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Abstract: Molecular rotors have earned substantial popularity in recent times, owing to the unique
dependence of its crystalline properties on the rotational dynamics of the rotor. We have recently
reported the synthesis and crystal structure of a phenylene-bridged macrocage as a gyroscope-like
molecule in the crystalline state. The dynamics of the phenylene moiety was probed by solid-state
13C CP/MAS proton dipolar dephasing NMR spectroscopy. Herein, solid-state 2H NMR studies
were performed to study the dynamics of the gyroscope-like molecule with a deuterated rotor in the
crystalline state. A spectrum with a narrow line shape was obtained at 300 K. The facile exchange
among three stationary states, which was observed by X-ray crystallography, was clearly confirmed.
Additionally, a crystal-to-crystal phase transition that switches the motion of the rotor was observed
in the DSC analysis of the powdered sample.
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1. Introduction

Molecular rotors, in which a part of the molecule rotates, even in the crystalline state,
have recently attracted considerable attention in the field of molecular machines [1–3]. In
the last few years, many molecular rotors have been reported and their properties studied
in depth. Molecular rotors with functional anchors have been reported by Kaleta and
Michl [4], while rotors with bulky stators have been studied by Garcia-Garibay, as well as
other researchers [5]. Molecular rotors that are encased by a cage have been reported by
Gladysz [6], Garcia-Garibay [7], and our group [8–15]. Particularly, we have focused on
the properties of the crystal modulated by the dynamics of the molecule. We have recently
reported changes in the birefringence of a crystal as a function of temperature, arising from
the switch between the static and dynamic states of the molecular rotor [8,9]. We have also
studied the inflation of a phenylene bridged macrocage crystal that was caused due to the
rotation of the rotor in it [10]. The dielectric relaxation of a powdered molecular dipolar
rotor [11] has been reported by our group as well.

We have previously reported the synthesis and crystal structure of the phenylene-
bridged macrocage 1 modeled as a gyroscope-like molecule (Figure 1) [12]. It has been
observed that the phenylene rotor could rotate inside the cage consisting of three silaalkane
spokes, and thus, the structure of the molecule resembles that of the gyroscope, wherein
the rotor spins inside a frame. Since the rotor in 1 is sterically shielded by the exterior
cage, the rotor can rotate even in the densely packed crystalline state. The dynamics of
the rotor was confirmed by solid-state 13C CP/MAS proton dipolar dephasing (solid-state
13C CP/MAS-pdp) NMR spectroscopy [16]. The CP/MAS technique is generally applied
to obtain high-resolution 13C-NMR spectra in the solid state. Cross-polarization (CP)
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enhances the signal intensity of the carbon atoms connected to protons via energy transfer
from 1H to 13C. Magic-angle spinning (MAS) removes the anisotropy of the chemical shift.
In proton dipolar dephasing, which has been used together with the CP/MAS technique,
the delay time is set after the cross-polarization in the pulse sequence. In this method, the
signals of the carbon atoms that are strongly coupled with those of the proton(s) by dipole-
dipole couplings are dephased, that is, weakened, depending on the delay time. Therefore,
the carbon signals of the static C-H moieties are weakened, whereas the carbon signals of
the dynamic C-H groups and the C atoms without proton(s) show intense peaks even at
long delay time. Thus, the dynamics of the phenylene moiety of 1 could be confirmed in
the crystalline state by observing the signals of the phenylene CH carbons in solid-state
13C CP/MAS-pdp NMR with a long delay time. While the solid-state 13C CP/MAS-pdp
NMR technique is convenient to observe either the static or dynamic characteristics of the
CH carbons in crystalline state, the details of the dynamics, such as the exchange model
and exchange rate cannot be analyzed.

Figure 1. (a) Schematic representation of a gyroscope; (b) Structural formula of the gyroscope-like
molecule 1.

