SUPPORTING INFORMATION for Selective Proton-Mediated Transport by Electrogenic K⁺-Binding Macrocycles

Yu-Hao Li¹, Shao-Ping Zheng¹, Dawei Wang¹ and Mihail Barboiu^{1,2,*}

- ¹ Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; yuhaoli.mat@gmail.com (Y.-H.L.); zhshaop@126.com (S.-P.Z.); wdawei@mail.sysu.edu.cn (D.-W.W.)
- ² Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, University of Montpellier ENSCM-UM-CNRS UMR-5635, Place E. Bataillon, CC 047, F-34095 Montpellier, France
- * Correspondence: mihail-dumitru.barboiu@umontpellier.fr

Synthesis of compounds 1, r,s2, 3 :

Scheme S1 Synthesis of compounds 1, r,s2, 3

Figure S2. ¹³C NMR spectrum of **1** (75 MHz, 298K DMSO- d_6).

Figure S6¹³C NMR spectrum of s2 (75 MHz, 298 K, CDCl₃).

Figure S8 ¹³C NMR spectrum of **3** (75 MHz, 298 K, CDCl₃).

Figure S10¹H NMR dilution experiments in CDCl₃ of **r2** (0.01 to 0.16 M, from top to bottom)

Figure S11 ¹H NMR dilution experiments in CDCl₃ of **3** (0.01 to 0.16 M, from top to bottom) **Hill plot analysis**

Figure S12. Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of **1** and hill plot analysis of K⁺/H⁺ antiport.

Figure S13. Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of **1** and hill plot analysis of Na⁺/H⁺ antiport.

Figure S14 Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of **1** coupled with FCCP (0.1 mol%) and hill plot analysis of K⁺/H⁺ antiport.

Figure S15 Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of **1** coupled with FCCP (0.1 mol%) and hill plot analysis of Na⁺/H⁺ antiport.

Figure S16 Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of s2 and Hill plot analysis of K⁺/H⁺ antiport.

Figure S17 Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of s2 and hill plot analysis of Na⁺/H⁺ antiport.

Figure S18 Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of s2 coupled with FCCP (0.1 mol%) and hill plot analysis of K⁺/H⁺ antiport.

Figure S1 Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of s2 coupled with FCCP (0.1 mol%) and hill plot analysis of Na⁺/H⁺ antiport.

Figure S20 Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of r2 coupled with FCCP (0.1 mol%) and hill plot analysis of K⁺/H⁺ antiport.

Figure S21 Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of r2 coupled with FCCP (0.1 mol%) and hill plot analysis of Na⁺/H⁺ antiport.

Figure S22 Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of **3** and hill plot analysis of K⁺/H⁺ antiport.

Figure S23 Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of **3** and hill plot analysis of Na⁺/H⁺ antiport.

Figure S24 Normalized I_{460}/I_{403} for transporting K⁺ across the bilayer membrane facilitated by different amount of **3** coupled with FCCP (0.1 mol%) and hill plot analysis of K⁺/H⁺ antiport.

Figure S25 Normalized I_{460}/I_{403} for transporting Na⁺ across the bilayer membrane facilitated by different amount of **3** coupled with FCCP (0.1 mol%) and hill plot analysis of Na⁺/H⁺ antiport.

Figure S26. HR-MS spectra of compounds 1, r2, s2, 3

k fo] K ⁺											
conc./	Without FCCP			With FCCP							
mol%	1	s2	3	1	s2	r2	3				
2.2	0.002	0.001	0.0004	0.0107	0.0031	0.003	0.0058				
4.3	0.0042	0.0026	0.0013	0.0397	0.0097	0.0101	0.0291				
6.5	/a	0.0051	/	0.0847	0.0211	0.0339	0.0762				
8.6	0.0097	0.0099	0.0073	0.2007	/	/	0.089				
12.9	0.0338	0.0165	0.0096	0.402	0.2003	0.1818	0.2586				
17.3	0.0569	0.027	0.0326	/	/	/	/				
21.6	0.0789	0.0795	0.0537	/	0.5476	0.4586	/				
25.9	/	/	0.0899	/	/	/	/				
32.3	/	0.1639	/	/	/	/	/				

Table S1 Pseudo first-order rate constants k (s⁻¹) for the transport of K⁺/H⁺ through LUVs at different concentrations of the compounds to lipid without or with proton transporter FCCP.

The initial rate for the blank has already been subtracted from all the rates. a: There was no experiment at this condition.

Table S2 Pseudo first-order rate constants k (s⁻¹) for the transport of Na⁺/H⁺ through LUVs at different concentrations of the compounds to lipid without or with proton transporter FCCP. The initial rate for the blank has already been subtracted from all the rates.

k for Na ⁺												
conc./	Without FCCP			With FCCP								
mol%	1	s2	3	1	s2	r2	3					
2.2	0.0003	/	/	/	/	/	/					
4.3	0.0006	/	0.0001	0.001	/	/	0.0007					
6.5	/	0.0006		/	/	/	/					
8.6	0.0013	0.0012	0.0006	0.0043	0.0019	0.0022	0.0039					
12.9	0.0051	0.0025	0.0027	0.0174	0.0044	0.006	0.0053					
17.3	0.0163	0.0043	0.004	0.0185	0.0095	0.0098	0.0081					
21.6	0.0264	0.0056	0.0082	/	0.021	0.0254	0.0341					
25.9	/	/	0.0063	/	/	/	0.0448					
32.3	/	0.0166	/	/	0.3367	0.3346	/					