | Dilution in PBS | ||
---|---|---|---|---|
Diameter (nm) | Zeta Potential (mV) | Diameter (nm) | Zeta Potential (mV) | |
None | 995 ± 93 | −26.5 ± 8.4 | * | −3.9 ± 3.4 |
NH4-Cit | 144.7 ± 4.8 | −17.0 ± 1.8 | 1003 ± 65 | −12.4 ± 3.5 |
Na-Cit | 207.1 ± 27.5 | −27.1 ± 3.6 | 1110 ± 144 | −21.4 ± 4.0 |
EDTA | 267.8 ± 11.8 | −32.9 ± 2.4 | 1126 ± 182 | −8.4 ± 2.1 |
TPP | 209.1 ± 5.2 | −30.5 ± 2.1 | 1112 ± 157 | −15.8 ± 2.1 |
Hex | 231.4 ± 14.4 | −33.6 ± 1.6 | 1100 ± 40 | −21.4 ± 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-González, M.; Peacock, A.; Miskowiec, A.; Cullen, D.A.; Copping, R.; Mirzadeh, S.; Davern, S.M. Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. J. Nanotheranostics 2021, 2, 33-50. https://doi.org/10.3390/jnt2010003
Toro-González M, Peacock A, Miskowiec A, Cullen DA, Copping R, Mirzadeh S, Davern SM. Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. Journal of Nanotheranostics. 2021; 2(1):33-50. https://doi.org/10.3390/jnt2010003
Chicago/Turabian StyleToro-González, Miguel, Allison Peacock, Andrew Miskowiec, David A. Cullen, Roy Copping, Saed Mirzadeh, and Sandra M. Davern. 2021. "Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy" Journal of Nanotheranostics 2, no. 1: 33-50. https://doi.org/10.3390/jnt2010003
APA StyleToro-González, M., Peacock, A., Miskowiec, A., Cullen, D. A., Copping, R., Mirzadeh, S., & Davern, S. M. (2021). Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. Journal of Nanotheranostics, 2(1), 33-50. https://doi.org/10.3390/jnt2010003