Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going
Abstract
:1. Introduction
2. Immunogenicity of Pharmaceuticals
3. Revisiting PEG Immunogenicity
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Anchordoquy, T.; Artzi, N.; Balyasnikova, I.V.; Barenholz, Y.; La-Beck, N.M.; Brenner, J.S.; Chan, W.C.W.; Decuzzi, P.; Exner, A.A.; Gabizon, A.; et al. Mechanisms and barriers in nanomedicine: Progress in the field and future directions. ACS Nano 2024, 18, 13983–13999. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-M.; Cheng, T.-L.; Roffler, S.R. Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 2012, 15, 14022–14048. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, E.; Li, G.; Wang, B.; Zhan, C. Anti-PEG antibodies: Current situation and countermeasures. Nano Today 2024, 55, 102163. [Google Scholar] [CrossRef]
- Senti, M.E.; de Jongh, C.A.; Dijkxhoorn, K.; Verhoef, J.J.F.; Szebeni, J.; Storm, G.; Hack, C.E.; Schiffelers, R.M.; Fens, M.H.; Boross, P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Release 2022, 341, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.M.; Haroon, H.B.; Yaghmur, A.; Hunter, A.C.; Papini, E.; Farhangrazi, Z.S.; Simberg, D.; Trohopoulos, P.N. Perspectives on complement and phagocytic responses to nanoparticles: From fundamentals to adverse reactions. J. Control. Release 2023, 356, 115–129. [Google Scholar] [CrossRef]
- Sellaturay, P.; Nasser, S.; Islam, S.; Gurugama, P.; Ewan, P.W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 2021, 51, 861–863. [Google Scholar] [CrossRef]
- Ju, Y.; Lee, W.S.; Pilkington, E.H.; Kelly, H.G.; Li, S.; Selva, K.J.; Wragg, K.M.; Subbarao, K.; Nguyen, T.H.O.; Rowntree, L.C.; et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 2022, 16, 11769–11780. [Google Scholar] [CrossRef]
- Guerrini, G.; Gioria, S.; Sauer, A.V.; Lucchesi, S.; Montagnani, F.; Pastore, G.; Ciabattini, A.; Medaglini, D.; Calzolai, L. Monitoring anti-PEG antibodies level upon repeated lipid nanoparticle-based COVID-19 vaccine administration. Int. J. Mol. Sci. 2022, 13, 8838. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Cortese, M.M.; Fang, J.-L.; Wood, R.; Hummell, D.S.; Risma, K.A.; Norton, A.E.; KuKuruga, M.; Kirshner, S.; Rabin, R.L.; et al. Evaluation of association of anti-PEG antibodies with anaphylaxis after mRNA COVID-19 vaccination. Vaccine 2023, 41, 4183–4189. [Google Scholar] [CrossRef]
- Moghimi, S.M. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol. Ther. 2021, 29, 898–900. [Google Scholar] [CrossRef]
- Sauna, Z.E.; Jawa, V.; Balu-Iyer, S.; Chirmule, N. Understanding preclinical and clinical immunogenicity risks in novel biotherapeutics development. Front. Immunol. 2023, 14, 1151888. [Google Scholar] [CrossRef]
- Weltzien, H.U.; Padovan, E. Molecular features of penicillin allergy. J. Investig. Dermatol. 1998, 110, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Shinnick, S.E.; Browning, M.L.; Koontz, S.E. Managing hypersensitivity to asparaginase in pediatrics, adolescents, and young adults. J. Pediatr. Oncol. Nurs. 2013, 30, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ettah, U.; Jacques, S.; Gaikwad, H.; Monte, A.; Dylla, L.; Guntupalli, S.; Moghimi, S.M.; Simberg, D. Optimized enzyme-linked immunosorbent assay for anti-PEG antibody detection in healthy donors and patients treated with PEGylated liposomal doxorubicin. Mol. Pharm. 2024, 21, 3053–3060. [Google Scholar] [CrossRef]
- Vu, V.P.; Gifford, G.B.; Chen, F.; Benasutti, H.; Wang, G.; Groman, E.V.; Schienman, R.; Moghimi, S.M.; Simberg, D. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 2019, 14, 260–268. [Google Scholar] [CrossRef]
- Kozma, G.T.; Mészáros, T.; Berényi, P.; Facskó, R.; Patkó, Z.; Olá, C.Z.; Nagy, A.; Fülöp, T.G.; Glatter, K.A.; Radovits, T.; et al. Role of anti-polyethylene glycol (PEG) antibodies in the allergic reactions to PEG-containing COVID-19 vaccines: Evidence for immunogenicity of PEG. Vaccine 2023, 41, 4561–4570. [Google Scholar] [CrossRef]
