Recent Advancements, Challenges, and Future Prospects in Usage of Nanoformulation as Theranostics in Inflammatory Diseases
Abstract
:1. Introduction
2. Conventional Diagnosis and Therapy for Various Inflammatory Diseases
2.1. Diagnosis
2.1.1. Blood Tests
2.1.2. Imaging Techniques
2.1.3. Radiopharmaceuticals
2.2. Therapy
2.2.1. NSAIDs
2.2.2. Glucocorticoids
2.2.3. DMARDs
2.2.4. Biologics
2.2.5. Nanomedicines
3. Nanomaterials for Theranostics: Recent Advances in Inflammation
3.1. Rheumatoid Arthritis
3.2. Cardiovascular
3.3. Cancer Theranostics
3.4. Liver
4. Clinical Potential of Nanoformulation-Based Theranostics
5. Challenges Faced with Theranostic Regimen
6. Future Aspects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Ansar, W.; Ghosh, S. Biology of C Reactive Protein in Health and Disease. In Immunologic Research; Springer: New Delhi, India, 2016. [Google Scholar]
- Medzhitov, R. Inflammation 2010: New Adventures of an Old Flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Renz, H.; Holt, P.G.; Inouye, M.; Logan, A.C.; Prescott, S.L.; Sly, P.D. An exposome perspective: Early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 2017, 140, 24–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.; Eckert, J.J.; et al. Origins of lifetime health around the time of conception: Causes and consequences. Lancet 2018, 391, 1842–1852. [Google Scholar] [CrossRef]
- Miller, G.E.; Chen, E.; Parker, K.J. Psychological Stress in Childhood and Susceptibility to the Chronic Diseases of Aging: Moving Toward a Model of Behavioral and Biological Mechanisms. Psychol. Bull. 2011, 137, 959–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, C.; Ding, A. Nonresolving Inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.; Barragan, J.; Bashiruddin, S.; Smith, C.J.; Tyrrell, C.; Parsons, M.J.; Doris, R.; Kucenas, S.; Downes, G.B.; Velez, C.M.; et al. Dynamic balance of pro-and anti-inflammatory signals controls disease and limits pathology. Physiol. Behav. 2017, 176, 139–148. [Google Scholar]
- Nounou, M.I.; Elamrawy, F.; Ahmed, N.; Abdelraouf, K.; Goda, S.; Syed-Sha-Qhattal, H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer Basic Clin. Res. 2015, 9, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Parveen, S.; Panda, J.J. The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.G.; Muthoosamy, K.; Manickam, S. Nanomedicine in Theranostics; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780323353038. [Google Scholar]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averback, R.S. Introduction to Nanotechnology Introduction to Nanotechnology. Phys. Today 2004, 57, 62–63. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Janjic, J.M. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics 2015, 5, 150–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinaro, R.; Boada, C.; Del Rosal, G.M.; Hartman, K.A.; Corbo, C.; Andrews, E.D.; Toledano-Furman, N.E.; Cooke, J.P.; Tasciotti, E. Vascular Inflammation: A Novel Access Route for Nanomedicine. Methodist Debakey Cardiovasc. J. 2016, 12, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in Oral Nano-Delivery Systems for Colon Targeted Drug Delivery in Inflammatory Bowel Disease: Selective Targeting to Diseased versus Healthy Tissue; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 11. [Google Scholar]
- Sibuyi, N.R.S.; Moabelo, K.L.; Meyer, M.; Onani, M.O.; Dube, A.; Madiehe, A.M. Nanotechnology advances towards development of targeted-treatment for obesity. J. Nanobiotechnol. 2017, 17, 122. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jain, S.; Kumar, D.; Soni, S.L.; Sharma, M. A Review on Theranostics: An Approach to Targeted Diagnosis and Therapy. Asian J. Pharm. Res. Dev. 2019, 7, 63–69. [Google Scholar] [CrossRef]
- Jeelani, S.; Jagat Reddy, R.C.; Maheswaran, T.; Asokan, G.S.; Dany, A.; Anand, B. Theranostics: A treasured tailor for tomorrow. J. Pharm. Bioallied Sci. 2014, 6, 6–9. [Google Scholar] [CrossRef]