After the first report on the synthesis and solid-state 13C CP/MAS-pdp study of the
gyroscope-like molecule 1, a theoretical study using DFTB calculations for the solid-state
dynamics of 1 was reported [14]. According to this study, the phenylene moiety of 1
exhibited the most facile exchange among the three stationary points inside the crystal
with a low activation energy (<1.2 kcal/mol). To experimentally elucidate the dynamics of
the phenylene moiety, a solid-state 2H NMR study of the powdered sample was planned.
This spectroscopy has been widely used for the observation and analysis of the dynamics
of deuterated moieties. As the natural abundance of deuterium is only 0.013%, the NMR
signal(s) of deuterated moiety can be observed selectively. Moreover, the line shape and
width of the spectrum, called the Pake pattern, are sensitive to the dynamics [8–11,17–20].
Herein, we report the detailed dynamics of the phenylene rotor in the gyroscope-like
molecule 1 in the crystalline state by analyzing the solid-state 2H NMR spectrum of 1 with
a tetradeuterated phenylene rotor (1-d4).

2. Materials and Methods
2.1. General Details

All the reagents and solvents were purchased from commercial suppliers and used
without purifications.

2.2. Synthesis and Characterization of the Deuterated Gyroscope-Like Molecule 1-d4

The title compound 1-d4 was prepared by following the previously reported synthesis
protocol of 1 [12]. The procedure has been described here briefly (Figure 2). The reaction of
1,4-dibromobenzene-d4 with chlorotrivinylsilane in the presence of magnesium turnings
in tetrahydrofuran (THF) afforded bissilylbenzene 2-d4. Hydrosilylation of 2-d4 with
chlorodimethylsilane, followed by the reaction with chlorodimethylvinylsilane, produced
the silylated compound 3-d4. This compound was then converted to the precursor 4-d4 by
hydrosilylation and LiAlH4 reduction. Hydrolysis of 4-d4 with aqueous KOH in a highly
dilute THF solution afforded the desired compound 1-d4.
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Figure 2. Synthesis of deuterated gyroscope-like molecule 1-d4.

Since all the intermediates and products shown in Figure 2 are new compounds,
spectral data have been summarized in Appendix A and their raw data are shown in the
Supplementary Materials.

2.3. Differential Scanning Calorimetry (DSC) Study

Mettler-Toledo DSC-1 equipped with a low-temperature controller was used for the
DSC measurements. The data acquisition was carried out at a heating rate of 10 ◦C/min.

2.4. Solid-State 2H NMR Study

Temperature-dependent solid-state 2H NMR spectra were recorded on a Varian Unity
500 spectrometer, using a quadrupolar echo pulse sequence (d1-90◦ pulse-τ1-90◦ pulse-
τ2-FID; 90◦ pulse = 4.2 µs, τ1 = 30 µs, τ2 = 20 µs, d1 = 20 s). KBr powder was used as an
excipient for dilution, owing to the low amounts of the sample.

3. Results and Discussions
3.1. Outline of the Previous Report on the Dynamics of the Phenylene Moiety in 1 in the
Crystalline State

The crystal structure of the gyroscope-like molecule 1 was found to be dependent
on temperature [12]. The phenylene moiety of 1 was observed in a limited area (D, E,
and F) having a deformed cage-like structure at 200 K. In contrast, at 300 K, the phenylene
group was distributed in a disordered manner over three positions (A, B and C), with a
symmetric cage-like structure (Figure 3) [12]. The two different structures switch at the
crystal-to-crystal phase transition temperature of ~195 K. As described in the introduction,
the rotation of the phenylene group at rt was confirmed by solid-state 13C CP/MAS-pdp
spectra of powdered 1. Generally, the exchange rates and the mechanism of the dynamics
are not discussed using this technique. While the mode of the phenylene rotation switched
at the phase transition, a low temperature NMR setup was not available.

Figure 3. Structure of 1 as determined by single-crystal X-ray analysis [12] at (a) 303 K, Site occupancy
factors: A; 0.353(9), B; 0.450(10), and C; 0.200(7); (b) 173 K, Site occupancy factors: D; 0.258(13),
E; 0.445(14), and F; 0.293(8).

