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Abstract: Photoredox processes have emerged recently as a powerful tool for methodology devel-
opments. In this context, the hydrotrifluoromethylation of alkenes and alkynes using visible light
photoredox methodologies has proven its efficiency these last years. This micro-review summarizes
the latest developments in this field.
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1. Introduction

The incorporation of fluorinated motifs has gained widespread interest in the last
decade [1]. This is mainly due to the increasing numbers of agrochemicals compounds
or drugs that contains at least one fluorine atom [2–4]. The unique physico-chemical
properties induced by fluorine or fluorinated motifs are the driving force for such interest.
On the other hand, the renaissance of photocatalysis has emerged recently as robust tool
for the construction of complex molecules through one electron process and turned out
to be an interesting alternative to leverage the orthogonality of transition metal cataly-
sis [5–11]. Regarding the hydrotrifluoromethylation of unsaturated compounds, several
methodologies have been developed under photo-redox conditions. In the case of styrene
and phenyacetylene derivatives, hydrotrifluoromethylation has turned out to be a more
challenging transformation since unproductive polymerization or oxidation of the starting
material are favored byproducts. The selective hydrotrifluoromethylation of styrene and
arylacetylene derivatives have been addressed recently [12–14]. The key to success is con-
trolling the key steps in the photoredox process employed. These developed methodologies
allow one-pot access to aliphatic as well as vinylic triflruoromethylated compounds in an
attractive and convenient way. Although these methods remain scarce, we highlight in this
micro-review the recent general developed methods for the hydrotrifluoromethylation of
aromatic alkenes and alkynes under visible-light photoredox processes.

2. Hydrotrifluoromethylation of Styrene Derivatives

The selective hydrotrifluromethylation of styrenes derivatives has been disclosed by
the group of Nicewicz in 2013 [15]. The use of commercially available and easy to handle
Langlois’s reagent 2, CF3SO2Na, is highly advantageous. The generation of trifluoromethyl
radical relies on the SET of the trifluoromethylating reagent by Fukuzumi organophotocat-
alyst N-Me-9-mesityl acridinium under blue LEDs irradiation (Figure 1). The reaction was
performed in the presence of thiophenol as H-atom donor. The desired products 3a–g were
obtained in low to very good yields and the reactions tolerate the presence of chlorine, free
alcohol (products 3b–3e) as well as NPhth (3f) derivatives.
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Figure 1. Hydrotrifluoromethylation of styrenes developed by the group of Nicewicz.

The Noël group developed another strategy for the hydrotrifluoromethylation of
styrene derivatives. Their visible light protocol is based on the use of CF3I as a trifluo-
romethylation reagent in the presence of fac-Ir(ppy)3 photocatalyst upon 24W CFL [16].
Herein, 4-hydroxythiophenol (4-HTP) was used as H-atom donor (Figure 2). The desired
compounds were obtained in very good to excellent yields and the reaction conditions
tolerated the presence of several functional groups, including free alcohols (4c), halogens
bromo (4d) and chloro (4e), as well as heterocyclic starting materials such as 4-vinylpyridine
(4f). Interestingly, the authors demonstrated that the hydrotrifluromethylation could be
performed using continuous-flow photo-micro-reactors, thus reducing the reaction time
from 18 h to 50 min with similar reaction outcome (product 4a obtained in 77% yield).
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Afterwards, our group developed a direct strategy for the hydrotrifluoromethylation
of styrene derivatives [17]. Interestingly, this strategy does not require the additive of
thiophenol as HAT donor. The key to success was to perform the reaction in DMSO. The
reactions have been conducted with 4-CzIPN as an organophotocatalyst under blue LED
irradiation at room temperature for 48 h. Desired products 5aa–5cd have been obtained in
moderate to excellent yields. Interestingly, several Langlois sulfinate analogues have been
successfully used under these conditions including CF2H (products 5ba and 5ca), CFH2
(products 5bb and 5cb), CF2Me (products 5bc and 5cc) and p-BrPhCh2CF2 (products 5bd
and 5cd). It should be mentioned that to some extent, the reaction tolerates the presence
complex structure of the estrone derivatives (Figure 3).
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Figure 3. Hydrofluoroalkylation of styrenes developed by the group of Tlili.

From a mechanistic standpoint, and in contrast to previously described methods, no ad-
ditive was required. Mechanistic investigation including luminescence, EPR spectroscopy
confirmed the SET oxidation of the Langlois reagent with the excited organophotocatalyst
4CzIPN. Afterwards, the formed trifluoromethyl radical collapses to the styrene to afford
radical A that could be reduced with radical anion photocatalyst producing anion B and
furnishing the organophocatalyst at its ground state. Finally, protonation of the formed
anion allows the formation of the desired product. Herein, it should be mentioned that
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simply adding CO2 allows the carboxylation of anion intermediate B. Moreover, adding
deuterated water in the media allows the incorporation of the deuterium atom (Figure 4).
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3. Hydrotrifluromethylation of Phenylacetylenes Derivatives

Regarding the hydrotrifluoromethylation of alkynes, Cho’s group disclosed in 2014 a
general method to access trifluoromethylated alkenes (products 7a–7e) (Figure 5) [18].
Trifluoromethyl iodide was used as trifluoromethylation reagent in conjunction with
fac-Ir(ppy)3 under blue LEDs irradiation. The reaction requires the use of 10 equivalents of
DBU, providing a mixture of E and Z alkenyl-CF3 compounds in good to excellent yields.
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The authors proposed the following mechanism (Figure 6). DBU reduces the excited
photocatalyst yielding DBU+ and [Ir(ppy)]−. The photocatalyst radical anion reduces the
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CF3I yielding trifluoromethyl radical that collapses to the phenylacetylene, yielding to a
vinyl radical. The desired product could be obtained through radical abstraction from the
amine radical cation. It should be mentioned that another plausible mechanism was also
disclosed. Indeed, the abstraction of the iodide by the trifluoromethylvinyl radical can
also furnish the alkenyl iodide. Herein, deodination would take place by the radical anion
[Ir(ppy)]− (Figure 6).
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In parallel to the work of Cho’s group, we recently turned our attention to study the
effectiveness of the protocol developed based on the use of organophotocatalysts in our
laboratory for the hydrotrifluoromethylation of styrene derivatives toward phenylacetylene
derivatives (Figure 7) [19]. The hydrotrifluoromethylation of phenylacetylene yields the
desired product 8a in 60% with a mixture of E/Z isomers. Herein, adding a few equivalents
of water was necessary to obtain the best reaction outcome. Unfortunately, the use of other
arylacetylene derivatives 8b and 8c furnished only traces to very low yields.
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4. Conclusions 
In conclusion, the use of visible-light photoredox has demonstrated its robustness for 
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4. Conclusions

In conclusion, the use of visible-light photoredox has demonstrated its robustness
for the hydrotrifluoromethylation of styrene and phenyl acetylene derivatives by using
commercially available and easily accessible photoredoxcatalysts. The developed protocols
are also easy to implement and make use also of easy-to-handle commercially available
starting materials. The use of HAT allows us to obtain a better reaction outcome. Future
developments should take this important point into consideration and more convenient
HAT precursors should be used. Furthermore, the use of a more efficient catalyst, especially
with higher TONs, should be considered for future developments. Finally, the use of
these methodologies for the synthesis of bio-active compounds will definitely foster the
emergence of molecules of interest bearing trifluoromethyl or fluoroalkyl motif.
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