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Abstract: Thiourea and its derivatives have become a significant focal point within the organic
synthesis field, garnering attention for their diverse biological applications, including antibacterial,
antioxidant, anticancer, anti-inflammatory, anti-Alzheimer, antituberculosis and antimalarial prop-
erties. My objective is to present a comprehensive and easily understandable analysis of recent
advancements in the organic synthesis of thiourea derivatives. My focus is on the structure and
activity of these derivatives over the past five years, highlighting the significant progress made
in the field of organic synthesis. Additionally, I evaluate the current state of research in this area
and provide an overview of the latest trends and future prospects. This review will prove to be
beneficial for researchers, academics and industry professionals involved in drug development and
organic synthesis.
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antimalaria

1. Introduction

Thiourea is an organosulfur compound with a chemical formula of SC(NH2)2, and its
structure is represented in Figure 1. Its structure is similar to that of urea (H2N-C(=O)-NH2),
except the oxygen atom is replaced by a sulfur atom, indicated by the prefix “thio-” [1].
The term “thiourea” refers to a group of compounds with the formula (R1R2N) (R3R4N)
C=S. Thiourea has two tautomeric forms: the thione form and the thiol form, as illustrated
in Figure 2. The thione form is more prevalent in aqueous solutions, and the thiol form is
also known as isothiourea.

 
 

 

 
Chemistry 2024, 6, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/chemistry 

Review 

Biological Applications of Thiourea Derivatives:  
Detailed Review 
Fatimah A. Agili 

Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114,  
Jazan 45142, Saudi Arabia; fagili@jazanu.edu.sa 

Abstract: Thiourea and its derivatives have become a significant focal point within the organic syn-
thesis field, garnering attention for their diverse biological applications, including antibacterial, an-
tioxidant, anticancer, anti-inflammatory, anti-Alzheimer, antituberculosis and antimalarial proper-
ties. My objective is to present a comprehensive and easily understandable analysis of recent ad-
vancements in the organic synthesis of thiourea derivatives. My focus is on the structure and activity 
of these derivatives over the past five years, highlighting the significant progress made in the field 
of organic synthesis. Additionally, I evaluate the current state of research in this area and provide 
an overview of the latest trends and future prospects. This review will prove to be beneficial for 
researchers, academics and industry professionals involved in drug development and organic syn-
thesis. 

Keywords: thiourea; antibacterial; antioxidant; anticancer; anti-inflammatory; anti-Alzheimer;  
antimalaria 
 

1. Introduction 
Thiourea is an organosulfur compound with a chemical formula of SC(NH2)2, and its 

structure is represented in Figure 1. Its structure is similar to that of urea (H2N-C(=O)-
NH2), except the oxygen atom is replaced by a sulfur atom, indicated by the prefix “thio-
” [1]. The term “thiourea” refers to a group of compounds with the formula (R1R2N) 
(R3R4N) C=S. Thiourea has two tautomeric forms: the thione form and the thiol form, as illus-
trated in Figure 2. The thione form is more prevalent in aqueous solutions, and the thiol form 
is also known as isothiourea. 

Thiourea has a wide range of uses in organic synthesis reactions as intermediates, 
making it an incredibly versatile compound [2]. Additionally, it is utilized in many com-
mercial products such as photographic films, dyes, elastomers, plastics and textiles [3]. How-
ever, the most significant and effective application of thiourea is in the realm of biology, 
as illustrated in Figure 3. Research has demonstrated that it possesses numerous beneficial 
properties, including antibacterial, antioxidant, anticancer, anti-inflammatory, anti-Alz-
heimer, antitubercular and antimalarial effects [4–9]. Several previous reviews have fo-
cused on the pharmacological activities of thiourea derivatives [10–12]. Here, this review 
presents an overview of state-of-the-art biomolecules derived from thiourea as well as 
diverse medicinal applications in this field over the last five years. 

 

Figure 1. The chemical structure of thiourea. 
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Thiourea has a wide range of uses in organic synthesis reactions as intermediates,
making it an incredibly versatile compound [2]. Additionally, it is utilized in many com-
mercial products such as photographic films, dyes, elastomers, plastics and textiles [3].
However, the most significant and effective application of thiourea is in the realm of bi-
ology, as illustrated in Figure 3. Research has demonstrated that it possesses numerous
beneficial properties, including antibacterial, antioxidant, anticancer, anti-inflammatory,
anti-Alzheimer, antitubercular and antimalarial effects [4–9]. Several previous reviews
have focused on the pharmacological activities of thiourea derivatives [10–12]. Here, this
review presents an overview of state-of-the-art biomolecules derived from thiourea as well
as diverse medicinal applications in this field over the last five years.
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2. Antibacterial Activity

