Rolling-Circle-Amplification-Assisted DNA Biosensors for Sensitive and Specific Detection of Hypochlorous Acid and Myeloperoxidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oligonucleotides
2.2. HClO Quantitation
2.3. MPO Quantitation
3. Results
3.1. Working Mechanism of RCA-Assisted Biosensor for HClO Detection
3.2. Feasibility Verification of HClO-Sensing Strategy
3.3. Sensitivity and Specificity of HClO Biosensor
3.4. HClO Detection in Complex Biological Sample
3.5. Working Mechanism and Feasibility Verification of Derivative MPO Biosensor
3.6. Sensitivity and Specificity of MPO Biosensor
3.7. MPO Detection in Complex Biological Sample
3.8. Application in MPO Inhibitor Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nishikawa, M. Reactive oxygen species in tumor metastasis. Cancer Lett. 2008, 266, 53–59. [Google Scholar] [CrossRef]
- Wen, X.; Wu, J.; Wang, F.; Liu, B.; Huang, C.; Wei, Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic. Biol. Med. 2013, 65, 402–410. [Google Scholar] [CrossRef]
- Klebanoff, S.J.; Kettle, A.J.; Rosen, H.; Winterbourn, C.C.; Nauseef, W.M. Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J. Leukoc. Biol. 2013, 93, 185–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, Y.W.; Sarkar, S.; Singha, S.; Reo, Y.J.; Kim, H.R.; Kim, J.-J.; Chang, Y.-T.; Ahn, K.H. A two-photon fluorescent probe for ratiometric imaging of endogenous hypochlorous acid in live cells and tissues. Chem. Commun. 2017, 53, 10800–10803. [Google Scholar] [CrossRef]
- Sam, C.-H.; Lu, H.-K. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci. 2009, 4, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Milton, A.; Arnold, R.D.; Huang, H.; Smith, F.; Panizzi, J.R.; Panizzi, P. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. J. Leukoc. Biol. 2016, 99, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Rashid, I.; Maghzal, G.J.; Chen, Y.-C.; Cheng, D.; Talib, J.; Newington, D.; Ren, M.; Vajandar, S.K.; Searle, A.; Maluenda, A.; et al. Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Eur. Heart J. 2018, 39, 3301–3310. [Google Scholar] [CrossRef] [Green Version]
- Huo, F.-J.; Zhang, J.-J.; Yang, Y.-T.; Chao, J.-B.; Yin, C.-X.; Zhang, Y.-B.; Chen, T.-G. A fluorescein-based highly specific colorimetric and fluorescent probe for hypochlorites in aqueous solution and its application in tap water. Sens. Actuators B Chem. 2012, 166–167, 44–49. [Google Scholar] [CrossRef]
- Zhang, N.; Francis, K.P.; Prakash, A.; Ansaldi, D. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat. Med. 2013, 19, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Dou, Y.; Li, L.; Xu, X.; Zhang, Q.; Cheng, J.; Han, S.; Huang, J.; Li, X.; et al. A myeloperoxidase-responsive and biodegradable luminescent material for real-time imaging of inflammatory diseases. Mater. Today 2017, 20, 493–500. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, G.; Wei, F.; Cen, Y.; Xu, X.; Shi, M.; Cheng, X.; Chai, Y.; Sohail, M.; Hu, Q. One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in metal–organic framework for enhanced HClO sensing. ACS Appl. Mater. Interfaces 2018, 10, 20801–20805. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Li, B.; Li, W.; Zhang, C.; Hou, X.; Jiang, J.; Dong, Y. Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice. Chem. Sci. 2018, 9, 8207–8212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekhit, M.; Gorski, W. Electrochemical assays and immunoassays of the myeloperoxidase/SCN–/H2O2 system. Anal. Chem. 2019, 91, 3163–3169. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, M.; Gorski, W. Biosensing with myeloperoxidase: Mechanism, activity, and determination of SCN−. Sens. Actuators B Chem. 2021, 331, 129469. [Google Scholar] [CrossRef]
