Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters
Abstract
:1. Introduction
2. Synthetic Methods of MNCs
3. Applications of DNA-MNCs Based on Their Diverse Properties
3.1. Fluorescence
3.1.1. Regulating Fluorescence of DNA-MNCs for Logic Operation and Analysis
3.1.2. Enzyme-Assisted Amplification in Biosensing Systems with DNA-MNCs as Reporters
3.1.3. Enzyme-Free Amplification in DNA-MNC-Based Biosensing Systems
3.1.4. DNA-MNC-Based Dimeric Structures and Their Amplifications
3.1.5. Other DNA-MNC-Based Nanosystems
3.2. Electrochemiluminescence
3.2.1. DNA-MNCs as ECL Luminophores, Resonance Energy Transfer (RET) Acceptors, or Donors
3.2.2. DNA-MNCs as Catalysts for Enhancing ECL
3.3. Antibacterial Activity
3.3.1. Antibacterial Activity of DNA-MNCs and the Mechanism Exploration
3.3.2. Biocompatibility of Antibacterial DNA-MNCs
3.4. Catalysis
3.4.1. DNA-MNC-Based Nanozymes and Their Analytical Applications
3.4.2. Regulating Catalytic Activities of DNA-MNCs for Analysis and Logic Operation
3.4.3. DNA-MNCs as Nanocatalysts in the Field of Energy Source
4. Conclusions and Perspectives
- (1)
- DNA-MNCs, particularly DNA-Ag NCs and DNA-Cu NCs, have obvious fluorescence emission, which correlates with the sequences and structures of DNA templates. Varieties of novel biosensing systems have been constructed based on fluorescence regulation, e.g., enhancement by adjacent G-rich sequences, emission alteration by formation of dimeric structures, etc. Many amplification strategies including nuclease-assisted DNA reactions (e.g., RCA and LAMP) and enzyme-free DNA circuits (e.g., CHA and HCR) have been extensively adopted with fluorescent DNA-MNCs for sensitive bioanalysis.
- (2)
- DNA-MNCs as effective ECL emitters can substitute for classical ECL luminophores and have been utilized especially for construction of sensitive analytical methods. DNA-MNCs are able to quench the ECL of luminophores or act as catalysts to intensify the ECL and have been used in biosensing systems. Therefore, DNA-MNCs in ECL systems may play more than one role, and underlying mechanisms need to be further resolved. DNA-Ag NCs exhibit apparent antibacterial activity, and it has been suggested that a correlation exists between fluorescence and antibacterial properties of DNA-Ag NCs.
- (3)
- DNA-MNCs, e.g., DNA-Ag NCs, DNA-Ag/Pt NCs, and DNA-Cu/Ag NCs, as intriguing nanocatalysts, exhibit apparent catalytic activity toward different reactions, such as POD-like activity (nanozyme), nitrobenzene reduction, ORR, etc. Based on the catalytic activity of DNA-MNCs instead of natural enzymes, many robust colorimetric sensing systems have been fabricated. Of note, successful reversible regulation of catalytic activity of DNA-Ag NCs with DNA systems predicts the potential to explore controllable nanocatalysts.
- (1)
- The relationship between structures and properties has not been resolved and should be attended to. It is anticipated that more precise atomic structures of DNA-MNCs can be acquired with multifarious advanced techniques in the future so as to interpret the underlying mechanisms of properties of DNA-MNCs well and spur their applications in various fields.
- (2)
- DNA-MNCs in ECL systems may play significant roles, such as luminophores, catalysts, or quenchers. It is critical to synthesize well-dispersed MNCs and high ECL activity and expand their potential applications.
- (3)
- Much more comprehensive research is required on the relationship between the antibacterial properties and fluorescence of DNA-MNC. DNA-MNCs can be modified with specific antibodies or aptamers to improve antibacterial targeting, and other antibacterial molecules with different sterilization mechanisms can be employed to augment their antibacterial effects.
- (4)
- There are many types of natural enzymes, and in the future, it is necessary to design and develop DNA-MNCs with new catalytic properties. DNA-MNCs lack specificity and cannot catalyze a specific substrate like natural enzymes, and how to endow DNA-MNCs with specific functions will be a major challenge. It is essential to strengthen the combined application of DNA-MNCs with other technologies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, F.; Qing, T.; Qing, Z. DNA-Coded Metal Nano-Fluorophores: Preparation, Properties and Applications in Biosensing and Bioimaging. Nano Today 2021, 36, 101021. [Google Scholar] [CrossRef]