The lack of new anti-infective drugs is a major concern for medicinal chemistry, as
antimicrobial resistance poses a global threat. In response, Sumaira et al. [13] developed
novel thiourea derivatives using amine derivatives as nucleophiles on the electrophilic
carbon of CS2 to synthesize a thiocarbamate intermediate, as shown in Scheme 1. Both
compounds 1 and 2 demonstrated antibacterial activity against E. faecalis, P. aeruginosa,
S. typhi and K. pneumoniae. Compound 2 exhibited greater potency than that of compound
1, with a minimum inhibitory concentration (MIC) against the tested organism ranging
from 40 to 50 µg/mL. In comparison to the standard antibiotic, ceftriaxone, compound 2
showed comparable inhibition zone diameters. The inhibition zones of compound 2 against
the tested organisms were 29, 24, 30 and 19 mm, respectively.
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A novel set of seven N-acyl thiourea derivatives, namely 3a–3g, were developed by 
Roxana et al. [14]. Their synthesis method employed the condensation of acid chloride 
and ammonium thiocyanate in an anhydrous acetone solution. The resulting isocyanate 
was then allowed to react with a heterocyclic amine, with the amine undergoing a nucle-
ophilic addition to the isocyanate, as shown in Scheme 2. 
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A novel set of seven N-acyl thiourea derivatives, namely 3a–3g, were developed by
Roxana et al. [14]. Their synthesis method employed the condensation of acid chloride and
ammonium thiocyanate in an anhydrous acetone solution. The resulting isocyanate was
then allowed to react with a heterocyclic amine, with the amine undergoing a nucleophilic
addition to the isocyanate, as shown in Scheme 2.
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The synthesized compounds, 3a–3g, were subjected to testing against various bacterial
strains, including S. aureus, E. faecalis, E. coli and P. aeruginosa. The positive control used was
Ciprofloxacin (5 µg/mL). The findings demonstrated that the tested drugs’ MIC ranged
from >5000 to 1250 µg/mL, which was considerably greater than the conventional antibiotic
utilized. These compounds were found to be more potent than previously reported thiazole
derivatives [14]. In addition, eight tris-thiourea derivatives, 4a–4h, with symmetrical
structures, were synthesized using benzoyl chloride and potassium thiocyanate with
melamine under reflux conditions through a condensation reaction. The synthesis pathway
is depicted in Scheme 3 [15].
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ordinates with the central atom through N and S atoms as a bidentate, as shown in Scheme 6. 

Scheme 3. Synthesis pathway of tris-thiourea derivatives 4a–4h [15].

Various Gram-positive and Gram-negative bacteria, including S. aureus, B. cereus and
E. coli, were exposed to synthesized compounds 4a–4h. The results revealed that compound
4a (N, N,N-(((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris-(carbonothioyl)) tribenzamid)
was particularly effective against E.coli. Compound 4g (N, N,N-(((1,3,5-triazine-2,4,6-
triyl)tris(azanediyl))tris-(carbonothioyl)) tris(2-chlorobenzamide) exhibited the highest rate
of microbicidal activity against S. aureus, and compound 4f (N, N, N-(((1,3,5-triazine-2,4,6-
triyl) tris(azanediyl))tris-(carbonothioyl))tris(2-methylbenzamide) was most effective at
eliminating B. cereus.

Thiourea derivatives are highly effective in metal complexes due to the presence of
nitrogen atoms, as well as lone pairs on sulfur and oxygen atoms, which serve as ligating
centers and coordinate with a wide range of metal centers to produce stable metal com-
plexes [16]. Ahmed et al. synthesized novel 1-morpholinyl 3-phenyl thiourea ligands and
their corresponding metal complexes with the aim of developing new antimicrobial agents.
The ligand N-Phenylmorpholine-4-carbothioamide (HPMCT) was prepared according to
the procedure outlined in Scheme 4 [17].
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In complexes 5–8, the thiourea ligand coordinates through a sulfur atom as a mon-
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ligand coordinates with the central atom through N and S atoms as a bidentate, as shown
in Scheme 6.
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Scheme 6. Synthesis of complexes 9–15 of thiourea derivatives [17].