- Guo, H.; Chen, G.; Ma, J.; Jia, Q. A triazine based organic framework with micropores and mesopores for use in headspace solid phase microextraction of phthalate esters. Microchim. Acta 2018, 186, 4. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, J.; Chen, J.; Zhao, Y.; Niu, Y.; Yu, C. Amperometric myeloperoxidase immunoassay based on the use of CuPdPt nanowire networks. Microchim. Acta 2017, 185, 55. [Google Scholar] [CrossRef]
- Thekkan, S.; Jani, M.S.; Cui, C.; Dan, K.; Zhou, G.; Becker, L.; Krishnan, Y. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 2019, 15, 1165–1172. [Google Scholar] [CrossRef]
- Sun, M.; Yu, H.; Zhu, H.; Ma, F.; Zhang, S.; Huang, D.; Wang, S. Oxidative cleavage-based near-infrared fluorescent probe for hypochlorous acid detection and myeloperoxidase activity evaluation. Anal. Chem. 2014, 86, 671–677. [Google Scholar] [CrossRef]
- You, Y.; Cheng, S.; Zhang, L.; Zhu, Y.; Zhang, C.; Xian, Y. Rational modulation of the luminescence of upconversion nanomaterials with phycocyanin for the sensing and imaging of myeloperoxidase during an inflammatory process. Anal. Chem. 2020, 92, 5091–5099. [Google Scholar] [CrossRef]
- Liu, L.; Wei, P.; Yuan, W.; Liu, Z.; Xue, F.; Zhang, X.; Yi, T. Detecting basal myeloperoxidase activity in living systems with a near-infrared emissive “turn-on” probe. Anal. Chem. 2020, 92, 10971–10978. [Google Scholar] [CrossRef]
- Kellner, S.; DeMott, M.S.; Cheng, C.P.; Russell, B.S.; Cao, B.; You, D.; Dedon, P.C. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat. Chem. Biol. 2017, 13, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Gu, C.; Xiang, Y. Orthogonal activation of RNA-cleaving DNAzymes in live cells by reactive oxygen species. Angew. Chem. Int. Ed. 2019, 58, 14167–14172. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, J.; Xu, F.; Sun, G.; Pan, X.; Xia, M.; Zhang, S.; Zhang, X. Site-specific scissors based on myeloperoxidase for phosphorothioate DNA. J. Am. Chem. Soc. 2021, 143, 12361–12368. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.-Y.; Wang, D.-X.; Liu, B.; Jing, X.; Chen, D.-Y.; Tang, A.-N.; Kong, D.-M. Oxidative cleavage-based three-dimensional DNA biosensor for ratiometric detection of hypochlorous acid and myeloperoxidase. Anal. Chem. 2021, 93, 16231–16239. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.-X.; Ma, J.-Y.; Wang, Y.-X.; Kong, D.-M. Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction. Chem. Sci. 2019, 10, 9758–9767. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal amplification of nucleic acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Macdonald, J. Advances in isothermal amplification: Novel strategies inspired by biological processes. Biosens. Bioelectron. 2015, 64, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Lai, W.; Man, T.; Chang, B.; Li, L.; Chandrasekaran, A.R.; Pei, H. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev. 2019, 119, 11631–11717. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013, 135, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Wu, X.; Weng, Y.; Lu, Y.; Huang, Z.-Z. Self-assembled FRET nanoprobe with metal–organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal. Chem. 2020, 92, 3447–3454. [Google Scholar] [CrossRef]