- Gou, X.L.; Zhang, Y.L.; Zhu, S.S.; Yu, X.L.; Qin, L.; Cheng, X.X.; Zhang, Y.H.; Ding, S.J.; Chen, R.; Tang, H.; et al. Asymmetric Hairpins DNA Encapsulated Silver Nanoclusters for in Situ Fluorescence Imaging of Fusion Gene Isoforms in Bone Marrow. Small 2023, 19, 2303034. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Wu, Y.; Guo, L.; Li, L.; Zhou, M.; Li, X.; Liu, T.; Ding, Y.; Bu, H.; Xie, G.; et al. Self-Assembly Induced Enhanced Electrochemiluminescence of Copper Nanoclusters Using DNA Nanoribbon Templates. Angew. Chem.-Int. Ed. 2023, 62, e2023008. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lv, M.; Ren, J.; Wang, E. Regulating Catalytic Activity of DNA-Templated Silver Nanoclusters Based on Their Differential Interactions with DNA Structures and Stimuli-Responsive Structural Transition. Small 2021, 17, 2006553. [Google Scholar] [CrossRef]
- Liu, S.; Yan, Q.; Cao, S.; Wang, L.; Luo, S.-H.; Lv, M. Inhibition of Bacteria in Vitro and in Vivo by Self-Assembled DNA-Silver Nanocluster Structures. ACS Appl. Mater. Interfaces 2022, 14, 41809–41818. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Q.; Wang, J.; Wang, E.K.; Dong, S.J. Propelling DNA Computing with Materials’ Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. Adv. Sci. 2020, 7, 2001766. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, X.; Zhou, X.; Khusbu, F.Y.; Ma, C. Recent Advances in the Bioanalytical and Biomedical Applications of DNA-Templated Silver Nanoclusters. TrAC-Trends Anal. Chem. 2020, 124, 115786. [Google Scholar] [CrossRef]
- Cerretani, C.; Liisberg, M.B.; Ruck, V.; Kondo, J.; Vosch, T. The Effect of Inosine on the Spectroscopic Properties and Crystal Structure of a Nir-Emitting DNA-Stabilized Silver Nanocluster. Nanoscale Adv. 2022, 4, 3212–3217. [Google Scholar] [CrossRef] [PubMed]
- Wong, Z.W.; Muthoosamy, K.; Mohamed, N.A.H.; New, S.Y. A Ratiometric Fluorescent Biosensor Based on Magnetic-Assisted Hybridization Chain Reaction and DNA-Templated Silver Nanoclusters for Sensitive Microrna Detection. Biosens. Bioelectron. X 2022, 12, 100244. [Google Scholar] [CrossRef]
- Qing, T.; Zhang, K.; Qing, Z.; Wang, X.; Long, C.; Zhang, P.; Hu, H.; Feng, B. Recent Progress in Copper Nanocluster-Based Fluorescent Probing: A Review. Microchim. Acta 2019, 186, 670. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, M.; Zhu, Y.; Mao, C. Metallic Nanoclusters for Cancer Imaging and Therapy. Curr. Med. Chem. 2018, 25, 1379–1396. [Google Scholar] [CrossRef]
- Saheb, A.; Smith, J.A.; Josowicz, M.; Janata, J.; Baer, D.R.; Engelhard, M.H. Controlling Size of Gold Clusters in Polyaniline from Top-Down and from Bottom-Up. J. Electroanal. Chem. 2008, 621, 238–244. [Google Scholar] [CrossRef]
- Muhammed, M.A.H.; Ramesh, S.; Sinha, S.S.; Pal, S.K.; Pradeep, T. Two Distinct Fluorescent Quantum Clusters of Gold Starting from Metallic Nanoparticles by Ph-Dependent Ligand Etching. Nano Res. 2008, 1, 333–340. [Google Scholar] [CrossRef]
- Chen, L.; Gharib, M.; Zeng, Y.; Roy, S.; Nandi, C.K.; Chakraborty, I. Advances in Bovine Serum Albumin-Protected Gold Nanoclusters: From Understanding the Formation Mechanisms to Biological Applications. Mater. Today Chem. 2023, 29, 101460. [Google Scholar] [CrossRef]
- Li, Q.; Huang, B.; Yang, S.; Zhang, H.; Chai, J.; Pei, Y.; Zhu, M. Unraveling the Nucleation Process from a Au(I)-Sr Complex to Transition-Size Nanoclusters. J. Am. Chem. Soc. 2021, 143, 15224–15232. [Google Scholar] [CrossRef] [PubMed]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–Liquid System. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-Templated Ag Nanocluster Formation. J. Am. Chem. Soc. 2004, 126, 5207–5212. [Google Scholar] [CrossRef]
- Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly(Thymine)-Templated Selective Formation of Fluorescent Copper Nanoparticles. Angew. Chem.-Int. Ed. 2013, 52, 9719–9722. [Google Scholar] [CrossRef]
- Liu, G.; Shao, Y.; Ma, K.; Cui, Q.; Wu, F.; Xu, S. Synthesis of DNA-Templated Fluorescent Gold Nanoclusters. Gold Bull. 2012, 45, 69–74. [Google Scholar] [CrossRef]
- Peyser, L.A.; Vinson, A.E.; Bartko, A.P.; Dickson, R.M. Photoactivated Fluorescence from Individual Silver Nanoclusters. Science 2001, 291, 103–106. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Li, L.; Zhang, G.; Hussain, I.; Li, Z.; Tan, B. Photoreductive Synthesis of Water-Soluble Fluorescent Metal Nanoclusters. Chem. Commun. 2012, 48, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-F.; Wang, G.-Q.; Zhao, J.-B.; Jiang, L.; Fang, S.-M.; Sun, Y.-A. Synthesis of Chiral Silver Nanoclusters Capped with Small Molecules. Colloid Surf. A-Physicochem. Eng. Asp. 2013, 426, 12–17. [Google Scholar] [CrossRef]