Three strains of bacteria “E. coli, S. aureus, and K. pneumoniae” were used to test each of
the produced compounds, 5–15. As seen in Figure 4 [17], all compounds exhibited strong
antibacterial activity when compared to the ligand. Comparable to the common antibiotic
tetracycline, compounds 5 and 9 had strong efficacy against E. coli. The several binding
modes with the essential amino acid residues of the bacterial tyrosinase enzyme’s active
site are referred to as the antibacterial activity.
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Five new Cu (II) complexes, Cu16–Cu20, with varied antimicrobial activities, were
synthesized by Aleksandra et al. [18]. Five distinct ligands were produced and employed
prior to complex formation. The particular groups of the ligands made of thiourea deriva-
tives determine how copper complexes with them. Ligands 19 and 20 were halogen phenyl
groups, and ligands 16–18 were alkylphenyl [19–21]. The method for synthesis is shown
in Figure 5. The synthesized complexes were tested against a variety of bacterial and
fungal strains, including S. aureus NCTC 4163, S. aureus ATCC 25923, S. aureus ATCC
6538, S. aureus ATCC 29213, S. epidermidis ATCC 12228, S. epidermidis ATCC 35984, E. coli
NCTC 10538, E. coli ATCC 25922, P. aeruginosa ATCC 15442, P. aeruginosa ATCC 27853, C.
albicans ATCC 10231, C. albicans ATCC 90028 and C. parapsilosis ATCC 22019. With an MIC
value of 4 µg/mL, the most active compound, Cu20, demonstrated strong activity against
Staphylococcus epidermidis (MRSE) and methicillin-resistant S. aureus (MRSA) 537, 585 and
586 strains. The other complexes, however, exhibited minimal activity and were ineffective
against other fungal species and Gram-negative strains of E. coli.
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3. Antioxidant Activity

Thiourea derivatives such as 1-(2-aminoethyl) thiourea, N, N’-(iminodiethane-2,1-diyl)
bis(thiourea) and 1-[1-methyl-2-(phenylamino)ethyl] thiourea were prepared by Sudzhaev
et al. [22]. Additionally, 1,3-bis(3,4-dichlorophenyl) thiourea 21, a new thiourea derivative,
was synthesized by Sumaira et al. [23] and demonstrated strong antioxidant activity. This
derivative had a high reducing potential when tested against ABTS free radicals, with an
IC50 of 52 µg/mL and a DPPH assay value of 45 µg/mL.

Chemistry 2024, 6, FOR PEER REVIEW 7 
 

 

3. Antioxidant Activity 
Thiourea derivatives such as 1-(2-aminoethyl) thiourea, N, N’-(iminodiethane-2,1-

diyl) bis(thiourea) and 1-[1-methyl-2-(phenylamino)ethyl] thiourea were prepared by 
Sudzhaev et al. [22]. Additionally, 1,3-bis(3,4-dichlorophenyl) thiourea 21, a new thiourea 
derivative, was synthesized by Sumaira et al. [23] and demonstrated strong antioxidant 
activity. This derivative had a high reducing potential when tested against ABTS free rad-
icals, with an IC50 of 52 µg/mL and a DPPH assay value of 45 µg/mL.  

 
21 

Ten novel thiourea derivatives, 22–31, were recently synthesized by reacting potas-
sium thiocyanate with 4-methoxy benzoyl chloride using the nucleophilic addition–elim-
ination mechanism to form an isothiocyanate derivative, as shown in Scheme 7 [24]. The 
final ten compounds were produced by reacting this derivative with various amines in 
accordance with the amine’s nucleophilic addition mechanism to the isothiocyanate. The 
DPPH radical scavenging activity method was used to describe these compounds and as-
sess their antioxidant potential. Compounds 29, 27 and 24 demonstrated good antioxidant 
activity with IC50 values of 5.8, 42.3 and 45 µg/mL, respectively, when compared to normal 
ascorbic acid, which had an IC50 value of −33.22 µg/mL. The other drugs’ IC50 values varied 
between 89 and 245 µg/mL.  

 

Scheme 7. Synthesis of new thiourea derivatives 22−31 through nucleophilic addition–elimination 
mechanism [24]. 

  

Ten novel thiourea derivatives, 22–31, were recently synthesized by reacting potassium
thiocyanate with 4-methoxy benzoyl chloride using the nucleophilic addition–elimination
mechanism to form an isothiocyanate derivative, as shown in Scheme 7 [24]. The final ten
compounds were produced by reacting this derivative with various amines in accordance
with the amine’s nucleophilic addition mechanism to the isothiocyanate. The DPPH
radical scavenging activity method was used to describe these compounds and assess
their antioxidant potential. Compounds 29, 27 and 24 demonstrated good antioxidant
activity with IC50 values of 5.8, 42.3 and 45 µg/mL, respectively, when compared to normal
ascorbic acid, which had an IC50 value of −33.22 µg/mL. The other drugs’ IC50 values
varied between 89 and 245 µg/mL.
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4. Anticancer Activity

In the fight against cancer, thiourea derivatives have demonstrated great promise.
Studies conducted recently have demonstrated that these compounds can inhibit the growth
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of several cancer cell lines and reverse treatment resistance in cancer cells [25–30]. A variety
of human cell lines, including those from breast and lung malignancies, were evaluated
against non-metal-containing thiourea derivatives in earlier research. Low LC50 values,
spanning from 7 to 20 µM, were demonstrated by the findings [31]. Furthermore, it has been
discovered that thiourea derivatives target particular molecular pathways involved in the
development of cancer, such as those that limit angiogenesis and alter cancer cell signaling
pathways [32–34]. With IC50 values ranging from 3 to 14 µM, derivatives of phosphonate
thiourea demonstrated encouraging responses when evaluated against cell lines related
to pancreatic, prostate and breast cancer [35]. The treatment of human leukemia cell lines
with the bis-thiourea structure also demonstrated efficacy, with IC50 values as low as
1.50 µM [36]. Lung, liver and breast malignancies demonstrated positive LC50 values of
less than 20 µM for aromatic derivatives of thiourea produced using indole molecules [37].