- Ishida, T.; Atobe, K.; Wang, X.; Kiwada, H. Accelerated blood clearance of PEGylated liposomes and high-dose first injection. J. Control. Release 2006, 115, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Haroon, H.B.; Dhillon, E.; Farhangrazi, Z.S.; Trohopoulos, P.N.; Simberg, D.; Moghimi, S.M. Activation of the complement system by nanoparticles and strategies for complement inhibition. Eur. J. Pharm. Biopharm. 2023, 193, 227–240. [Google Scholar] [CrossRef]
- Moghimi, S.M. Nanomedicine safety in preclinical and clinical development: Focus on idiosyncratic injection/infusion reactions. Drug Discov. Today 2018, 23, 1034–1042. [Google Scholar] [CrossRef]
- Chen, W.-A.; Chang, D.-Y.; Chen, B.-M.; Lin, Y.-C.; Barenholz, Y.; Roffler, S.R. Antibodies against poly(ethylene glycol) activate innate immune cells and induce hypersensitivity reactions to PEGylated nanomedicines. ACS Nano 2023, 17, 5757–5772. [Google Scholar] [CrossRef]
- Gaikwad, H.; Li, Y.; Wang, G.; Li, R.; Dai, S.; Rester, C.; Kedl, R.; Saba, L.; Banda, N.K.; Schienman, R.I.; et al. Antibody-dependent complement responses toward SARS-CoV-2 receptor-binding domain immobilized on “pseudovirus-like” nanoparticles. ACS Nano 2022, 16, 8704–8715. [Google Scholar] [CrossRef]
- Inturi, S.; Wang, G.; Chen, F.; Banda, N.K.; Holers, V.M.; Wu, L.; Moghimi, S.M.; Simberg, D. Modulatory role of surface coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte uptake. ACS Nano 2015, 9, 10758–10768. [Google Scholar] [CrossRef]
- Harris, C.L.; Heurich, M.; Rodriguez de Cordoba, S.; Morgan, B.P. The Complotype: Dictating risk for inflammation and infection. Trends Immunol. 2012, 33, 513–521. [Google Scholar] [CrossRef]
- Heurich, M.; Martinez-Barricarte, R.; Francis, N.J.; Roberts, D.L.; Rodriguez de Cordoba, S.; Morgan, B.P.; Harris, C.L. Common polymorphisms in C3, Factor B, and Factor H collaborate to determine systemic complement activity and disease Risk. Proc. Natl. Acad. Sci. USA 2011, 108, 8761–8766. [Google Scholar] [CrossRef] [PubMed]
- Viegas, T.X.; Bentley, M.D.; Harris, J.M.; Fang, Z.; Yoon, K.; Dizman, B.; Weimer, R.; Mero, A.; Pasut, G.; Veronese, F.M. Polyoxazoline: Chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 2011, 22, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lim, S.I.; Kim, J.C.; Tae, G.; Kwon, I. Site-specific albumination as an alternative to PEGylation for the enhanced serum half-life in vivo. Biomacromolecules 2016, 17, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Dinesen, A.; Andersen, V.L.; Elk Hashab, M.; Pilati, D.; Bech, P.; Fuchs, E.; Samuelsen, T.R.; Winther, A.; Cai, Y.; Marcher, A.; et al. An albumin-Holliday junction biomolecular modular design for programmable multifunctionality and prolonged circulation. Bioconjug. Chem. 2024, 35, 214–222. [Google Scholar] [CrossRef]
- Tavano, R.; Gabrielli, L.; Lubian, E.; Fedeli, C.; Visentin, S.; De Laureto, P.P.; Arrigoni, G.; Geffer-Smith, A.; Chen, F.; Simberg, D.; et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano 2018, 12, 5834–5847. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simberg, D.; Moghimi, S.M. Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. J. Nanotheranostics 2024, 5, 99-103. https://doi.org/10.3390/jnt5030007
Simberg D, Moghimi SM. Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. Journal of Nanotheranostics. 2024; 5(3):99-103. https://doi.org/10.3390/jnt5030007
Chicago/Turabian StyleSimberg, Dmitri, and S. Moein Moghimi. 2024. "Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going" Journal of Nanotheranostics 5, no. 3: 99-103. https://doi.org/10.3390/jnt5030007
APA StyleSimberg, D., & Moghimi, S. M. (2024). Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. Journal of Nanotheranostics, 5(3), 99-103. https://doi.org/10.3390/jnt5030007