- Fujimura, T.; Yoshida, Y.; Inoue, H.; Shimada, T.; Takagi, S. Dense Deposition of Gold Nanoclusters Utilizing a Porphyrin/Inorganic Layered Material Complex as the Template. Langmuir 2015, 31, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T.; Helbig, W. Size-Selective Synthesis of Nanostructured Transition. J. Am. Chem. Soc. 1994, 116, 7401–7402. [Google Scholar] [CrossRef]
- Vilar-Vidal, N.; Blanco, M.C.; Lopez-Quintela, M.A.; Rivas, J.; Serra, C. Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters. J. Phys. Chem. C. 2010, 114, 15924–15930. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Yang, N.; Sun, L.; Li, G. DNA-Templated Silver Nanoclusters Formation at Gold Electrode Surface and Its Application to Hydrogen Peroxide Detection. Chin. J. Chem. 2012, 30, 1962–1965. [Google Scholar] [CrossRef]
- Kang, J.; Gao, P.; Zhang, G.; Shi, L.; Zhou, Y.; Wu, J.; Shuang, S.; Zhang, Y. Rapid Sonochemical Synthesis of Copper Nanoclusters with Red Fluorescence for Highly Sensitive Detection of Silver Ions. Microchem. J. 2022, 178, 107370. [Google Scholar] [CrossRef]
- Xu, H.; Suslick, K.S. Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters. ACS Nano 2010, 4, 3209–3214. [Google Scholar] [CrossRef]
- Harshita; Park, T.-J.; Kailasa, S.K. Microwave-Assisted Synthesis of Blue Fluorescent Molybdenum Nanoclusters with Maltose-Cysteine Schiff Base for Detection of Myoglobin and Γ-Aminobutyric Acid in Biofluids. Luminescence 2023, 38, 1374–1384. [Google Scholar] [CrossRef]
- Manno, R.; Ranjan, P.; Sebastian, V.; Mallada, R.; Irusta, S.; Sharma, U.K.; Van der Eycken, E.V.; Santamaria, J. Continuous Microwave-Assisted Synthesis of Silver Nanoclusters Confined in Mesoporous Sba-15: Application in Alkyne Cyclizations. Chem. Mat. 2020, 32, 2874–2883. [Google Scholar] [CrossRef]
- Shang, L.; Dong, S.; Nienhaus, G.U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Today 2011, 6, 401–418. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, M.; Mehdi, M.; Wang, G.; Gao, P.; Zhang, K.-Q. Biomolecule-Assisted Synthesis and Functionality of Metal Nanoclusters for Biological Sensing: A Review. Mat. Chem. Front. 2019, 3, 1722–1735. [Google Scholar] [CrossRef]
- Borse, S.; Murthy, Z.V.P.; Park, T.J.; Kailasa, S.K. The Influence of Surface Ligand Chemistry for the Synthesis of Blue Fluorescent Gold Nanoclusters for the Detection of Serotonin in Biofluids. New J. Chem. 2023, 47, 3075–3083. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, Y.; Ma, X.; Xia, M.; Li, S.; Zhang, Y. Thiolated DNA-Templated Silver Nanoclusters with Strong Fluorescence Emission and a Long Shelf-Life. Nanoscale 2018, 10, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gan, L.; Han, L.; Wang, E.; Wang, J. High-Yield Synthesis of Silver Nanoclusters Protected by DNA Monomers and Dft Prediction of Their Photoluminescence Properties. Angew. Chem.-Int. Ed. 2013, 52, 2022–2026. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Fu, Y.; Sun, Y.; Zhang, J.; Zhang, R. Effects of Polymorphic DNA on the Fluorescent Properties of Silver Nanoclusters. Photochem. Photobiol. Sci. 2013, 12, 1864–1872. [Google Scholar] [CrossRef]
- Teng, Y.; Jia, X.; Zhang, S.; Zhu, J.; Wang, E. A Nanocluster Beacon Based on the Template Transformation of DNA-Templated Silver Nanoclusters. Chem. Commun. 2016, 52, 1721–1724. [Google Scholar] [CrossRef]
- Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective Dsdna-Templated Formation of Copper Nanoparticles in Solution. Angew. Chem.-Int. Ed. 2010, 49, 5665–5667. [Google Scholar] [CrossRef]
- Liu, G.; Shao, Y.; Peng, J.; Dai, W.; Liu, L.; Xu, S.; Wu, F.; Wu, X. Highly Thymine-Dependent Formation of Fluorescent Copper Nanoparticles Templated by Ss-DNA. Nanotechnology 2013, 24, 345502. [Google Scholar] [CrossRef]
- Deng, H.-H.; Wang, F.-F.; Shi, X.-Q.; Peng, H.-P.; Liu, A.-L.; Xia, X.-H.; Chen, W. Water-Soluble Gold Nanoclusters Prepared by Protein-Ligand Interaction as Fluorescent Probe for Real-Time Assay of Pyrophosphatase Activity. Biosens. Bioelectron. 2016, 83, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Yu, M.; Zhou, C.; Yang, S.; Ning, X.; Zheng, J. Passive Tumor Targeting of Renal-Clearable Luminescent Gold Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981. [Google Scholar] [CrossRef]
- Shu, T.; Su, L.; Wang, J.; Lu, X.; Liang, F.; Li, C.; Zhang, X. Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor. Anal. Chem. 2016, 88, 6071–6077. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Li, J.; You, H.; Li, Y.; Chen, L. Molecularly Imprinted Polymers-Coated Gold Nanoclusters for Fluorescent Detection of Bisphenol A. Sens. Actuator B-Chem. 2015, 211, 507–514. [Google Scholar] [CrossRef]