Also, Samuel et al. [38] conducted a thorough screening of several thiourea deriva-
tives for toxicity in ovarian cancer cell lines, including those that showed cisplatin treat-
ment resistance. Three molecules of luminescence iridium complexes based on a 2-
aminobenzimidazole unit were produced by the researchers. Through a substoichiometric
2-aminobenzimidazole reaction in acetonitrile, 1,1′-thiocarbonyldiimidazole was mono-
substituted efficiently. When compounds 32S–35S were purified, they had a 63–81% yield.
This was due to a series of amines replacing the second imidazoyl unit in the presence
of dimethylaminopyridine (DMAP) in dimethylformamide. Scheme 8 shows how irid-
ium complexes based on these systems were subsequently created by reacting 33S with
[Ir(ppy)2Cl]2 in toluene with potassium carbonate present. The result was bright yellow
powders, or Ir-33S, in a 53% yield.
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Different human ovarian cancer cell lines, such as EFO-21, EFO-27 and COLO-704, as
well as their cisplatin-resistant sublines, EFO-21rCDDP2000 and EFO-27rCDDP2000, were
evaluated against a variety of unmetalled chemicals. With IC50 values in the low micromolar
range, these substances demonstrated toxicity in every cell line tested. Thioureas 32S, 33S
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and 35S were the most active compounds among those examined; their average IC50 values
were 1.29, 1.26 and 2.96 µM in all cell lines. In drug-resistant cell lines, the series 32S–35S
exhibited a negligible decline in efficacy, but Ir-33S was found to be more effective in one
resistant subline.

Targeting molecules different from cisplatin, gold complexes are another kind of chem-
ical with anticancer effects. Gold compounds primarily target enzymes that include thiols,
especially those that are located in mitochondria, like cyclooxygenases, glutathione reduc-
tase and thioredoxin reductase [39–41]. The kind of ligand that is employed determines
how stable gold complexes are in a biological setting. In the past 20 years, thiolate [42–45],
phosphine [46–51] and N-heterocyclic carbene ligands, which are depicted in Figure 6, have
all been widely employed and have demonstrated positive biological effects.
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Because silver complexes are less toxic, they are useful in the therapy of cancer. Their
principal mode of action is binding to proteins that contain thiols and DNA [53]. Through
a 1:1 reaction between the respective isothiocyanate a and b and 2-(diphenylphosphino)
ethylamine (c), Guillermo et al. synthesized metal complex thioureas 36 and 37. Thioureas
36 (80% yield) and 37 (85% yield) were synthesized as shown in Scheme 9 [52].
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The synthesis of Ag(I) and Au(I) complexes from compounds 36 and 37 was carried
out as shown in Schemes 10 and 11 [52].

Three cancer cell lines, HeLa (human cervical carcinoma), A549 (human lung carci-
noma) and Jurkat (leukaemia), were used to assess the toxicity of each synthesized complex.
The toxicity test findings are shown in Tables 1 and 2.

Very low IC50 values were discovered for the gold complexes in the complexes containing
thiourea 36; however, all of the complexes with thiourea 37 showed improved cytotoxicity.
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Scheme 11. Synthesis of metal complexes C37a–c derived from 37 [52].

Coordinators containing sulfur atoms frequently form metal complexes with thiourea
derivatives, especially in complexes of transitional elements [54]. A tetrahedron is the shape
of copper, whereas the majority of these metal complexes are octahedral in shape [55,56].
Five compounds of thiourea benzamide derivatives, shown in Scheme 12 [57], were syn-
thesized by Yaqeen et al. These included ligands L1, L2, L3, L4 and L5 and their metal
complexes, 38–42. Benzoyl chloride and ammonium thiocyanate were reacted to produce
thiourea benzamide ligands, which were then used to synthesize the ligands. These lig-
ands were subsequently used to create complex compounds 38–42 by reacting with Cu (II)
ions in methanol and acetone. Using the MTT cytotoxicity assay against the MCF7 breast
cancer cell lines, all of the produced compounds were evaluated. With IC50 values of 4.03
and 4.66 µg/mL, respectively, complexes 38 and 39 were extremely effective, whereas the
ligands had variable anti-cancer efficacy. Compounds 38 and 39 target the PR and Akt
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proteins of breast cancer cell lines (MCF-7), as demonstrated in Figure 7, based on the
molecular docking of these compounds with target proteins 4OAR and 5KCV.

