Synthesis, Characterization and Photophysical Properties of Mixed Ligand (η3-Allyl)palladium(II) Complexes with N,N’Aromatic Diimines
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis of the Complexes
2.3. Crystal Structure Determinations
3. Results and Discussion
3.1. Synthesis and Characterization of Complexes (1)–(6)
3.2. Crystal Structures of [Pd(η3-C3H5)(pqx)]PF6 (6) and [Pd(η3-C3H5)(pqx)][Pd(η3-C3H5)Cl2] (6a)
3.3. Photophysical Properties of Complexes (1)–(6)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, S.J.; Shen, Y.; Xie, F.M.; De Chen, J.; Li, Y.Q.; Tang, J.X. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Mater. Chem. Front. 2020, 4, 788–820. [Google Scholar] [CrossRef]
- Salehi, A.; Fu, X.; Shin, D.; So, F. Recent Advances in OLED Optical Design. Adv. Funct. Mater. 2019, 29, 1808803. [Google Scholar] [CrossRef]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A Brief History of OLEDs—Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef]
- Bauri, J.; Choudhary, R.B.; Mandal, G. Recent advances in efficient emissive materials-based OLED applications: A review. J. Mater. Sci. 2021, 56, 18837–18866. [Google Scholar] [CrossRef]
- Yao, B.; Giel, M.C.; Hong, Y. Detection of kidney disease biomarkers based on fluorescence technology. Mater. Chem. Front. 2021, 5, 2124–2142. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, B.; Hu, Q.; Hong, Y.; Wallace, A.; Reynolds, K.; Ramsey, C.; Maeder, A.; Reed, R.; Tang, Y. Detection of biomarkers in body fluids using bioprobes based on aggregation-induced emission fluorogens. Mater. Chem. Front. 2020, 4, 2548–2570. [Google Scholar] [CrossRef]
- Gupta, G.; You, Y.; Hadiputra, R.; Jung, J.; Kang, D.K.; Lee, C.Y. Heterometallic bodipy-based molecular squares obtained by self-assembly: Synthesis and biological activities. ACS Omega 2019, 4, 13200–13208. [Google Scholar] [CrossRef]
- Qi, Y.L.; Wang, H.R.; Chen, L.L.; Duan, Y.T.; Yang, S.Y.; Zhu, H.L. Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem. Soc. Rev. 2022, 51, 7752–7778. [Google Scholar] [CrossRef]
- Pham, T.C.; Nguyen, V.-N.; Choi, Y.; Lee, S.; Yoon, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef]
- Pal, T.K. Metal-organic framework (MOF)-based fluorescence ‘turn-on’ sensors. Mater. Chem. Front. 2022, 7, 405–441. [Google Scholar] [CrossRef]
- Tsutsui, T.; Kusaba, S.; Yamashina, M.; Akita, M.; Yoshizawa, M. Open versus Closed Polyaromatic Nanocavity: Enhanced Host Abilities toward Large Dyes and Pigments. Chem.—A Eur. J. 2019, 25, 4320–4324. [Google Scholar] [CrossRef]
- Wu, W.; Li, Z. Nanoprobes with aggregation-induced emission for theranostics. Mater. Chem. Front. 2021, 5, 603–626. [Google Scholar] [CrossRef]
- Lee, L.C.C.; Lo, K.K.W. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J. Am. Chem. Soc. 2022, 144, 14420–14440. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, D.; Urriolabeitia, E.P. Luminescence and Palladium: The Odd Couple. Molecules 2023, 28, 2663. [Google Scholar] [CrossRef] [PubMed]
- Yersin, H.; Rausch, A.F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652. [Google Scholar] [CrossRef]