- Almowalad, J.; Laskar, P.; Somani, S.; Meewan, J.; Tate, R.J.; Dufes, C. Lactoferrin- and Dendrimer-Bearing Gold Nanocages for Stimulus-Free DNA Delivery to Prostate Cancer Cells. Int. J. Nanomed. 2022, 17, 1409–1421. [Google Scholar] [CrossRef]
- Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. Ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater. 2011, 21, 3508–3515. [Google Scholar] [CrossRef]
- Rao, T.U.B.; Pradeep, T. Luminescent Ag-7 and Ag-8 Clusters by Interfacial Synthesis. Angew. Chem.-Int. Ed. 2010, 49, 3925–3929. [Google Scholar]
- Cao, Y.T.; Fung, V.; Yao, Q.F.; Chen, T.K.; Zang, S.Q.; Jiang, D.E.; Xie, J.P. Control of Single-Ligand Chemistry on Thiolated Au-25 Nanoclusters. Nat. Commun. 2020, 11, 5498. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, T.; Chen, T.; Zhang, B.; Jiang, D.-e.; Xie, J. Revealing the Etching Process of Water-Soluble Au-25 Nanoclusters at the Molecular Level. Nat. Commun. 2021, 12, 3212. [Google Scholar] [CrossRef]
- Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire. Nature 1998, 391, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Neault, J.F.; Tajmir-Riahi, H.A. Silver(I) Complexes with DNA and Rna Studied by Fourier Transform Infrared Spectroscopy and Capillary Electrophoresis. Biophys. J. 2001, 81, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Berti, L.; Burley, G.A. Nucleic Acid and Nucleotide-Mediated Synthesis of Inorganic Nanoparticles. Nat. Nanotechnol. 2008, 3, 81–87. [Google Scholar] [CrossRef]
- Noguera, M.; Bertran, J.; Sodupe, M. Cu2+/+ Cation Coordination to Adenine-Thymine Base Pair. Effects on Intermolecular Proton-Transfer Processes. J. Phys. Chem. B 2008, 112, 4817–4825. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.W.; Beer, M.; Barrnett, R.J. Gold (Iii) Complexes of Adenine Nucleotides. Biochemistry 1971, 10, 3669–3679. [Google Scholar] [CrossRef]
- Kennedy, T.A.C.; MacLean, J.L.; Liu, J. Blue Emitting Gold Nanoclusters Templated by Poly-Cytosine DNA at Low Ph and Poly-Adenine DNA at Neutral Ph. Chem. Commun. 2012, 48, 6845–6847. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Yuan, J.; Dong, Q.; Wang, E. Highly Sequence-Dependent Formation of Fluorescent Silver Nanoclusters in Hybridized DNA Duplexes for Single Nucleotide Mutation Identification. J. Am. Chem. Soc. 2010, 132, 932–934. [Google Scholar] [CrossRef]
- Ritchie, C.M.; Johnsen, K.R.; Kiser, J.R.; Antoku, Y.; Dickson, R.M.; Petty, J.T. Ag Nanocluster Formation Using a Cytosine Oligonucleotide Template. J. Phys. Chem. C 2007, 111, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wang, E. DNA-Templated Fluorescent Silver Nanoclusters. Anal. Bioanal. Chem. 2012, 402, 129–138. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Borse, S.; Koduru, J.R.; Murthy, Z.V.P. Biomolecules as Promising Ligands in the Synthesis of Metal Nanoclusters: Sensing, Bioimaging and Catalytic Applications. Trends Environ. Anal. Chem. 2021, 32, e00140. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y. Developing Fluorescent Copper Nanoclusters: Synthesis, Properties, and Applications. Colloids Surf. B-Biointerfaces 2020, 195, 111244. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Z.; Li, S.; Qi, L.; Xu, G. Chemiluminescence and Electrochemiluminescence Applications of Metal Nanoclusters. Sci. China-Chem. 2016, 59, 794–801. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, K.; Feng, B.; Zhang, P.; Qing, T.; Fei, J. Proximity Sequence-Dependent Spectral Conversion of Silver Nanoclusters and Construction of Ratiometric Nanoprobe. Chem. Eng. J. 2022, 441, 136001. [Google Scholar] [CrossRef]
- Chen, N.; Gong, C.; Zhao, H. Dual-Channel Fluorescence Detection of Antibiotic Resistance Genes Based on DNA-Templated Silver Nanoclusters. Sci. Total Environ. 2023, 882, 163559. [Google Scholar] [CrossRef]
- Shi, H.; Bi, X.; Zhang, J.; Duan, S.; Yan, J.; Jia, H. Simple and Sensitive Detection of Microrna Based on Guanine-Rich DNA-Enhanced Fluorescence of DNA-Templated Silver Clusters. Talanta 2023, 253, 124065. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Li, Y.; Liao, D.; Zhang, W.; Han, X.; Man, S. A Ratiometric Fluorescent Biosensing Platform for Ultrasensitive Detection of Salmonella Typhimurium Via Crispr/Cas12a and Silver Nanoclusters. J. Hazard. Mater. 2023, 443, 130234. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, Y.; Zhang, D.; Qi, P.; Wang, Y.; Xin, Y.; Sun, Y. Bacterial DNA Analysis Based on Target Aided Self-Assembly Cycle Amplification Coupled with DNA-Agncs/Three-Way DNA Junction. Sens. Actuator B-Chem. 2023, 374, 132749. [Google Scholar] [CrossRef]