Table 1. Antitumor activity expressed in IC50 values of complexes C36a–e compared with that of
thiourea 36 as the standard [52].

Compound
IC50(µM) Values for Cell Lines a

Hela A549 Jurkat

36 >25 13.89 ± 4.0 >25
[36-Ag-PPh3]OTf (C36a) 10.17 ± 1.74 7.06 ± 1.95 3.89 ± 0.19
[36-Au-PPh3]OTf (C36c) 2.09 ± 0.17 >25 0.62 ± 0.03
[36-Au-36]OTf (C36b) 0.25 ± 0.12 >25 0.70 ± 0.06
[36-Au-Cl]OTf (C36d) >25 >25 19.80 ± 0.46
[36-Au-SR]OTf (C36e) 4.52 ± 0.23 5.98 ± 1.18 2.57 ± 0.15
Cisplatin 55 ±9 b 114.2 ± 9.1 c 10.8 ±1.2 c

a Each value represents the mean ± standard deviation from three independent experiments. b Cisplatin dissolved
in DMSO. c Cisplatin dissolved in H2O.

Table 2. Antitumor activity expressed in IC50 values of complexes C36a–e compared with that of
thiourea 37 as the standard [52].

Compound
IC50(µM) Values for Cell Lines a

Hela A549 Jurkat

37 8.16 ± 0.15 >25 14.20 ± 0.72
[37-Ag-PPh3]OTf (C37a) 0.87 ± 0.06 0.79 ± 0.04 0.64 ± 0.04
[37-Au-PPh3]OTf (C37b) 1.48 ± 0.15 4.91 ± 0.23 5.15 ± 0.32
[37-Ag-37]OTf (C37c) 1.52 ± 0.09 0.58 ± 0.02 1.53 ± 0.31

a Each value represents the mean ± standard deviation from three independent experiments.

Chemistry 2024, 6, FOR PEER REVIEW 11 
 

 

Table 2. Antitumor activity expressed in IC50 values of complexes C36a–e compared with that of 
thiourea 37 as the standard [52]. 

Compound 
IC50(µM) Values for Cell Lines a 

Hela A549 Jurkat 
37 8.16 ± 0.15 >25 14.20 ± 0.72 

[37-Ag-PPh3]OTf (C37a) 0.87 ± 0.06 0.79 ± 0.04 0.64 ± 0.04 
[37-Au-PPh3]OTf (C37b) 1.48 ± 0.15 4.91 ± 0.23 5.15 ± 0.32 
[37-Ag-37]OTf (C37c) 1.52 ± 0.09 0.58 ± 0.02 1.53 ± 0.31 
a Each value represents the mean ± standard deviation from three independent experiments. 

Very low IC50 values were discovered for the gold complexes in the complexes containing 
thiourea 36; however, all of the complexes with thiourea 37 showed improved cytotoxicity. 

Coordinators containing sulfur atoms frequently form metal complexes with thiourea 
derivatives, especially in complexes of transitional elements [54]. A tetrahedron is the shape of 
copper, whereas the majority of these metal complexes are octahedral in shape [55,56]. Five 
compounds of thiourea benzamide derivatives, shown in Scheme 12 [57], were synthesized 
by Yaqeen et al. These included ligands L1, L2, L3, L4 and L5 and their metal complexes, 38–
42. Benzoyl chloride and ammonium thiocyanate were reacted to produce thiourea ben-
zamide ligands, which were then used to synthesize the ligands. These ligands were sub-
sequently used to create complex compounds 38–42 by reacting with Cu (II) ions in meth-
anol and acetone. Using the MTT cytotoxicity assay against the MCF7 breast cancer cell 
lines, all of the produced compounds were evaluated. With IC50 values of 4.03 and 4.66 
µg/mL, respectively, complexes 38 and 39 were extremely effective, whereas the ligands 
had variable anti-cancer efficacy. Compounds 38 and 39 target the PR and Akt proteins of 
breast cancer cell lines (MCF-7), as demonstrated in Figure 7, based on the molecular dock-
ing of these compounds with target proteins 4OAR and 5KCV.  

 

Scheme 12. Reparation pathway of ligand and metal complexes [57]. Scheme 12. Reparation pathway of ligand and metal complexes [57].



Chemistry 2024, 6 446
Chemistry 2024, 6, FOR PEER REVIEW 12 
 

 

 

 
Figure 7. Two−dimensional and three-dimensional forms. (a) Complex 38 with target proteins 
4OAR; (b) Complex 39 with target proteins 4OAR; (c) Complex 38 with target proteins 5CVK; (d) 
Complex 39 with target proteins 5CVK [57]. 