- Siafaka, P.I.; Okur, N.Ü.; Karantas, I.D.; Okur, M.E.; Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci. 2021, 16, 24–46. [Google Scholar] [CrossRef]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Vats, S.; Singh, M.; Siraj, S.; Singh, H.; Tandon, S. Role of nanotechnology in theranostics and personalized medicines. J. Health Res. Rev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Marin, J.F.G.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in nuclear medicine: Emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics 2020, 40, 1715–1740. [Google Scholar] [CrossRef] [PubMed]
- Lahouti, A.H.; Christopher-Stine, L. Inflammatory Muscle Diseases. Clin. Immunol. Princ. Pract. 2019, 757–767. [Google Scholar] [CrossRef]
- Watson, J.; Jones, H.E.; Banks, J.; Whiting, P.; Salisbury, C.; Hamilton, W. Use of multiple inflammatory marker tests in primary care: Using Clinical Practice Research Datalink to evaluate accuracy. Br. J. Gen. Pract. 2019, 69, E662–E669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meller, J.; Sahlmann, C.O.; Scheel, A.K. 18F-FDG PET and PET/CT in fever of unknown origin. J. Nucl. Med. Technol. 2007, 48, 35–45. [Google Scholar]
- Kaeley, G.S.; Bakewell, C.; Deodhar, A. The importance of ultrasound in identifying and differentiating patients with early inflammatory arthritis: A narrative review. Arthritis Res. Ther. 2020, 22, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickenstein, A.N.; Jones, M.A.; Behkam, B.; McNally, L.R. Imaging inflammation and infection in the gastrointestinal tract. Int. J. Mol. Sci. 2020, 21, 243. [Google Scholar] [CrossRef] [Green Version]
- McQueen, F.M. Magnetic resonance imaging in early inflammatory arthritis: What is its role? Rheumatology 2000, 39, 700–706. [Google Scholar] [CrossRef] [Green Version]
- MacRitchie, N.; Frleta-Gilchrist, M.; Sugiyama, A.; Lawton, T.; McInnes, I.B.; Maffia, P. Molecular imaging of inflammation—Current and emerging technologies for diagnosis and treatment. Pharmacol. Ther. 2020, 211, 107550. [Google Scholar] [CrossRef]
- Gotthardt, M.; Bleeker-Rovers, C.P.; Boerman, O.C.; Oyen, W.J. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J. Nucl. Med. 2010, 51, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Bleeker-Rovers, C.P.; van der Meer, J.W.M.; Oyen, W.J.G. Fever of Unknown Origin. Semin. Nucl. Med. 2009, 39, 81–87. [Google Scholar] [CrossRef]
- Schwegler, B.; Stumpe, K.D.M.; Weishaupt, D.; Strobel, K.; Spinas, G.A.; Von Schulthess, G.K.; Hodler, J.; Böni, T.; Donath, M.Y. Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB. J. Intern. Med. 2008, 263, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, A.; Lebech, A.M.; Eigtved, A.; Højgaard, L. Fever of unknown origin: Prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 622–626. [Google Scholar] [CrossRef]
- Gunaydin, C.; Bilge, S.S. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J. Med. 2018, 50, 116–121. [Google Scholar] [CrossRef]
- Latruffe, N.; Lançon, A.; Frazzi, R.; Aires, V.; Delmas, D.; Michaille, J.J.; Djouadi, F.; Bastin, J.; Cherkaoui-Malki, M. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann. N. Y. Acad. Sci. 2015, 1348, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B. Rheumatoid arthritis: Early diagnosis and treatment outcomes. Casp. J. Intern. Med. 2011, 2, 161–170. [Google Scholar]
- Diaz-Borjon, A.; Weyand, C.M.; Goronzy, J.J. Treatment of chronic inflammatory diseases with biologic agents: Opportunities and risks for the elderly. Exp. Gerontol. 2006, 41, 1250–1255. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Collnot, E.M.; Windbergs, M.; Lehr, C.M. Nanomedicines for the treatment of inflammatory bowel diseases. Eur. J. Nanomed. 2013, 5, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, S.; Wang, C.; Tian, C.; Shen, Y.; Zhu, M. Engineered targeted hyaluronic acid–glutathione-stabilized gold nanoclusters/graphene oxide–5-fluorouracil as a smart theranostic platform for stimulus-controlled fluorescence imaging-assisted synergetic chemo/phototherapy. Chem. Asian J. 2019, 14, 1418–1423. [Google Scholar] [CrossRef]