- Yang, M.; Li, H.; Li, X.; Huang, K.; Xu, W.; Zhu, L. Catalytic Hairpin Self-Assembly Regulated Chameleon Silver Nanoclusters for the Ratiometric Detection of Circrna. Biosens. Bioelectron. 2022, 209, 114258. [Google Scholar] [CrossRef]
- Lv, M.; Zhou, W.; Fan, D.; Guo, Y.; Zhu, X.; Ren, J.; Wang, E. Illuminating Diverse Concomitant DNA Logic Gates and Concatenated Circuits with Hairpin DNA-Templated Silver Nanoclusters as Universal Dual-Output Generators. Adv. Mater. 2020, 32, 1908480. [Google Scholar] [CrossRef]
- Rong, Y.; Hassan, M.M.; Ouyang, Q.; Zhang, Y.; Wang, L.; Chen, Q. An Upconversion Biosensor Based on DNA Hybridization and DNA-Templated Silver Nanoclusters for the Determination of Acrylamide. Biosens. Bioelectron. 2022, 215, 114581. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Wang, M.; Guo, L.; Cui, C.; Liu, T.; Ren, Y.; Zhao, Y.; Ge, Z.; Guo, X.; Xie, G.; et al. DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angew. Chem.-Int. Ed. 2020, 59, 11836–11844. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Zhu, L.; Zhang, Y.; Du, Z.; Sun, C.; Xu, W. Integration of Ion-Tuned Oligonucleotide Structural Motifs and DNA-Templated Copper Nanoclusters as a Manipulable Logic Device. Sens. Actuator B-Chem. 2020, 325, 128769. [Google Scholar] [CrossRef]
- Yang Qing, H.F.; Yang, Y.; Liao, Y.; Li, H.; Wang, Z.; Du, J. Enzyme-Assisted Amplification and Copper Nanocluster Fluorescence Signal-Based Method for Mirna-122 Detection. Biosensors 2023, 13, 854. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Wang, H.; Wu, J.; Zheng, R.; Zhang, J.; Li, Y.; Wang, Z.; Dai, Z. Sensitive Determination of Formamidopyrimidine DNA Glucosylase Based on Phosphate Group-Modulated Multi-Enzyme Catalysis and Fluorescent Copper Nanoclusters. Analyst 2020, 145, 5174–5179. [Google Scholar] [CrossRef]
- Chen, C.-A.; Wang, C.-C.; Kou, H.-S.; Wu, S.-M. Molecular Inversion Probe-Rolling Circle Amplification with Single-Strand Poly-T Luminescent Copper Nanoclusters for Fluorescent Detection of Single-Nucleotide Variant of Smn Gene in Diagnosis of Spinal Muscular Atrophy. Anal. Chim. Acta 2020, 1123, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yi, K.; Wang, H.; Li, K.; Li, M. Metal Nanoclusters Combined with Crispr-Cas12a for Hepatitis B Virus DNA Detection. Sens. Actuator B-Chem. 2022, 361, 131711. [Google Scholar] [CrossRef]
- Wu, N.-N.; Chen, L.-G.; Xiao, M.-Z.; Yuan, R.-Y.; Wang, H.-B. Determination of Trypsin Using Protamine Mediated Fluorescent Enhancement of DNA Templated Au Nanoclusters. Microchim. Acta 2023, 190, 158. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Yang, X.; Han, L.; Wang, E. The Relationship between DNA Sequences and Oligonucleotide-Templated Silver Nanoclusters and Their Fluorescence Properties. Chem. Eur. J. 2014, 20, 1111–1115. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.B.; Ai, J.; Dong, S.J.; Wang, E.K. Ion-Tuned DNA/Ag Fluorescent Nanoclusters as Versatile Logic Device. ACS Nano 2011, 5, 6334–6338. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Tian, J.; Chen, J.; Wei, X.; Li, W. A Clamp-Improved Universal Amplified System for Ratiometric Fluorescent Detection of Single-Nucleotide Polymorphisms Coupled with a Novel Dual-Emissive Silver Nanocluster. Sens. Actuator B-Chem. 2022, 367, 132151. [Google Scholar] [CrossRef]
- Guo, W.W.; Yuan, J.P.; Wang, E.K. Strand Exchange Reaction Modulated Fluorescence “Off-On” Switching of Hybridized DNA Duplex Stabilized Silver Nanoclusters. Chem. Commun. 2011, 47, 10930–10932. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Teng, Y.; Yang, X.; Wang, J.; Wang, E. A Label-Free Fluorescent Molecular Beacon Based on DNA-Ag Nanoclusters for the Construction of Versatile Biosensors. Biosens. Bioelectron. 2015, 74, 318–321. [Google Scholar] [CrossRef]
- Dadmehr, M.; Hosseini, M.; Hosseinkhani, S.; Ganjali, M.R.; Sheikhnejad, R. Label Free Colorimetric and Fluorimetric Direct Detection of Methylated DNA Based on Silver Nanoclusters for Cancer Early Diagnosis. Biosens. Bioelectron. 2015, 73, 108–113. [Google Scholar] [CrossRef]
- Wang, R.L.; Lan, L.; Liu, L.; Cheng, L. Asymmetric Polymerase Chain Reaction and Loop-Mediated Isothermal Amplification (Ap-Lamp) for Ultrasensitive Detection of Micrornas. Chin. Chem. Lett. 2020, 31, 159–162. [Google Scholar] [CrossRef]