- Wegeberg, C.; Wenger, O.S. Luminescent First-Row Transition Metal Complexes. JACS Au 2021, 1, 1860–1876. [Google Scholar] [CrossRef]
- Cebrián, C.; Mauro, M. Recent advances in phosphorescent platinum complexes for organic light-emitting diodes. Beilstein J. Org. Chem. 2018, 14, 1459–1481. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yao, C.; Zhou, G. Highly Efficient Phosphorescent Materials Based on Platinum Complexes and Their Devices (OLEDs). Platin. Met. Rev. 2013, 57, 2–16. [Google Scholar] [CrossRef]
- Herberger, J.; Winter, R.F. Platinum emitters with dye-based σ-aryl ligands. Coord. Chem. Rev. 2019, 400, 213048. [Google Scholar] [CrossRef]
- Puttock, E.V.; Walden, M.T.; Williams, J.A.G. The luminescence properties of multinuclear platinum complexes. Coord. Chem. Rev. 2018, 367, 127–162. [Google Scholar] [CrossRef]
- Sifnaiou, E.; Garypidou, A.; Ypsilantis, K.; Plakatouras, J.C.; Garoufis, A. Synthesis, characterization and photophysical properties of mixed ligand cyclometalated platinum(II) complexes containing 2-phenylpyridine and pyridine carboxylic acids. Polyhedron 2023, 231, 116252. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Grätzel, M. Transition Metal Complexes for Photovoltaic and Light Emitting Applications. In Photofunctional Transition Metal Complexes; Springer: Berlin/Heidelberg, Germany, 2007; pp. 113–175. [Google Scholar]
- To, W.P.; Wan, Q.; Tong, G.S.M.; Che, C.M. Recent Advances in Metal Triplet Emitters with d6, d8, and d10 Electronic Configurations. Trends Chem. 2020, 2, 796–812. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, G.; Wong, W.Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chem. Soc. Rev. 2015, 44, 8484–8575. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.C.; Douglas, P.; Winscom, C.J. Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord. Chem. Rev. 2006, 250, 2093–2126. [Google Scholar] [CrossRef]
- Kuwabara, J.; Ogawa, Y.; Taketoshi, A.; Kanbara, T. Enhancement of the photoluminescence of a thioamide-based pincer palladium complex in the crystalline state. J. Organomet. Chem. 2011, 696, 1289–1293. [Google Scholar] [CrossRef]
- Laga, E.; Dalmau, D.; Arregui, S.; Crespo, O.; Jimenez, A.I.; Pop, A.; Silvestru, C.; Urriolabeitia, E.P. Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules 2021, 26, 1238. [Google Scholar] [CrossRef]
- Expósito, J.E.; Aullón, G.; Bardají, M.; Miguel, J.A.; Espinet, P. Fluorescent perylenylpyridine complexes: An experimental and theoretical study. Dalt. Trans. 2020, 49, 13326–13338. [Google Scholar] [CrossRef]
- Li, G.; Zheng, J.; Zhao, X.; Fleetham, T.; Yang, Y.F.; Wang, Q.; Zhan, F.; Zhang, W.; Fang, K.; Zhang, Q.; et al. Tuning the Excited State of Tetradentate Pd(II) Complexes for Highly Efficient Deep-Blue Phosphorescent Materials. Inorg. Chem. 2020, 59, 13502–13516. [Google Scholar] [CrossRef]
- Wan, Q.; To, W.P.; Chang, X.; Che, C.M. Controlled Synthesis of PdII and PtII Supramolecular Copolymer with Sequential Multiblock and Amplified Phosphorescence. Chem 2020, 6, 945–967. [Google Scholar] [CrossRef]