Cancer has been treated with symmetrical and unsymmetrical bis-thioureas. For ex-
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cytotoxicity against numerous malignant cell lines [58]. Furthermore, alkylated bis-thiou-
rea’s polyamine analog (Figure 8b) demonstrated anticancer efficacy by acting as a lysine-
specific demethylase inhibitor [59]. 
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Cancer has been treated with symmetrical and unsymmetrical bis-thioureas. For ex-
ample, at nanomolar concentrations, phenyl-bis phenylthiourea Figure 8a demonstrated cy-
totoxicity against numerous malignant cell lines [58]. Furthermore, alkylated bis-thiourea’s
polyamine analog (Figure 8b) demonstrated anticancer efficacy by acting as a lysine-specific
demethylase inhibitor [59].
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Figure 8. Compounds containing a bis-thiourea nucleus: (a) Phenyl-bis phenylthiourea; (b) Polyamine
analog of alkylated bis-thiourea [60].

Nasima et al. [60], synthesized three bis-thiourea derivatives using the method out-
lined in Scheme 13. Before adding 4-nitrobenzene-1,2-diamine, they introduced KSCN in
acetone to convert appropriately substituted acid chlorides to corresponding acyl isoth-
iocyanates. Acyl thioureas were obtained by recrystallizing the resultant products from
ethanol, with a yield that varied between 73% and 89%.

The molecular docking analysis revealed that the three drugs exhibited groove bind-
ing, incomplete contact and mixed mode DNA binding. Furthermore, all three of the
compounds (43–45) showed 2D interactions with the urease enzyme. N-N/diarylthiourea
derivatives, which are included in a number of pharmaceutically active compounds, repre-
sent another interesting class of prospective anticancer medications [61–63].
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It is crucial to adjust the balance between the produced compounds’ lipophilicity
and hydrophilicity in order to look into the inhibitory mechanisms of the compounds. To
enhance permeability through lipophilic cellular membranes, a lengthy non-polar alkyl
terminal chain containing six to sixteen carbon atoms must be included in the synthesis of
novel diaryl thiourea derivatives. Moreover, adding a fluorine group as a hydrogen bond ac-
ceptor group can increase the proposed compounds’ aqueous solubility [61]. By combining
phenolisocyanate or 4-fluorophenyl isothiocyanate with alkoxy anilines (4-hexyloxyaniline,
4-octyloxyaniline or 4-hexadecyloxyaniline) in dichloromethane at an ambient temperature,
Mohamed et al. produced N, Nl disubstituted thiourea derivatives 46–51. Scheme 14 [64]
shows the equimolar amounts used in this reaction that was conducted.
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ing, incomplete contact and mixed mode DNA binding. Furthermore, all three of the com-
pounds (43–45) showed 2D interactions with the urease enzyme. N-N/diarylthiourea de-
rivatives, which are included in a number of pharmaceutically active compounds, repre-
sent another interesting class of prospective anticancer medications [61–63]. 

It is crucial to adjust the balance between the produced compounds’ lipophilicity and 
hydrophilicity in order to look into the inhibitory mechanisms of the compounds. To en-
hance permeability through lipophilic cellular membranes, a lengthy non-polar alkyl ter-
minal chain containing six to sixteen carbon atoms must be included in the synthesis of 
novel diaryl thiourea derivatives. Moreover, adding a fluorine group as a hydrogen bond 
acceptor group can increase the proposed compounds’ aqueous solubility [61]. By com-
bining phenolisocyanate or 4-fluorophenyl isothiocyanate with alkoxy anilines (4-hex-
yloxyaniline, 4-octyloxyaniline or 4-hexadecyloxyaniline) in dichloromethane at an ambi-
ent temperature, Mohamed et al. produced N, Nl disubstituted thiourea derivatives 46–
51. Scheme 14 [64] shows the equimolar amounts used in this reaction that was conducted. 

 
Scheme 14. Synthesis of urea and thiourea derivatives 46–51 [64]. 

The efficacy of the produced compounds in treating breast cancer was evaluated by 
testing them against MCF-7 cells. The findings indicated that compound 49 might have 
more promise as an anticancer drug due to its lower IC50 value (338.3 ± 1.52 µM). Unlike 
untreated control cells, treated MCF-7 cells with compound 49 displayed alterations in 

Scheme 14. Synthesis of urea and thiourea derivatives 46–51 [64].