- Tian, W.M.; Li, P.J.; He, W.L.; Liu, C.H.; Li, Z.P. Rolling Circle Extension-Actuated Loop-Mediated Isothermal Amplification (Rca-Lamp) for Ultrasensitive Detection of Micrornas. Biosens. Bioelectron. 2019, 128, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.H.; Yang, K.X.; Feng, Z.Y.; Xie, Y.F.; Han, W.J.; Chen, Q.Q.; Li, S.L.; Zhang, Y.Q.; Yu, Y.; Zou, G. Selective and Sensitive Detection of Mirna-198 Using Single Polymeric Microfiber Waveguide Platform with Heterogeneous Cha Amplification Strategy. Talanta 2022, 240, 123218. [Google Scholar] [CrossRef]
- Mansourian, N.; Rahaie, M.; Hosseini, M. A Nanobiosensor Based on Fluorescent DNA-Hosted Silver Nanocluster and Hcr Amplification for Detection of Microrna Involved in Progression of Multiple Sclerosis. J. Fluoresc. 2017, 27, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Huard, D.J.E.; Demissie, A.; Kim, D.; Lewis, D.; Dickson, R.M.; Petty, J.T.; Lieberman, R.L. Atomic Structure of a Fluorescent Ag-8 Cluster Templated by a Multistranded DNA Scaffold. J. Am. Chem. Soc. 2019, 141, 11465–11470. [Google Scholar] [CrossRef] [PubMed]
- Cerretani, C.; Kanazawa, H.; Vosch, T.; Kondo, J. Crystal Structure of a Nir-Emitting DNA-Stabilized Ag-16 Nanocluster. Angew. Chem.-Int. Ed. 2019, 58, 17153–17157. [Google Scholar] [CrossRef]
- Geczy, R.; Christensen, N.J.; Rasmussen, K.K.; Kalomista, I.; Tiwari, M.K.; Shah, P.T.; Yang, S.W.; Bjerrum, M.J.; Thulstrup, P.W. Formation and Structure of Fluorescent Silver Nanoclusters at Interfacial Binding Sites Facilitating Oligomerization of DNA Hairpins. Angew. Chem.-Int. Ed. 2020, 59, 16091–16097. [Google Scholar] [CrossRef]
- Nagda, R.; Park, S.; Jung, I.L.; Nam, K.; Yadavalli, H.C.; Kim, Y.M.; Yang, K.; Kang, J.; Thulstrup, P.W.; Bjerrum, M.J.; et al. Silver Nanoclusters Serve as Fluorescent Rivets Linking Hoogsteen Triplex DNA and DNA Structures. ACS Nano 2022, 16, 13211–13222. [Google Scholar] [CrossRef]
- Jia, X.F.; Li, J.; Wang, E.K. Cu Nanoclusters with Aggregation Induced Emission Enhancement. Small 2013, 9, 3873–3879. [Google Scholar] [CrossRef]
- Rubinstein, I.; Bard, A.J. Electrogenerated Chemiluminescence. 37. Aqueous Ecl Systems Based on Tris(2,2′-Bipyridine)Ruthenium(2+) and Oxalate or Organic Acids. J. Am. Chem. Soc. 2002, 103, 512–516. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-Quenching Electrochemiluminescence Strategy Based on Three-Dimensional Metal-Organic Frameworks for Ultrasensitive Detection of Amyloid-Beta. Anal. Chem. 2019, 91, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-C.; Whang, C.-W. The Role of Direct Oxalate Oxidation in Electrogenerated Chemiluminescence of Poly(4-Vinylpyridine)-Bound Ru(Bpy)2cl+/Oxalate System on Indium Tin Oxide Electrodes. Anal. Chim. Acta 2004, 522, 25–33. [Google Scholar] [CrossRef]
- Gao, X.; Lv, B.; Zhou, Z.; Xiao, D. Application of the Ru(Bipy)2(Dpp)2+/C2o42− Electrochemiluminescence Reaction to the Determination of Phenol. Mikrochim. Acta 2007, 161, 163–167. [Google Scholar] [CrossRef]
- Feng, Q.M.; Shen, Y.Z.; Li, M.X.; Zhang, Z.L.; Zhao, W.; Xu, J.J.; Chen, H.Y. Dual-Wavelength Electrochemiluminescence Ratiometry Based on Resonance Energy Transfer between Au Nanoparticles Functionalized G-C3n4 Nanosheet and Ru(Bpy)(3)(2+) for Microrna Detection. Anal. Chem. 2016, 88, 937–944. [Google Scholar] [CrossRef]
- Tian, D.D.; Zhao, D.; Li, W.; Li, Z.H.; Zhai, M.M.; Feng, Q. Interfacial DNA/Rna Duplex-Templated Copper Nanoclusters as a Label-Free Electrochemiluminescence Strategy for the Detection of Ribonuclease H. J. Electroanal. Chem. 2022, 920, 116571. [Google Scholar] [CrossRef]
- Guo, Y.H.; Liu, S.H.; Yang, H.L.; Wang, P.; Feng, Q.M. Proximity Binding-Triggered Multipedal DNA Walker for the Electrochemiluminescence Detection of Telomerase Activity. Anal. Chim. Acta 2021, 1144, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, M.; Han, Q.; Wu, J.L.; Zhao, X.; Fu, Y.Z. A Three-Dimensional DNA Nanomachine with Target Recycling Amplification Technology and Multiple Electrochemiluminescence Resonance Energy Transfer for Sensitive Microrna-141 Detection. Biosens. Bioelectron. 2020, 156, 112146. [Google Scholar] [CrossRef]
- Feng, Q.M.; Ma, P.; Cao, Q.H.; Guo, Y.H.; Xu, J.J. An Aptamer-Binding DNA Walking Machine for Sensitive Electrochemiluminescence Detection of Tumor Exosomes. Chem. Commun. 2020, 56, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, Z.Y.; Wang, H.J.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. DNA Nanomachine-Based Regenerated Sensing Platform: A Novel Electrochemiluminescence Resonance Energy Transfer Strategy for Ultra-High Sensitive Detection of Microrna from Cancer Cells. Nanoscale 2017, 9, 2310–2316. [Google Scholar] [CrossRef]