- Roma-Rodrigues, C.; Pombo, I.; Raposo, L.; Pedrosa, P.; Fernandes, A.R.; Baptista, P. V Nanotheranostics targeting the tumor microenvironment. Front. Bioeng. Biotechnol. 2019, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target. 2018, 26, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Kalashnikova, I.; Chung, S.-J.; Nafiujjaman, M.; Hill, M.L.; Siziba, M.E.; Contag, C.H.; Kim, T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020, 10, 11863–11880. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.R.; Korngold, E.; Weissleder, R.; Jaffer, F.A. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 2010, 6, 2041–2049. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.R.; Jaffer, F.A.; Weissleder, R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2006, 2, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Bagalkot, V.; Badgeley, M.A.; Kampfrath, T.; Deiuliis, J.A.; Rajagopalan, S.; Maiseyeu, A. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals. J. Control. Release 2015, 217, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Cui, J.; Zhang, Y.; Wang, Y.; Zhang, X.; Zheng, H.; Shu, X.; Fu, B.; Wu, Y. Integration of microfluidic injection analysis with carbon nanomaterials/gold nanowire arrays-based biosensors for glucose detection. Sci. Bull. 2016, 61, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Niu, S.; Bremner, D.H.; Nie, W.; Fu, Z.; Li, D.; Zhu, L. A Tumor Microenvironment-Responsive Biodegradable Mesoporous Nanosystem for Anti-Inflammation and Cancer Theranostics. Adv. Healthc. Mater. 2020, 9, 1901307. [Google Scholar] [CrossRef]
- Lapa, C.; Schirbel, A.; Samnick, S.; Lückerath, K.; Kortüm, K.M.; Knop, S.; Wester, H.-J.; Buck, A.K.; Schreder, M. The gross picture: Intraindividual tumour heterogeneity in a patient with nonsecretory multiple myeloma. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1097. [Google Scholar] [CrossRef]
- Laurenzana, I.; Lamorte, D.; Trino, S.; De Luca, L.; Ambrosino, C.; Zoppoli, P.; Ruggieri, V.; Del Vecchio, L.; Musto, P.; Caivano, A. Extracellular vesicles: A new prospective in crosstalk between microenvironment and stem cells in hematological malignancies. Stem Cells Int. 2018, 2018, 9863194. [Google Scholar] [CrossRef]
- Lapa, C.; Hänscheid, H.; Kircher, M.; Schirbel, A.; Wunderlich, G.; Werner, R.A.; Samnick, S.; Kotzerke, J.; Einsele, H.; Buck, A.K. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J. Nucl. Med. 2019, 60, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Higashikuni, Y.; Chen, W.C.W.; Lu, T.K. Advancing therapeutic applications of synthetic gene circuits. Curr. Opin. Biotechnol. 2017, 47, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.; Chen, Y.Y. Mammalian synthetic biology in the age of genome editing and personalized medicine. Curr. Opin. Chem. Biol. 2017, 40, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Sedlmayer, F.; Aubel, D.; Fussenegger, M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat. Biomed. Eng. 2018, 2, 399–415. [Google Scholar] [CrossRef]
- Kitada, T.; DiAndreth, B.; Teague, B.; Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 2018, 359, eaad1067. [Google Scholar] [CrossRef] [Green Version]
- Schukur, L.; Geering, B.; Charpin-El Hamri, G.; Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 2015, 7, 318ra201. [Google Scholar] [CrossRef]
- McNerney, M.P.; Doiron, K.E.; Ng, T.L.; Chang, T.Z.; Silver, P.A. Theranostic cells: Emerging clinical applications of synthetic biology. Nat. Rev. Genet. 2021, 22, 730–746. [Google Scholar] [CrossRef]
- Cheng, L.; Huang, F.-Z.; Cheng, L.-F.; Zhu, Y.-Q.; Hu, Q.; Li, L.; Wei, L.; Chen, D.-W. GE11-modified liposomes for non-small cell lung cancer targeting: Preparation, ex vitro and in vivo evaluation. Int. J. Nanomed. 2014, 9, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv. 2018, 25, 256–266. [Google Scholar] [CrossRef]