- Tian, F.; Jia, Y.; Zhang, Y.; Song, W.; Zhao, G.; Qu, Z.; Li, C.; Chen, Y.; Li, P. A HClO-specific near-infrared fluorescent probe for determination of myeloperoxidase activity and imaging mitochondrial HClO in living cells. Biosens. Bioelectron. 2016, 86, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-Y.; Liu, B.; Raza, S.; Jiang, H.-X.; Tang, A.-N.; Kong, D.-M. CRISPR/Cas12a-based hypochlorous acid and myeloperoxidase biosensors designed on RESET effect. Sens. Actuators B Chem. 2023, 376, 133000. [Google Scholar] [CrossRef]
- Srikun, D.; Miller, E.W.; Domaille, D.W.; Chang, C.J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 2008, 130, 4596–4597. [Google Scholar] [CrossRef]
- Chuang, C.-Y.; Chen, T.-L.; Cherng, Y.-G.; Tai, Y.-T.; Chen, T.-G.; Chen, R.-M. Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. Arch. Toxicol. 2011, 85, 209–218. [Google Scholar] [CrossRef]
- Barallat, J.; Olivé-Monllau, R.; Gonzalo-Ruiz, J.; Ramírez-Satorras, R.; Muñoz-Pascual, F.X.; Ortega, A.G.; Baldrich, E. Chronoamperometric magneto immunosensor for myeloperoxidase detection in human plasma based on a magnetic switch produced by 3D laser sintering. Anal. Chem. 2013, 85, 9049–9056. [Google Scholar] [CrossRef]
- Stocker, P.; Cassien, M.; Vidal, N.; Thétiot-Laurent, S.; Pietri, S. A fluorescent homogeneous assay for myeloperoxidase measurement in biological samples. A positive correlation between myeloperoxidase-generated HOCl level and oxidative status in STZ-diabetic rats. Talanta 2017, 170, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Kettle, A.J.; Gedye, C.A.; Winterbourn, C.C. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem. J. 1997, 321, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Kettle, A.J.; Gedye, C.A.; Hampton, M.B.; Winterbourn, C.C. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem. J. 1995, 308, 559–563. [Google Scholar] [CrossRef] [PubMed]
Oligonucleotide | Sequence (5′→3′) |
---|---|
Padlock | P-TGACATTGTACCTCAGCCCTAACCCTAACCCTAACCCTTACCC TAACCCTAACCCTAACCCTCAGCTTGAATCCGTG |
Primer-S | TACAATGTCACACGGATTCACGTG*TGACATTGTA |
Primer (mimic cleavage product) | TACAATGTCACACGGATTCACGTG |
FAM-Primer-S | FAM-TACAATGTCACACGGATTCACGTG*TGACATTGTA |
FAM-Primer | FAM-TACAATGTCACACGGATTCACGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Ma, J.-Y.; Wang, J.; Wang, D.-X.; Tang, A.-N.; Kong, D.-M. Rolling-Circle-Amplification-Assisted DNA Biosensors for Sensitive and Specific Detection of Hypochlorous Acid and Myeloperoxidase. Chemistry 2023, 5, 1454-1464. https://doi.org/10.3390/chemistry5020098
Liu B, Ma J-Y, Wang J, Wang D-X, Tang A-N, Kong D-M. Rolling-Circle-Amplification-Assisted DNA Biosensors for Sensitive and Specific Detection of Hypochlorous Acid and Myeloperoxidase. Chemistry. 2023; 5(2):1454-1464. https://doi.org/10.3390/chemistry5020098
Chicago/Turabian StyleLiu, Bo, Jia-Yi Ma, Jing Wang, Dong-Xia Wang, An-Na Tang, and De-Ming Kong. 2023. "Rolling-Circle-Amplification-Assisted DNA Biosensors for Sensitive and Specific Detection of Hypochlorous Acid and Myeloperoxidase" Chemistry 5, no. 2: 1454-1464. https://doi.org/10.3390/chemistry5020098
APA StyleLiu, B., Ma, J. -Y., Wang, J., Wang, D. -X., Tang, A. -N., & Kong, D. -M. (2023). Rolling-Circle-Amplification-Assisted DNA Biosensors for Sensitive and Specific Detection of Hypochlorous Acid and Myeloperoxidase. Chemistry, 5(2), 1454-1464. https://doi.org/10.3390/chemistry5020098