- Feng, Q.M.; Guo, Y.H.; Xu, J.J.; Chen, H.Y. A Surface-Confined DNA Assembly Amplification Strategy on DNA Nanostructural Scaffold for Electrochemiluminescence Biosensing. Biosens. Bioelectron. 2018, 100, 571–576. [Google Scholar] [CrossRef]
- Bian, X.T.; Guo, B.; Zhao, M.; Han, D.B.; Cheng, W.; Song, F.Z.; Ding, S.J. An Enzyme-Free “on-Off” Electrochemiluminescence Biosensor for Ultrasensitive Detection of Pml/Rar Alpha Based on Target-Switched DNA Nanotweezer. ACS Appl. Mater. Interfaces 2019, 11, 3715–3721. [Google Scholar] [CrossRef] [PubMed]
- Cha, T.G.; Pan, J.; Chen, H.R.; Robinson, H.N.; Li, X.; Mao, C.D.; Choi, J.H. Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. J. Am. Chem. Soc. 2015, 137, 9429–9437. [Google Scholar] [CrossRef]
- Feng, Q.M.; Zhao, X.L.; Guo, Y.H.; Liu, M.K.; Wang, P. Stochastic DNA Walker for Electrochemical Biosensing Sensitized with Gold Nanocages@Graphene Nanoribbons. Biosens. Bioelectron. 2018, 108, 97–102. [Google Scholar] [CrossRef]
- Guo, Y.H.; Cao, Q.H.; Feng, Q.M. Catalytic Hairpin Assembly-Triggered DNA Walker for Electrochemical Sensing of Tumor Exosomes Sensitized with Ag@C Core-Shell Nanocomposites. Anal. Chim. Acta 2020, 1135, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Yan Jiao, H.L.; Wang, H.; Feng, Q.; Gao, Y. Proximity Hybridization Regulated Dual-Mode Ratiometric Biosensor for Estriol Detection in Pregnancy Serum. Anal. Chim. Acta 2023, 1278, 341689. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial Silver Nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Javani, S.; Lorca, R.; Latorre, A.; Flors, C.; Cortajarena, A.L.; Somoza, A. Antibacterial Activity of DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence. ACS Appl. Mater. Interfaces 2016, 8, 10147–10154. [Google Scholar] [CrossRef]
- Eun, H.; Kwon, W.Y.; Kalimuthu, K.; Kim, Y.; Lee, M.; Ahn, J.-O.; Lee, H.; Lee, S.H.; Kim, H.J.; Park, H.G.; et al. Melamine-Promoted Formation of Bright and Stable DNA-Silver Nanoclusters and Their Antimicrobial Properties. J. Mat. Chem. B 2019, 7, 2512–2517. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Shi, L.; Tang, Q.; Li, B.; Wang, X.; Jin, Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS Appl. Mater. Interfaces 2022, 14, 37280–37290. [Google Scholar] [CrossRef]
- Walsh, A.G.; Chen, Z.Y.; Zhang, P. X-ray Spectroscopy of Silver Nanostructures toward Antibacterial Applications. J. Phys. Chem. C 2020, 124, 4339–4351. [Google Scholar] [CrossRef]
- Gupta, A.K.; Marshall, N.; Yourston, L.; Rolband, L.; Beasock, D.; Danai, L.; Skelly, E.; Afonin, K.A.; Krasnoslobodtsev, A.V. Optical, Structural, and Biological Properties of Silver Nanoclusters Formed within the Loop of a C-12 Hairpin Sequence. Nanoscale Adv. 2023, 5, 3500–3511. [Google Scholar] [CrossRef] [PubMed]
- Rolband, L.; Yourston, L.; Chandler, M.; Beasock, D.; Danai, L.; Kozlov, S.; Marshall, N.; Shevchenko, O.; Krasnoslobodtsev, A.V.; Afonin, K.A. DNA-Templated Fluorescent Silver Nanoclusters Inhibit Bacterial Growth While Being Non-Toxic to Mammalian Cells. Molecules 2021, 26, 4045. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wamer, W.; Xia, Q.; Yin, J.-j.; Fu, P.P. Enzyme-Like Activity of Nanomaterials. J. Environ. Sci. Health Part C-Environ. Carcinog. Ecotoxicol. Rev. 2014, 32, 186–211. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, A.-X.; Liu, B.; Zhang, X.-L.; He, Y.; Li, J.; Yang, H.-H.; Chen, G. One-Pot Synthesized DNA-Templated Ag/Pt Bimetallic Nanoclusters as Peroxidase Mimics for Colorimetric Detection of Thrombin. Chem. Commun. 2014, 50, 13103–13106. [Google Scholar] [CrossRef]
- Wu, L.-L.; Wang, L.-Y.; Xie, Z.-J.; Pan, N.; Peng, C.-F. Colorimetric Assay of L-Cysteine Based on Peroxidase-Mimicking DNA-Ag/Pt Nanoclusters. Sens. Actuator B-Chem. 2016, 235, 110–116. [Google Scholar] [CrossRef]
- Mu, X.M.; Li, J.S.; Xiao, S.X.; Xu, J.Y.; Huang, Y.; Zhao, S.L.; Tian, J.N. Peroxidase-Mimicking DNA-Ag/Pt Nanoclusters Mediated Visual Biosensor for Cea Detection Based on Rolling Circle Amplification and Crispr/Cas 12a. Sens. Actuator B-Chem. 2023, 375, 1322870. [Google Scholar] [CrossRef]
- Borghei, Y.-S.; Hosseini, M.; Ganjali, M.R. Visual Detection of Mirna Using Peroxidase-Like Catalytic Activity of DNA-Cuncs and Methylene Blue as Indicator. Clin. Chim. Acta 2018, 483, 119–125. [Google Scholar] [CrossRef]
- Du, Z.; Wei, C. Using G-Rich Sequence to Enhance the Peroxidase-Mimicking Activity of DNA-Cu/Ag Nanoclusters for Rapid Colorimetric Detection of Hydrogen Peroxide and Glucose. ChemistrySelect 2020, 5, 5166–5171. [Google Scholar] [CrossRef]