- Mukherjee, A.; Paul, M.; Mukherjee, S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 2019, 11, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircher, M.; Herhaus, P.; Schottelius, M.; Buck, A.K.; Werner, R.A.; Wester, H.-J.; Keller, U.; Lapa, C. CXCR4-directed theranostics in oncology and inflammation. Ann. Nucl. Med. 2018, 32, 503–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyafil, F.; Pelisek, J.; Laitinen, I.; Schottelius, M.; Mohring, M.; Döring, Y.; van der Vorst, E.P.C.; Kallmayer, M.; Steiger, K.; Poschenrieder, A. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-pentixafor for PET. J. Nucl. Med. 2017, 58, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Heber, D.; Leike, T.; Beitzke, D.; Lu, X.; Zhang, X.; Wei, Y.; Mitterhauser, M.; Wadsak, W.; Kropf, S. [68Ga] Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 558–566. [Google Scholar] [CrossRef]
- Weiberg, D.; Thackeray, J.T.; Daum, G.; Sohns, J.M.; Kropf, S.; Wester, H.-J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: Correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med. 2018, 59, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Bouter, C.; Meller, B.; Sahlmann, C.O.; Staab, W.; Wester, H.J.; Kropf, S.; Meller, J. (68)Ga-Pentixafor PET/CT Imaging of Chemokine Receptor CXCR4 in Chronic Infection of the Bone: First Insights. J. Nucl. Med. 2018, 59, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, G. Meta-iodobenzylguanidine and analogues: Chemistry and biology. Q. J. Nucl. Med. Mol. Imaging 2008, 52, 351. [Google Scholar]
- Glowniak, J.V.; Kilty, J.E.; Amara, S.G.; Hoffman, B.J.; Turner, F.E. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters. J. Nucl. Med. 1993, 34, 1140–1146. [Google Scholar] [PubMed]
- Hoefnagel, C.A.; DeKraker, J.; Olmos, R.A.V.; Voute, P.A. 131I-MIBG as a first-line treatment in high-risk neuroblastoma patients. Nucl. Med. Commun. 1994, 15, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Kraal, K.; Bleeker, G.M.; van Eck-Smit, B.L.F.; van Eijkelenburg, N.K.A.; Berthold, F.; Van Noesel, M.M.; Caron, H.N.; Tytgat, G.A.M. Feasibility, toxicity and response of upfront metaiodobenzylguanidine therapy therapy followed by German Pediatric Oncology Group Neuroblastoma 2004 protocol in newly diagnosed stage 4 neuroblastoma patients. Eur. J. Cancer 2017, 76, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Kraal, K.C.J.M.; Tytgat, G.A.M.; van Eck-Smit, B.L.F.; Kam, B.; Caron, H.N.; van Noesel, M. Upfront treatment of high-risk neuroblastoma with a combination of 131I-MIBG and topotecan. Pediatr. Blood Cancer 2015, 62, 1886–1891. [Google Scholar] [CrossRef]
- Wilson, J.S.; Gains, J.E.; Moroz, V.; Wheatley, K.; Gaze, M.N. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur. J. Cancer 2014, 50, 801–815. [Google Scholar] [CrossRef]
- Pandit-Taskar, N.; Zanzonico, P.; Staton, K.D.; Carrasquillo, J.A.; Reidy-Lagunes, D.; Lyashchenko, S.; Burnazi, E.; Zhang, H.; Lewis, J.S.; Blasberg, R. Biodistribution and dosimetry of 18F-meta-fluorobenzylguanidine: A first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J. Nucl. Med. 2018, 59, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftekhari, A.; Arjmand, A.; Asheghvatan, A.; Švajdlenková, H.; Šauša, O.; Abiyev, H.; Ahmadian, E.; Smutok, O.; Khalilov, R.; Kavetskyy, T. The potential application of magnetic nanoparticles for liver fibrosis theranostics. Front. Chem. 2021, 9, 674786. [Google Scholar] [CrossRef]
- Giavridis, T.; van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, K.; Rouce, R.; Liu, E.; Shpall, E. Engineering natural killer cells for cancer immunotherapy. Mol. Ther. 2017, 25, 1769–1781. [Google Scholar] [CrossRef]
- Wang, X.; Ho, C.; Tsatskis, Y.; Law, J.; Zhang, Z.; Zhu, M.; Dai, C.; Wang, F.; Tan, M.; Hopyan, S. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci. Robot. 2019, 4, eaav6180. [Google Scholar] [CrossRef]
- Zamay, T.N.; Zamay, G.S.; Belyanina, I.V.; Zamay, S.S.; Denisenko, V.V.; Kolovskaya, O.S.; Ivanchenko, T.I.; Grigorieva, V.L.; Garanzha, I.V.; Veprintsev, D. V Noninvasive microsurgery using aptamer-functionalized magnetic microdisks for tumor cell eradication. Nucleic Acid Ther. 2017, 27, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Du, V.; Luciani, N.; Richard, S.; Mary, G.; Gay, C.; Mazuel, F.; Reffay, M.; Menasche, P.; Agbulut, O.; Wilhelm, C. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nat. Commun. 2017, 8, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Zhang, H.; Liu, Y.; Sun, F.; Yu, X.; Li, X.; Zhang, L.; Wang, L.; Mao, K.; Wang, G. Maximizing specific loss power for magnetic hyperthermia by hard–soft mixed ferrites. Small 2018, 14, 1800135. [Google Scholar] [CrossRef] [PubMed]