- Accorsi, G.; Listorti, A.; Yoosaf, K.; Armaroli, N. 1,10-Phenanthrolines: Versatile building blocks for luminescent molecules, materials and metal complexes. Chem. Soc. Rev. 2009, 38, 1690. [Google Scholar] [CrossRef]
- de França, B.M.; Oliveira, S.S.C.; Souza, L.O.P.; Mello, T.P.; Santos, A.L.S.; Forero, J.S.B. Synthesis and photophysical properties of metal complexes of curcumin dyes: Solvatochromism, acidochromism, and photoactivity. Dye. Pigment. 2022, 198, 110011. [Google Scholar] [CrossRef]
- Büyükekşi, S.I.; Şengül, A.; Erdönmez, S.; Altindal, A.; Orman, E.B.; Özkaya, A.R. Spectroscopic, electrochemical and photovoltaic properties of Pt(II) and Pd(II) complexes of a chelating 1,10-phenanthroline appended perylene dIImide. Dalt. Trans. 2018, 47, 2549–2560. [Google Scholar] [CrossRef] [PubMed]
- Ramdeehul, S.; Barloy, L.; Osborn, J.A.; De Cian, A.; Fischer, J. Synthesis, Solution Dynamics, and Crystal Structures of (2,2′:6′,2″-Terpyridine)(η1- and η3- allyl)palladium(II) Complexes. Organometallics 1996, 15, 5442–5444. [Google Scholar] [CrossRef]
- Hansson, S.; Norrby, P.O.; Soegren, M.P.; Aakermark, B.; Cucciolito, M.E.; Giordano, F.; Vitagliano, A. Effects of Phenanthroline Type Ligands on the Dynamic Processes of (η3-Allyl) palladium Complexes. Molecular Structure of (2,9-Dimethyl-1,10-phenanthroline) [(l, 2, 3-η)-3-methyl-2-butenyl]-chloropalladium. Organometallics 1993, 12, 4940–4948. [Google Scholar] [CrossRef]
- Sjoegren, M.; Hansson, S.; Norrby, P.O.; Aakermark, B.; Cucciolito, M.E.; Vitagliano, A. Selective stabilization of the anti isomer of (. eta. 3-allyl)palladium and -platinum complexes. Organometallics 1992, 11, 3954–3964. [Google Scholar] [CrossRef]
- Vitagliano, A.; Aakermark, B.; Hansson, S. Convenient synthesis of cationic (. eta. 3-allyl)palladium complexes. Preparative and stereochemical aspects. Organometallics 1991, 10, 2592–2599. [Google Scholar] [CrossRef]
- Gogoll, A.; Oernebro, J.; Grennberg, H.; Baeckvall, J.-E. Mechanism of Apparent. pi.-Allyl Rotation in (. pi.-Allyl)palladium Complexes with Bidentate Nitrogen Ligands. J. Am. Chem. Soc. 1994, 116, 3631–3632. [Google Scholar] [CrossRef]
- Parisotto, S.; Deagostino, A. π-Allylpalladium Complexes in Synthesis: An Update. Synthesis 2019, 51, 1892–1912. [Google Scholar] [CrossRef]
- Liu, Y.; Oble, J.; Pradal, A.; Poli, G. Catalytic Domino Annulations through η3-Allylpalladium Chemistry: A Never-Ending Story. Eur. J. Inorg. Chem. 2020, 2020, 942–961. [Google Scholar] [CrossRef]
- Du, J.; Li, Y.-F.; Ding, C.-H. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. Chinese Chem. Lett. 2023, 34, 108401. [Google Scholar] [CrossRef]
- Scattolin, T.; Pessotto, I.; Cavarzerani, E.; Canzonieri, V.; Orian, L.; Demitri, N.; Schmidt, C.; Casini, A.; Bortolamiol, E.; Visentin, F.; et al. Indenyl and Allyl Palladate Complexes Bearing N-Heterocyclic Carbene Ligands: An Easily Accessible Class of New Anticancer Drug Candidates. Eur. J. Inorg. Chem. 2022, 2022, e202200103. [Google Scholar] [CrossRef]
- Tupini, C.; Zurlo, M.; Gasparello, J.; Lodi, I.; Finotti, A.; Scattolin, T.; Visentin, F.; Gambari, R.; Lampronti, I. Combined Treatment of Cancer Cells Using Allyl Palladium Complexes Bearing Purine-Based NHC Ligands and Molecules Targeting MicroRNAs miR-221-3p and miR-222-3p: Synergistic Effects on Apoptosis. Pharmaceutics 2023, 15, 1332. [Google Scholar] [CrossRef]