The efficacy of the produced compounds in treating breast cancer was evaluated by
testing them against MCF-7 cells. The findings indicated that compound 49 might have
more promise as an anticancer drug due to its lower IC50 value (338.3 ± 1.52 µM). Unlike
untreated control cells, treated MCF-7 cells with compound 49 displayed alterations in
cell size and shape as well as a progressive decline in cell viability, as the compound
concentration increased, as seen in Figure 9. This outcome was comparable to that of
4-nitrobenzoyl-3-allylthiourea, another arylthiourea derivative that, at an IC50 value of
225 µM, had good efficacy against breast cancer cells [65].
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Compound 49 was discovered to have a significant effect on LDH enzyme activity.
The study indicated that treated MCF-7 cells had LDH levels that were 521.77 ± 30.8 U/L,
significantly higher than those of untreated control cells (85.35 ± 4.2 U/L). According to
these findings, compound 49 effectively prevents MCF-7 cell growth. In addition, the cell
cycle of the treated cells was investigated. It was shown that a sizable portion of the cells
were created in the S phase, suggesting that apoptosis was initiated and that the cell cycle
was stopped at that point. This result demonstrates that compound 49 therapy is effective
in stopping the growth of cancer cells and can disturb normal cell cycle progression [66,67].

The thiazole, pyrazole and pyran moieties found in several thiourea derivatives have
also been shown to have promising anticancer action [68]. Certain physicochemical and
structural characteristics that impact thiourea’s pharmacological properties are conferred
by the integration of these heterocyclic moieties [69–71]. Their therapeutic potential is
increased by their interaction with molecular targets, which modify cellular activities and
signaling cascades [72]. Figure 10 [73] illustrates the series of thiourea derivatives that
Ahmed et al. synthesized that contain heterocyclic moieties. 4-Aminoacetophenone (i) was
refluxed with phenyl isothiocyanate in dry toluene to form the pyrazole-based deriva-
tive 1-(4-acetylphenyl)-3-phenylthiourea (ii). This was then refluxed with the reagent,
dimethylformamide-dimethyl acetal (DMF-DMA), in dioxane to convert it into its corre-
sponding enaminone (iii). Compound iii reacted with two distinct nitrogen binucleophiles
(phenyl hydrazine and hydrazine hydrate) via refluxing in ethanol and triethylamine,
yielding compounds 50a and 50b, which are phenyl thiourea pyrazoles. Compound (iii)
was used to create compound 51, thiazolopyrimidine-phenylthiourea, by reacting with
2-aminothiazole in boiling methanol and sodium methoxide to create thiazole deriva-
tives. The equivalent benzothiazolo [3,2-a] pyridine-phenylthiourea compound 52 was
produced by compound iii reacting with benzothiazole-2-yl acetonitrile while under re-
fluxing acetic acid. In glacial acetic acid, compound iii reacted with acetylacetone to yield
the corresponding 1-(4-(5-acetyl-6-methyl-4H-pyran-2-yl) phenyl)-3-phenylthiourea-based
pyran compound 53, whereas compound iii reacted with dimedone to yield tetrahy-
drochromenephenylthiourea, compound 54. Scheme 15 shows the pathway of synthesis.
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Scheme 15. Synthesis of phenylthiourea pyrazole-based compounds 50a, 50b, thiazolopyramidine
and thiazolopyridine compounds 51, 52 and phenylthiourea pyran-based compounds 53, 54 [73].

Using the MTT approach, all of the synthesized compounds, 50(a, b), 51, 52, 53 and
54, were tested for in vitro cytotoxicity against several cancer lines, including HepG2,
HCT-116, MCF-7, PC3 and WI38 [74]. The medicine used as a reference was doxorubicin.
The chemicals’ reactivity with the cell lines under investigation was as follows: PC3 >
MCF-7 > HepG2 > HCT-116. Compounds 51, 52 and 54 had significant cytotoxic efficacy
in the HCT-116 cell line (IC50 = 2.29, 9.71 and 7.36 µM, respectively), whereas compound
53 demonstrated appropriate efficacy (IC50 = 12.41 µM), and compounds 50a and 50b
demonstrated the least activity (IC50 = 20.19 and 17.85 µM).

5. Anti-Inflammatory Activity

Inflammation is characterized as a local or systemic reaction to injury to tissue or
any other stimuli, including those that are chemical, physical, biological or thermal [75].
Hyperinflammation is brought on by an increase in the levels of proinflammatory mark-
ers, cytokines and inflammatory chemokines [76]. Reactive oxygen species (ROS) and
hyperinflammation work together to promote the growth of a number of illnesses, in-
cluding diabetes, cancer, arthritis and cardiovascular disorders [77,78]. Through a num-
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ber of cytokine-signaling pathways, two significant multifunctional pro-inflammatory
cytokines—tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)—are involved in
the pathophysiology of autoimmune, inflammatory, cardiovascular, neurological and can-
cer illnesses [79]. Thus, TNF-α and IL-6 are crucial molecular targets for pharmaceuticals
in the therapy of several illnesses [80].