- Fuller, E.G.; Sun, H.; Dhavalikar, R.D.; Unni, M.; Scheutz, G.M.; Sumerlin, B.S.; Rinaldi, C. Externally triggered heat and drug release from magnetically controlled nanocarriers. Acs Appl. Polym. Mater. 2019, 1, 211–220. [Google Scholar] [CrossRef]
- Salarian, M.; Ibhagui, O.Y.; Yang, J.J. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1622. [Google Scholar] [CrossRef] [PubMed]
- Piazzolla, V.A.; Mangia, A. Noninvasive diagnosis of NAFLD and NASH. Cells 2020, 9, 1005. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, M.P.; Orlov, A.V.; Sokolov, I.L.; Minakov, A.A.; Nikitin, P.I.; Ding, J.; Bader, S.D.; Rozhkova, E.A.; Novosad, V. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels. Nanoscale 2018, 10, 11642–11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehl, O.C.; Gevaert, J.J.; Melo, K.P.; Knier, N.N.; Foster, P.J. A perspective on cell tracking with magnetic particle imaging. Tomography 2020, 6, 315–324. [Google Scholar] [CrossRef]
- Vaughan, H.J.; Zamboni, C.G.; Hassan, L.F.; Radant, N.P.; Jacob, D.; Mease, R.C.; Minn, I.; Tzeng, S.Y.; Gabrielson, K.L.; Bhardwaj, P. Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. Sci. Adv. 2022, 8, eabo6406. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.-J.; Feng, Y.; Wang, F.; Guo, Y.-B.; Li, P.; Wang, L.; Liu, Y.-F.; Wang, Z.-W.; Yang, Y.-M.; Mao, Q.-S. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma. Sci. Rep. 2016, 6, 22149. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Chen, J.; Zhou, S.; Yang, N.; Duan, S.; Zhang, Z.; Su, J.; He, J.; Zhang, Z.; Lu, X. Mouse IP-10 gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics 2017, 7, 1942. [Google Scholar] [CrossRef]
- Cheng, K.; Shen, D.; Hensley, M.T.; Middleton, R.; Sun, B.; Liu, W.; De Couto, G.; Marbán, E. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat. Commun. 2014, 5, 4880. [Google Scholar] [CrossRef] [Green Version]
- Van der Valk, F.M.; van Wijk, D.F.; Lobatto, M.E.; Verberne, H.J.; Storm, G.; Willems, M.C.M.; Legemate, D.A.; Nederveen, A.J.; Calcagno, C.; Mani, V. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.W.; Kim, J.H.; Park, K. In vitro photodynamic effects of the inclusion nanocomplexes of glucan and chlorin e6 on atherogenic foam cells. Int. J. Mol. Sci. 2020, 22, 177. [Google Scholar] [CrossRef]
- Manners, N.; Priya, V.; Mehata, A.K.; Rawat, M.; Mohan, S.; Makeen, H.A.; Albratty, M.; Albarrati, A.; Meraya, A.M.; Muthu, M.S. Theranostic Nanomedicines for the Treatment of Cardiovascular and Related Diseases: Current Strategies and Future Perspectives. Pharmaceuticals 2022, 15, 441. [Google Scholar] [CrossRef]
- Kharlamov, A.N.; Zubarev, I.V.; Shishkina, E.V.; Shur, V.Y. Nanoparticles for treatment of atherosclerosis: Challenges of plasmonic photothermal therapy in translational studies. Future Cardiol. 2018, 14, 109–114. [Google Scholar] [CrossRef]
- Yan, C.; Quan, X.-J.; Feng, Y.-M. Nanomedicine for gene delivery for the treatment of cardiovascular diseases. Curr. Gene Ther. 2019, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Poot, A.J.; Lam, M.G.E.H.; van Noesel, M.M. The Current Status and Future Potential of Theranostics to Diagnose and Treat Childhood Cancer. Front. Oncol. 2020, 10, 578286. [Google Scholar] [CrossRef]
- Garg, P.K.; Garg, S.; Zalutsky, M.R. Synthesis and preliminary evaluation of para-and meta-[18F] fluorobenzylguanidine. Nucl. Med. Biol. 1994, 21, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Van Der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev. 2017, 46, 4709–4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tredwell, M.; Preshlock, S.M.; Taylor, N.J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew. Chem. 2014, 126, 7885–7889. [Google Scholar] [CrossRef]