- Scattolin, T.; Bortolamiol, E.; Visentin, F.; Palazzolo, S.; Caligiuri, I.; Perin, T.; Canzonieri, V.; Demitri, N.; Rizzolio, F.; Togni, A. Palladium(II)-η3-Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids. Chem. A Eur. J. 2020, 26, 11868–11876. [Google Scholar] [CrossRef] [PubMed]
- Scattolin, T.; Bortolamiol, E.; Rizzolio, F.; Demitri, N.; Visentin, F. Allyl palladium complexes bearing carbohydrate-based N-heterocyclic carbenes: Anticancer agents for selective and potent in vitro cytotoxicity. Appl. Organomet. Chem. 2020, 34, e5876. [Google Scholar] [CrossRef]
- Mayoral, M.J.; Ovejero, P.; Campo, J.A.; Heras, J.V.; Oliveira, E.; Pedras, B.; Lodeiro, C.; Cano, M. Exploring photophysical properties of new boron and palladium (II) complexes with β-diketone pyridine type ligands: From liquid crystals to metal fluorescence probes. J. Mater. Chem. 2011, 21, 1255–1263. [Google Scholar] [CrossRef]
- Scattolin, T.; Andreetta, G.; Mauceri, M.; Rizzolio, F.; Demitri, N.; Canzonieri, V.; Visentin, F. Imidazo[1,5-a]pyridine-3-ylidenes and dipyridoimidazolinylidenes as ancillary ligands in Palladium allyl complexes with potent in vitro anticancer activity. J. Organomet. Chem. 2021, 952, 122014. [Google Scholar] [CrossRef]
- Kasselouri, S.; Garoufis, A.; Katehanakis, A.; Kalkanis, G.; Perlepes, S.P.; Hadjiliadis, N. 1:1 Metal complexes of 2-(2′-pyridyl) quinoxaline, a ligand unexpectedly formed by the reaction between 2-acetylpyridine and 1,2-phenylenediamine. Inorganica Chim. Acta 1993, 207, 255–258. [Google Scholar] [CrossRef]
- Tatsuno, Y.; Yoshida, T.; Otsuka, S.E.I.; Syntheses, I. Inorganic Syntheses; Wiley: Hoboken, NJ, USA, 1990. [Google Scholar]
- APEX 3; SAINT, SHELXT; Bruker AXS Inc.: Fitchburg, WI, USA, 2016.
- Sheldrick, G.M. SADABS; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Barbour, L.J. X-Seed—A Software Tool for Supramolecular Crystallography. J. Supramol. Chem. 2001, 1, 189–191. [Google Scholar] [CrossRef]
- Yasuda, M.; Sone, K.; Yamasaki, K. Stability of Zinc and Cadmium Complexes with Some Methyl Derivatives of 1,10-Phenanthroline and 2,2′-Bipyridine. J. Phys. Chem. 1956, 60, 1667–1668. [Google Scholar] [CrossRef]
- Yamasaki, K.; Yasuda, M. Stability of Zinc and Cadmium Complexes with 2,2′-Bipyridine and 1,10-Phenanthroline. J. Am. Chem. Soc. 1956, 78, 1324. [Google Scholar] [CrossRef]
- Babenko, M.; Busev, A.I.; Blokh, M.S. Extraction-spectrometric study of complexes formed during reaction of vanadium (ii), 1, 10-phenanthroline and bengal rose-a. Zhurnal Neorg. KhimII 1973, 18, 1326–1330. [Google Scholar]
- Torralba, M.C.; Cano, M.; Campo, J.A.; Heras, J.V.; Pinilla, E.; Torres, M.R. Pyrazole-based allylpalladium complexes: Supramolecular architecture and liquid crystal behaviour. Inorg. Chem. Commun. 2006, 9, 1271–1275. [Google Scholar] [CrossRef]