- Li, S.; Zeng, Z.; Zhao, C.; Wang, H.; Ye, X.; Qing, T. Nucleoside-Regulated Catalytic Activity of Copper Nanoclusters and Their Application for Mercury Ion Detection. New J. Chem. 2022, 46, 4687–4692. [Google Scholar] [CrossRef]
- Ji, Z.; Ji, Y.; Ding, R.; Lin, L.; Li, B.; Zhang, X. DNA-Templated Silver Nanoclusters as an Efficient Catalyst for Reduction of Nitrobenzene Derivatives: A Systematic Study. Nanotechnology 2021, 32, 195705. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, J.; Wang, E. Implementation of Logic Operations and Bioanalysis Based on DNA Allostery-Regulated Nanometallic Catalysis. Nano Today 2022, 44, 101476. [Google Scholar] [CrossRef]
- Chakraborty, S.; Babanova, S.; Rocha, R.C.; Desireddy, A.; Artyushkova, K.; Boncella, A.E.; Atanassov, P.; Martinez, J.S. A Hybrid DNA-Templated Gold Nanocluster for Enhanced Enzymatic Reduction of Oxygen. J. Am. Chem. Soc. 2015, 137, 11678–11687. [Google Scholar] [CrossRef]
- Luo, W.; Wu, S.; Jiang, Y.; Xu, P.; Zou, J.; Qian, J.; Zhou, X.; Ge, Y.; Nie, H.; Yang, Z. Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters. ACS Appl. Mater. Interfaces 2023, 15, 18928–18939. [Google Scholar] [CrossRef] [PubMed]
Template 1 | Type of DNA-MNCs | Excitation/Emission Maxima (nm) | Particle Size (nm) | Application | Refs. |
---|---|---|---|---|---|
5′-ACA GAC ATC TCT TCT ATA GTG TAG TTT TGC CTT TTG GGG ACG GAT A-3′ | DNA-Ag NCs | 500/560 and 570/620 | 3.3 | Detection of Hg2+ | [61] |
5′-CCT CCT TCC TCC TTT GTA TTG CGC CGC TCT TTC GGA ATG CCG GCG CTT ATC CCT TAA TCC CC-3′ | DNA-Ag NCs | 495/549 and 580/641 | <10 | Detection of two ARGs (tet-A and sul-1) | [62] |
5′-CCC TTA ATC CCC TGA GGT AGT AGG TTG TAT AGT T-3′ | DNA-Ag NCs | 560/625 | <10 | Detection of let-7 miRNAs | [63] |
5′-CAC CGC TTT-3′ | DNA-Ag NCs | 570/670 | 2.3 | Detection of invA gene (S. typhi) | [64]. |
5′-AAT TTT AAA TAA TAT CCC CTA ATT CCC-3′ | DNA-Ag NCs | 530/635 | 5 | Detection of bacterial DNA | [65] |
5′-CCC CCC CCT TAA TCC CCC CCC-3′ | DNA-Ag NCs | 560/610 | 1.8–2.6 | Detection of circRNA | [66] |
5′-CCC TTA ATC CCC AAT TGT CCG ACC TGC AGT GAT GAC AAA ACC CCC TAA TTC CCC C-3′ | DNA-Ag NCs | 565/630 | 3.2 | Logic operation (XOR^XNOR, etc.) | [67] |
5′-CCC TTA ATC CCC GTG CTT CCT TAT TGA TTT GTG TAT CAA TAA GGA AGA AGC CCT TCA GCG GCC AGT AGC AGG GTG GGG TGG GGT GGG G-3′ 5′-CCT CCT TCC TCC TTG AAC TCT GCT TAA ATC CAG CTA ATT CTG GAT TTA AGC AGA GTT CAA AAG CCC TTC AGC CCC TAA CTA CCC-3′ | DNA-Ag NCs | 495/518 and 595/664 | - | Detection of Fusion Gene Isoforms | [2] |
5′-CCC TTA ATC CCC ATA CAC GCA CCT CAC CAC GAC CAC TCG CGA ATC TGT CCT GGA CTG-3′ | DNA-Ag NCs | - | 4 | Determination of Acrylamide (AAm) | [68] |
dsDNA:5′-TAC TCA TAC GCT CAT ACG TTC ATC ACG ACT ACA GTT GAG AAT ACG AGT-3′ | DNA-Cu NCs | 351/594 | 6.25 | Detection of biothiol and S2− | [69] |
5‘-TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT-3′ | DNA-Cu NCs | 340/630 | <5 | Logic operation (IMPLICATION etc.) and detection of K+ and microRNA 122b | [70] |
5′-ATG GTG GGG TTT TTT TTT TTT TTT TTT TTT ACC CCA CCA TTG TCA CAC TCC A-3′ | DNA-Cu NCs | 340/671 | >5 | Detection of miRNA-122 | [71] |
5′-TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT GT/i8oxodG/CGA TCA GTG CTG A-3′ | DNA-Cu NCs | 340/625 | 4 | Detection of Formamidopyrimidine DNA Glycosylase (Fpg) | [72] |
40T: TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT T | DNA-Cu NCs | 340/585 | <5 | Detection of survival motor neuron (SMN) gene | [73] |
30T: TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT | DNA-Cu NCs | 340/650 | 2.3–2.7 | Detection of Hepatitis B Virus (HBV) | [74] |
5′-AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA-3′ | DNA-Au NCs | 280/475 | 3.67 ± 1.39 | Detection of trypsin | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Ren, J.; Wang, E. Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters. Chemistry 2023, 5, 2418-2440. https://doi.org/10.3390/chemistry5040160
Yin F, Ren J, Wang E. Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters. Chemistry. 2023; 5(4):2418-2440. https://doi.org/10.3390/chemistry5040160
Chicago/Turabian StyleYin, Fang, Jiangtao Ren, and Erkang Wang. 2023. "Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters" Chemistry 5, no. 4: 2418-2440. https://doi.org/10.3390/chemistry5040160
APA StyleYin, F., Ren, J., & Wang, E. (2023). Recent Advances in the Preparation and Application of DNA-Encoded Metal Nanoclusters. Chemistry, 5(4), 2418-2440. https://doi.org/10.3390/chemistry5040160