- Rotstein, B.H.; Wang, L.; Liu, R.Y.; Patteson, J.; Kwan, E.E.; Vasdev, N.; Liang, S.H. Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium (III) ylides. Chem. Sci. 2016, 7, 4407–4417. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.Y.; Won, M.; Koo, S.; Zhang, X.; Kim, J.S. Mitochondrial H2Sn-mediated anti-inflammatory theranostics. Nano-Micro Lett. 2021, 13, 168. [Google Scholar] [CrossRef]
- Song, J.W.; Nam, H.S.; Ahn, J.W.; Park, H.-S.; Kang, D.O.; Kim, H.J.; Kim, Y.H.; Han, J.; Choi, J.Y.; Lee, S.-Y. Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque. Theranostics 2021, 11, 8874. [Google Scholar] [CrossRef]
- Piñero-Lambea, C.; Bodelón, G.; Fernández-Periáñez, R.; Cuesta, A.M.; Álvarez-Vallina, L.; Fernández, L.Á. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 2015, 4, 463–473. [Google Scholar] [CrossRef]
- Nicolas, G.P.; Mansi, R.; McDougall, L.; Kaufmann, J.; Bouterfa, H.; Wild, D.; Fani, M. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-,90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: The mass effect. J. Nucl. Med. 2017, 58, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, G.P.; Beykan, S.; Bouterfa, H.; Kaufmann, J.; Bauman, A.; Lassmann, M.; Reubi, J.C.; Rivier, J.E.F.; Maecke, H.R.; Fani, M. Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: A prospective phase I imaging study. J. Nucl. Med. 2018, 59, 909–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R. Regulatory issues surrounding nanomedicines: Setting the scene for the next generation of nanopharmaceuticals. Nanomedicine 2007, 2, 143–147. [Google Scholar] [CrossRef]
- Tinkle, S.; Mcneil, S.E.; Mühlebach, S.; Bawa, R.; Borchard, G.; Barenholz, Y.C.; Tamarkin, L.; Desai, N. Nanomedicines: Addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 2014, 1313, 35–56. [Google Scholar] [CrossRef]
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Dreifuss, T.; Betzer, O.; Shilo, M.; Popovtzer, A.; Motiei, M.; Popovtzer, R. A challenge for theranostics: Is the optimal particle for therapy also optimal for diagnostics? Nanoscale 2015, 7, 15175–15184. [Google Scholar] [CrossRef]
- Accomasso, L.; Cristallini, C.; Giachino, C. Risk assessment and risk minimization in nanomedicine: A need for predictive, alternative, and 3Rs strategies. Front. Pharmacol. 2018, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Xu, H.; Zhuang, W.; Wang, Y.; Li, G.; Wang, Y. Reactive Oxygen Species Responsive Theranostic Nanoplatform for Two-Photon Aggregation-Induced Emission Imaging and Therapy of Acute and Chronic Inflammation. ACS Nano 2020, 14, 5862–5873. [Google Scholar] [CrossRef]
- Ravindran, R.; Swamy, M.K.; Jaganathan, R. Therapeutic potential of plant polyphenolics and their mechanistic action against various diseases. In Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices; Springer: Singapore, 2019; pp. 313–351. [Google Scholar]
- Howell, M.; Wang, C.; Mahmoud, A.; Hellermann, G.; Mohapatra, S.S.; Mohapatra, S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: Perspectives and challenges for use in lung diseases. Drug Deliv. Transl. Res. 2013, 3, 352–363. [Google Scholar] [CrossRef]
- Shamay, Y.; Elkabets, M.; Li, H.; Shah, J.; Brook, S.; Wang, F.; Adler, K.; Baut, E.; Scaltriti, M.; Jena, P.V.; et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Sci. Transl. Med. 2016, 8, 345ra87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S.No. | Diagnosis | Mechanism | Applications | Ref. |
---|---|---|---|---|
Blood tests | ||||
1. | C-reactive protein (CRP) | CRP protein produced by liver that increases in concentration in response to inflammation | Inflammation from bacteria or viruses, inflammatory intestinal problems, and autoimmune disorders | [25,26] |
2. | Serum protein electrophoresis (SPE) | Separating proteins based on their net charge, size, and shape | Kidney inflammatory diseases (condition may be chronic or acute) and liver diseases | [27] |
3. | Erythrocyte sedimentation rate (ESR) | Inflammation causes cells to clump. As clumps are denser than single cells, they subside to bottom more quickly | Conditions cause inflammation, including arthritis, vasculitis, infection, and inflammatory bowel disease | [28] |