- Torralba, M.C.; Cano, M.; Campo, J.A.; Heras, J.V.; Pinilla, E.; Torres, M.R. Liquid crystal behaviour of ionic allylpalladium complexes containing 2-pyrazolylpyridine as bidentate N,N′-ligand. J. Organomet. Chem. 2006, 691, 765–778. [Google Scholar] [CrossRef]
- Amadio, E.; Scrivanti, A.; Chessa, G.; Matteoli, U.; Beghetto, V.; Bertoldini, M.; Rancan, M.; Dolmella, A.; Venzo, A.; Bertani, R. Synthesis, characterization and low temperature self assembling of (η3-allyl)palladium complexes with 2-pyridyl-1,2,3-triazole bidentate ligands. Study of the catalytic activity in Suzuki–Miyaura reaction. J. Organomet. Chem. 2012, 716, 193–200. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Böttcher, L.; Scholz, A.; Walther, D.; Weisbach, N.; Görls, H. Mononucleare Oxalamidinkomplexe von Kupfer(I), Palladium(II) und Ruthenium(II) durch gekoppelte Kation-/Anionkoordination. Zeitschrift Anorg. Allg. Chemie 2003, 629, 2103–2112. [Google Scholar] [CrossRef]
- Wild, U.; Kaifer, E.; Himmel, H. Redox Chemistry and Group 10 Metal Complexes of Aromatic Compounds with Bulky Bicyclic Guanidino Groups. Eur. J. Inorg. Chem. 2011, 2011, 4220–4233. [Google Scholar] [CrossRef]
- Löffler, J.; Gauld, R.M.; Feichtner, K.S.; Rodstein, I.; Zur, J.A.; Handelmann, J.; Schwarz, C.; Gessner, V.H. Ylide-Substituted Phosphines with a Cyclic Ylide-Backbone: Angle Dependence of the Donor Strength. Organometallics 2021, 40, 2888–2900. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Chan, M.C.W.; Wang, Y.; Che, C.M.; Cheung, K.K.; Zhu, N. Organic light-emitting materials based on bis(arylacetylide)platinum(II) complexes bearing substituted bipyridine and phenanthroline ligands: Photo- and electroluminescence from 3MLCT excited states. Chem A Eur. J. 2001, 7, 4180–4190. [Google Scholar] [CrossRef]
Compound | (6) | (6a) |
---|---|---|
Empirical formula | C16H14F6N3PPd | C19H19Cl2N3Pd2 |
Formula weight | 499.67 | 573.12 |
Temperature (Κ) | 296(2) | |
Wavelength (Å) | 0.71073 | |
Crystal system | Orthorhombic | Monoclinic |
Space group | Pnma | P21/c |
Unit cell dimensions a, b, c (Å), α, β, γ (ο) | 18.7765(10), 6.8527(3), 16.4449(10), 90, 90, 90 | 6.9296(3), 29.3104(12), 9.8311(5), 90, 98.680(2), 90 |
Volume (Å3) | 2115.96(19) | 1973.92(15) |
Z | 4 | 4 |
Density (calcd.) (g/cm3) | 1.569 | 1.928 |
Absorption coefficient (mm−1) | 1.008 | 2.100 |
F(000) | 984 | 1120 |
Crystal size (mm3) | 0.600 × 0.120 × 0.080 | 0.500 × 0.040 × 0.040 |
θ range for data collection (ο) | 2.477 to 24.996 | 2.780 to 24.991 |
Index ranges | −22 ≤ h ≤ 22, −8 ≤ k ≤ 7, −19 ≤ l ≤ 19 | −8 ≤ h ≤ 7, −34 ≤ k ≤ 34, −11 ≤ l ≤ 11 |
Reflections collected | 34567 | 44871 |
Independent reflections | 2031 [Rint = 0.0499] | 3452 [Rint = 0.0801] |
Completeness to θ = 24.996° | 99.8% | 99.2% |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 2031/0/158 | 3452/180/291 |
Goodness-of-fit | 1.185 | 1.239 |
Final R indices [I > 2σ(I)] | Robs = 0.0405, wRobs = 0.1089 | Robs = 0.0834, wRobs = 0.1664 |
R indices [all data] | Rall = 0.0439, wRall = 0.1110 | Rall = 0.0947, wRall = 0.1699 |
Largest diff. peak and hole (e·Å−3) | 0.452 and −1.135 | 1.703 and −1.761 |
Compound (6) | |||
---|---|---|---|
Pd(1)–N(1) | 2.144(4) | Pd(1)–N(3) | 2.090(5) |
Pd(1)–C(1A) | 2.150(6) | Pd(1)–C(2A) | 2.137(7) |