3.2. DSC Analysis of Powdered 1

The thermodynamic parameters for the crystal-to-crystal phase transition can be
confirmed from the endothermic signal in differential scanning calorimetry (DSC). Figure 4
depicts the DSC chart of powdered 1 recorded from 120 K to 400 K, of which the sample
was taken from the previous study [12]. Two endothermic peaks were observed. The
peak at 193.7 K is attributed to the crystal-to-crystal phase transition, whereas the peak at
385 K corresponds to the melting point, that is, the solid-to-liquid phase transition. The
thermodynamic parameters, ∆H = 320 cal/mol and ∆S = 1.6 e.u., for the crystal-to-crystal
transition were estimated from the observed absorption heat. According to the definition
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of entropy (∆S = R lnW, where R and W are the gas constant and number of degree of
freedom, respectively) in statistical thermodynamics, the degree of freedom of a crystal
increases by 2.2 per mole on increasing the temperature, where the numerical value is
identical to the degree of freedom for 1-axis rotation (clockwise and anticlockwise rotation)
of the phenylene rotor. Thus, the transition is attributed to the static-to-dynamic (rotational)
phase transition.

Figure 4. Differential scanning calorimetry (DSC) chart of powdered 1.

3.3. Solid-State 2H NMR Spectroscopy of Powdered 1-d4

Solid-state 2H NMR spectroscopy is widely used to observe the molecular dynamics
of deuterated moieties in the crystalline state because the line width and the shape of
the spectra are sensitive to the molecular motion of the deuterated moiety [8–11,17–20].
Figure 5 shows the solid-state 2H NMR spectra of powdered 1-d4 recorded at 300 K and
320 K. The solid lines represent the observed spectra. A signal was observed in the spectra
due to quadrupole coupling. The dotted red lines represent the simulated spectra that were
carried out by NMR WebLab [21]. The simulated spectra were produced by assuming fast
six-site exchange (the jump angle is 60◦, the rates (site p2 to p1, the rate-determining step) are
1 MHz (300 K) and 1.2 MHz (320 K), and the quadrupole coupling constant is 130 kHz.)
with different populations pn (n = 1–6, p1 = p4 = 0.25, and p2 = p3 = p5 = p6 = 0.125) taken
from the single-crystal X-ray analysis data. Based on the above analysis, the facile rotation
of the rotor was confirmed.

Figure 5. Solid-state 2H NMR spectra of the powdered gyroscope-like molecule with a deuterated
phenylene 1-d4 at (a) 300 K; (b) 320 K. The solid black lines and dotted red lines represent the observed
and simulated spectra, respectively.

Temperature-dependent 2H NMR spectra can provide useful information regarding
the rotational barrier by analyzing the temperature-dependent exchange rate and their
Arrhenius (and/or Eyring) plots. Thus, analysis of the spectra below 300 K is of interest.
However, such an experiment could not be carried out because a long acquisition time was
needed due to the lack of sample amount.

4. Conclusions

Phenylene rotation of the gyroscope-like molecule was confirmed in crystalline state
by solid-state 2H NMR of the powdered compound with a deuterated rotor. The NMR
spectrum at 300 K indicates that the phenylene moiety exhibits facile six-site exchange with
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an exchange rate of 1 MHz. This rotational mechanism and rate were in good accordance
with the previously reported results of a theoretical study on the DFTB calculations for
the phenylene dynamics of the compound [14]. However, more detailed information,
such as energy barriers for the rotation, could not be analyzed due to limitations of the
measurement. DSC analysis of the powdered samples revealed mode switching of the
phenylene rotation. Analysis of the entropy change for the phase transition indicates that
the switching is triggered by the crystal-to-crystal phase transition.