4. | Fibrinogen analyses | Fibrinogen is made in liver; higher levels of it in inflammation are indicated | Differentiate hyperfibrinogenemia due to inflammation | [29] |
Imaging techniques | ||||
5. | Ultrasound | Uses high-frequency sound waves and create an image, used in showing inflammation of tendons and tissue | Synovitis, tenosynovitis, enthesitis, bone erosions, and crystal deposits | [30] |
6. | Computed tomography (CT) | Cross-sectional imaging (slices) of bones, blood arteries, and soft tissues in combination with several X-ray plates | Fracture, inflammatory intestinal problems, brain, and spinal cord inflammation | [31] |
7. | Magnetic resonance imaging | Multiplanar viewing of bone and soft tissues in three dimensions | Synovitis, bone marrow edema, tenosynovitis, and erosions | [32] |
8. | SPECT/PET | Radiotracer is injected into body, which is quantified in decided timeframe and then utilized to acquire knowledge regarding physiological, cellular, and molecular processes of interest | Stroke, Alzheimer’s disease, atherosclerosis, and many autoimmune diseases | [33] |
Radiopharmaceuticals | ||||
9. | 99mTc-hydroxymethylene diphosphonate and 99mTc-methylene diphosphonate | Chemisorption causes 99mTc to accumulate on surface of hydroxyapatite crystals in bone | Renal osteodystrophy, hyperparathyroidism, osteomalacia | [33] |
10. | 67Ga-citrate | Lactoferrin-bound 67Ga is delivered to site of inflammation, or it binds to lactoferrin that is produced after bacterial phagocytosis at sites of infection | Bronchogenic cancer, Hodgkin’s disease, lymphoma, and several acute inflammatory diseases | [34] |
11. | 18F-FDG PET | 18F-FDG imaging PET is utilized to describe and localize a variety of cancer forms as well as locate locations of impaired glucose metabolism | Differentiate between polyarteritis nodosa, Takayasu’s arteritis, and giant-cell arteritis (GCA) | [34] |
12. | 111In-labeled platelets | Lipid-soluble complex penetrates to platelet cell membrane where 111In detaches from complexes and becomes attached to cytoplasmic components | Inflammatory bowels disease, osteomyelitis infected joint and vascular prosthesis, endocarditis | [35] |
S. No. | Nanoformulation | Type | Loading Drug | Outcome | Ref. |
---|---|---|---|---|---|
1. | Gold nanoparticle clustered with graphene oxide in conjugation with 5-fluorouracil | Detection and imaging and phototherapy | Fluorouracil | Multifaceted theranostic unit was developed successfully, furthering into bioimaging-assisted cancer therapy | [43] |
2. | Albumin-nanoceria-conjugated nanoparticles. | Inflammation control with guided imaging | Ceria | Inflammation targeting with contrast imaging and therapy shows potential as systemic arthritis treatment | [46] |
3. | Dextran-coated magnetic fluorescent nanoparticle | Imaging and therapy of atherosclerosis | Meso-tetra(myhydroxyphenyl) chlorin | Highly efficacious and sensitive imaging proved to be potent therapeutic platform | [47] |
4. | Lipid latex nanoparticle system | Imaging of atherosclerotic plaques and therapy | Rosiglitazone | Preferable signal interception and therapeutic efficacy shown on models, leaving room for future clinical applications to be worked upon | [49] |
5. | Gold nanorods | Inflammatory macrophage theranostics | NA | Provided platform for phototherapy and developing biosensors for detection of cholesterol, phosphate, etc. | [50] |
6. | Hollow mesoporous organosilica nanoparticle-based biodegradable nanotheranostics | HMONs gated with bovine serum albumin nanoparticles. Provides edge over traditional photothermal therapy | NA | Compound shows promising outcomes as multimodal image-guided combinatorial therapeutic platform. | [51] |
7. | Modified liposomes of dual-ligand (anticarbonic anhydrase IX (anti-CA IX) antibody and CPP33) | Tumor penetration and tumor growth inhibition | Triptolide | Dual-ligand system has potential use as modified lipid vehicle for local targeted cancer drug delivery | [62] |