Pd(1)–C(3A) | 2.115(5) | ||
N(1)–Pd(1)–C(1A) | 111.71(18) | N(1)–Pd(1)–N(3) | 78.19(19) |
N(1)–Pd(1)–C(2A) | 142.7(2) | N(1)–Pd(1)–C(3A) | 179.63(19) |
N(3)–Pd(1)–C(1A) | 170.11(19) | N(3)–Pd(1)–C(3A) | 102.2(2) |
N(3)–Pd(1)–C(2A) | 132.66(18) | C(1A)–Pd(1)–C(3A) | 67.93(13) |
Compound (6a) | |||
Pd(1)–N(1) | 2.170(9) | Pd(1)–N(3) | 2.082(11) |
Pd(1)–C(1A) | 2.13(12) | Pd(1)–C(2A) | 2.18(8) |
Pd(1)–C(3A) | 2.17(12) | Pd(2)–C(1B) | 2.07(6) |
Pd(2)–Cl(1) | 2.369(4) | Pd(2)–C(2B) | 2.11(3) |
Pd(2)–Cl(2) | 2.381(4) | Pd(2)–C(3B) | 2.07(5) |
N(1)–Pd(1)–C(1A) | 167(3) | N(1)–Pd(1)–N(3) | 78.0(4) |
N(1)–Pd(1)–C(2A) | 141(2) | N(1)–Pd(1)–C(3A) | 117(3) |
N(3)–Pd(1)–C(1A) | 93(3) | N(3)–Pd(1)–C(3A) | 163(3) |
N(3)–Pd(1)–C(2A) | 134(2) | C(1A)–Pd(1)–C(3A) | 74(4) |
Cl(1)–Pd(2)–Cl(2) | 95.82(16) | C(1B)–Pd(2)–Cl(1) | 96.5(15) |
C(2B)–Pd(2)–Cl(1) | 127.1(9) | C(3B)–Pd(2)–Cl(1) | 169.1(10) |
C(1B)–Pd(2)–Cl(2) | 166.6(16) | C(2B)–Pd(2)–Cl(2) | 133.8(9) |
C(3B)–Pd(2)–Cl(2) | 95.1(10) |
Complex | UV/Vis Absorbance λmax (nm), (ε × 104 M−1cm−1)) | Emission λem (nm) | QY (%) | |||
---|---|---|---|---|---|---|
Solid | Solution | Solid | Solution | Solid | Solution | |
(1) bp | 237, 309, 420 | 232(18), 292(20), 321sh, 360(2) | 478, 565 | 433 | 3% | 1.6% |
(2) ncp | 238, 311, 394sh | 234(40), 279(35), 295sh, 355(1) | 477, 566 | 436 | 12.6% | 1.2% |
(3) bcp | 239, 311, 370sh | 233(41), 294(42), 359(2.5) | 478, 565 | 433, 533sh | 6% | 1% |
(4) mp | 232, 310, 358sh | 233(34), 277(24), 297sh, 362(1) | 478, 566 | 437 | 14% | 1.15% |
(5) tmp | 236, 312, 352sh | 236(37), 281(37), 304sh, 338(4.5) | 476, 565 | 456sh, 486, 510sh | 14% | 2.8% |
(6) pqx | 305, 394 | 254(20), 364(16) | 480, 565 | 437 | 1.9% | 0.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garypidou, A.; Ypsilantis, K.; Sifnaiou, E.; Manthou, M.; Thomos, D.; Plakatouras, J.C.; Tsolis, T.; Garoufis, A. Synthesis, Characterization and Photophysical Properties of Mixed Ligand (η3-Allyl)palladium(II) Complexes with N,N’Aromatic Diimines. Chemistry 2023, 5, 2476-2489. https://doi.org/10.3390/chemistry5040162
Garypidou A, Ypsilantis K, Sifnaiou E, Manthou M, Thomos D, Plakatouras JC, Tsolis T, Garoufis A. Synthesis, Characterization and Photophysical Properties of Mixed Ligand (η3-Allyl)palladium(II) Complexes with N,N’Aromatic Diimines. Chemistry. 2023; 5(4):2476-2489. https://doi.org/10.3390/chemistry5040162
Chicago/Turabian StyleGarypidou, Antonia, Konstantinos Ypsilantis, Evaggelia Sifnaiou, Maria Manthou, Dimitris Thomos, John C. Plakatouras, Theodoros Tsolis, and Achilleas Garoufis. 2023. "Synthesis, Characterization and Photophysical Properties of Mixed Ligand (η3-Allyl)palladium(II) Complexes with N,N’Aromatic Diimines" Chemistry 5, no. 4: 2476-2489. https://doi.org/10.3390/chemistry5040162
APA StyleGarypidou, A., Ypsilantis, K., Sifnaiou, E., Manthou, M., Thomos, D., Plakatouras, J. C., Tsolis, T., & Garoufis, A. (2023). Synthesis, Characterization and Photophysical Properties of Mixed Ligand (η3-Allyl)palladium(II) Complexes with N,N’Aromatic Diimines. Chemistry, 5(4), 2476-2489. https://doi.org/10.3390/chemistry5040162