Supplementary Materials: The following are available online at https://www.mdpi.com/2624-854
9/3/1/4/s1, Figure S1: 1H NMR spectrum of deuterated gyroscope-like molecule 1-d4, Figure S2:
13C NMR spectrum of deuterated gyroscope-like molecule 1-d4, Figure S3: HRMS spectrum of
deuterated gyroscope-like molecule 1-d4, Figure S4: 1H NMR spectrum of 2-d4, Figure S5: 13C NMR
spectrum of 2-d4, Figure S6: HRMS spectrum of 2-d4, Figure S7: 1H NMR spectrum of 3-d4, Figure S8:
13C NMR spectrum of 3-d4, Figure S9: HRMS spectrum of 3-d4, Figure S10: 1H NMR spectrum of
4-d4, Figure S11: 13C NMR spectrum of 4-d4, Figure S12: HRMS spectrum of 4-d4.
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Appendix A

Spectroscopic data for compound 1-d4 and synthetic intermediates shown in Figure 2

1-d4: colorless crystals; m.p. 105–106 ◦C; 1H-NMR (400 MHz, CDCl3, 7.24 ppm) δ −0.09 (s,
36H), 0.01 (s, 36H), 0.32–0.34 (m, 24H), 0.39–0.43 (m, 12H), 0.62–0.67 (m, 12H); 13C-NMR
(100 MHz, CDCl3) δ −4.2, −0.5, 4.5, 5.9, 6.9, 10.2, 133.2 (t, JC-D = 19 Hz), 136.8; 29Si NMR
(79 MHz, CDCl3) δ 2.1, 5.6, 8.1; HRMS (ESI) calcd for C54H120D4Si14O3Na, 1239.6463 ([M +
Na+]); found, 1239.6463 ([M + Na+]).

2-d4: a colorless oil; b.p. 120 ◦C/3 Pa; 1H-NMR (400 MHz, CDCl3, δ) 5.86 (dd, J = 4.0, 20 Hz,
6H), 6.23 (dd, J = 4.0, 14 Hz, 6H), 6.35 (dd, J = 14, 20 Hz, 6H); 13C-NMR (100 MHz, CDCl3,
δ) 133.7, 134.0 (t, JC-D = 12 Hz), 135.5, 136.0; 29Si NMR (79 MHz, CDCl3, δ) –24.1; HRMS
(ESI) calcd for C18H18D4Si2Na,321.1403 ([M + Na+]); found, 321.1403 ([M + Na+]).

3-d4: colorless crystals; mp 132–134 ◦C; 1H-NMR (400 MHz, C6D6, δ) 0.06 (s, 36H), 0.60–0.64
(m, 12H), 0.89–0.94 (m, 12H), 5.68 (dd, J = 4.0, 20.0 Hz, 6H), 5.94 (dd, J = 4.0, 14.8 Hz, 6H),
6.16 (dd, J = 14.8, 20.0 Hz, 6H); 13C-NMR (100 MHz, C6D6, δ) −3.9, 3.7, 7.8, 132.0, 133.7 (t,
JC-D = 23 Hz), 138.1, 138.9; 29Si NMR (79 MHz, C6D6, δ) −3.7, 3.3; HRMS (ESI) calcd for
C42H78D4Si8Na, 837.4714 ([M + Na+]); found, 837.4718 ([M + Na+]).

4-d4: colorless crystals; mp 43–44 ◦C; 1H-NMR (400 MHz, CDCl3, δ) −0.03 (s, 36H), 0.08
(d, J = 3.6Hz, 36H), 0.40–0.45 (m, 12H), 0.46–0.48 (m, 24H), 0.70–0.74 (m, 12H), 3.86 (br, 6H);
13C-NMR (100 MHz, CDCl3, δ) −4.8, −4.3, 3.3, 6.4, 6.7, 7.3, 133.0 (t, JC-D = 22 Hz), 137.8; 29Si
NMR (79 MHz, CDCl3, δ) −10.1, 2.2, 5.8; HRMS (ESI, NaI was added as ionization agent.)
calcd for C54H126D4Si14I, 1301.6243 ([M + I−]); found, 1301.6237 ([M + I−]).
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