8. | CXCR4 ligand Ga-Pentixafor PET/CT | Imaging of chronic bone infection | Ga-Pentixafor | Outcome is suitable alternative to established therapeutics, showing better diagnostic and imaging of bone infections | [65] |
9. | 18F-meta-fluorobenzylguanidine (18F-MFBG) PET/CT | Imaging and targeting of tumor | 18F-MFBG | Compounds have safer imaging and better biodistribution and targeting of lesions, giving better alternative to therapy of children | [75] |
10. | Multipole magnetic tweezer system | Intracellular physical micromanipulations and measurements. | NA | System showed longer stay for imaging and better diagnosis over its counterparts | [79] |
11. | Ultrasensitive nanomagnetic labels | Nonlinear magnetization for biosensing and imaging | NA | Potential for biomedical applications as tunable, highly sensitive, and scalable magnetic tag | [86] |
12. | Chitosan-magnetic iron oxide nanoparticles for hepatocellular carcinoma therapy | Systematic transporting of tumor suppressor gene | RASSF1A compound and mitomycin | Potential use in delivery of suppressor gene and drug for hepatocellular carcinoma | [89] |
13. | Folate (FA)-modified chitosan nanoparticles | Growth inhibition of hepatocellular carcinoma cells | MIP-10 | Promising combinatorial therapy showing results leading to further research in carcinoma treatment | [90] |
14. | Antibody-linked magnetic nanoparticles | In vivo repair of tissues, photographing and localized enrichment | NA | Nonspecific binding capability of MagBICE requires further study | [91] |
15. | Photosensitive nanoparticulates | Biomarking for targeted imaging of inflammatory disease | Glucan and Chlorin E6 | Showing potential as photoactivated therapeutic. Further study required for development atherosclerotic therapy | [93] |
S. No. | Clinical Trial | Ailment | Target | Phases | Ref. |
---|---|---|---|---|---|
1. | NCT04589234 | Metastatic pancreatic cancer | Salmonella typhimurium expressing human IL-2 in mixture of FOLFIRINOX or gemcitabine | 2nd | [104] |
2. | NCT03751007 | Type 1 diabetes mellitus | Lactococcus lactis mixed alongside teplizumab | 1st/2nd | [60] |
3. | NCT04633148 | Transitional cell cancer of the renal pelvis and ureter, prostate cancer | Modular, uniCART cells combined with recombinant antibody derivate aimed at PSMA peptide | 1st | [60] |
4. | NCT04167137 | Metastatic neoplasm, lymphoma | Escherichia coli Nissle modified into expressing STING agonist when combined along with atezolizumab | 1st | [60] |
5. | NCT04377932 | Relapsed or refractory GPC3+ solid tumors | GPC3 CAR T cells “shielded” with impression of IL-15, which in addition expresses a suicide gene (iCasp9) to allow CAR T cell dissipation after rimiducid regimen | 1st | [60] |
6. | NCT03896568 | Glioblastoma | Mesenchymal stem cells which produces oncolytic adenovirus | 1st | [60] |
7. | NCT04040088 | Neuroblastoma | Somatostatin Receptor 2A | 1st/2nd | [105,106] |
8. | NCT02348749 | Neuroblastoma | Norepinephrine Transporter | 1st/2nd | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyal, A.K.; Ramchandani, M.; Basak, T. Recent Advancements, Challenges, and Future Prospects in Usage of Nanoformulation as Theranostics in Inflammatory Diseases. J. Nanotheranostics 2023, 4, 106-126. https://doi.org/10.3390/jnt4010006
Goyal AK, Ramchandani M, Basak T. Recent Advancements, Challenges, and Future Prospects in Usage of Nanoformulation as Theranostics in Inflammatory Diseases. Journal of Nanotheranostics. 2023; 4(1):106-126. https://doi.org/10.3390/jnt4010006
Chicago/Turabian StyleGoyal, Amit K., Manish Ramchandani, and Trambak Basak. 2023. "Recent Advancements, Challenges, and Future Prospects in Usage of Nanoformulation as Theranostics in Inflammatory Diseases" Journal of Nanotheranostics 4, no. 1: 106-126. https://doi.org/10.3390/jnt4010006
APA StyleGoyal, A. K., Ramchandani, M., & Basak, T. (2023). Recent Advancements, Challenges, and Future Prospects in Usage of Nanoformulation as Theranostics in Inflammatory Diseases. Journal of Nanotheranostics, 4(1), 106-126. https://doi.org/10.3390/jnt4010006