As shown in Scheme 16 [81], Ashish et al. prepared a number of novel 2-methylquinazolin-
4(3H)-one derivatives carrying thiourea. Compound 55 is the precursor of 6,7-dimethoxy-2-
methyl-4H-benzo[d][1,3]oxazin-4-one. Compound 55 was reacted with 1,2-ethylenediamine at
reflux for two hours to yield compound 56, 3-(2-aminoethyl)-6,7-dimethoxy-2-methylquinazolin-
4(3H)-one. Then, at an ambient temperature, compound 56 was reacted with the suitable
arylisothiocyanates to create the required thiourea derivatives, 57–66. Every synthesized
compound was tested for its inhibitory effect on IL-6 and TNF-α at a concentration of
10 µg/mL. Compared to the conventional dexamethasone (1 µg/mL), compounds 60 and
62 showed stronger inhibitory efficacy against TNF-α (78% and 72%) and IL-6 (89% and
83%). Conversely, compounds 57 and 64 showed modest levels of IL-6 (67% and62%)
and TNF-α (52% and 50%). Little to no inhibitory activity was demonstrated by the
remaining compounds.
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Scheme 16. Synthesis of new 3-(2-aminoethyl)-2-methylquinezolin-4(3H)-one thiourea deriva-
tives [81].

Two types of COX that are triggered by inflammatory stimuli are COX-1 and COX-
2. 5-LOX is an additional enzyme that contributes to lipid peroxidation and generates
lipid peroxides. Inhibiting 5-LOX can aid in cognitive recovery, whereas increasing its
activity is linked to neuroinflammation and may result in memory problems [82]. The
polyunsaturated omega-6 fatty acid arachidonic acid can be processed by the enzymes
cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) via a variety of routes [82].

Studies have demonstrated the good anti-inflammatory action of naproxen derivatives
with substituted 1,2,4-triazole rings [83]. Furthermore, it has been discovered in multiple
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investigations that naproxen’s thiourea derivatives have anti-inflammatory qualities. In
comparison to naproxen, thiourea derivatives of naproxen in combination with aminopy-
ridines [84], 4-chloroaniline [85] and amino acids [86] have exhibited negligible ulcerogenic
effects and a greater percentage of paw edema reduction.

New thiourea derivatives of naproxen, including aromatic amines and aromatic amino
acid esters, were produced by Nikola et al. [87]. The synthesis process was followed
as illustrated in Scheme 17. To create a modified naproxen scaffold, they started with
S-naproxen. When aromatic amines were present, naproxenoyl chloride, which was created
when naproxen and oxalyl chloride combined, could react with potassium thiocyanate
to form compounds 67–71 or with esters of aromatic amino acids to form compounds
72 and 73.
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The synthesized compounds were shown to be non-toxic and were evaluated for their 
anti-inflammatory properties using the acute inflammation model of carrageenan-in-
duced paw edema, which is frequently employed in the testing of novel anti-inflamma-
tory medications. It was discovered that a few of compounds 67–73 have the ability to 
suppress inflammation later on. Examining the effects of the produced molecule on COX-
2 and 5-LOX, the findings revealed that none of the compounds inhibited COX-2 at con-
centrations below 100 µM by more than 50%, suggesting a poor inhibitory effect. As shown 
in Figure 11, compounds 67, 68, 69, 70 and 71, however, were capable of inhibiting 5-LOX, 
with compound 70 exhibiting the greatest efficiency. Its IC50 value (0.3 µM) was similar to 
those of commercial anti-inflammatory drugs [87,88]. 

Scheme 17. Synthesis of tested compounds [87].

The synthesized compounds were shown to be non-toxic and were evaluated for their
anti-inflammatory properties using the acute inflammation model of carrageenan-induced
paw edema, which is frequently employed in the testing of novel anti-inflammatory med-
ications. It was discovered that a few of compounds 67–73 have the ability to suppress
inflammation later on. Examining the effects of the produced molecule on COX-2 and
5-LOX, the findings revealed that none of the compounds inhibited COX-2 at concentra-
tions below 100 µM by more than 50%, suggesting a poor inhibitory effect. As shown in
Figure 11, compounds 67, 68, 69, 70 and 71, however, were capable of inhibiting 5-LOX,
with compound 70 exhibiting the greatest efficiency. Its IC50 value (0.3 µM) was similar to
those of commercial anti-inflammatory drugs [87,88].
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the 5-LOX enzyme. The blue shapes represent the chemical structure of the tested compounds 67 to
73 and its binding with the 5-LOX enzyme by hydrogen bonds (green dashed lines) [87].

It has been discovered that urea–thiourea hybrids have a broad spectrum of anti-
inflammatory effects. Numerous new urea–thiourea hybrids have been created and thor-
oughly examined. These hybrids are created by reacting several isothiocyanate deriva-
tives with 2,3-diaminonaphthalene-1,4-dione. These hybrids were shown to have anti-
inflammatory properties on mammalian macrophages in an in vivo test by inhibiting PI3K
activation and reducing the generation of proinflammatory cytokines [89].

6. Antituberculosis Activity

Due to the evolution of medication resistance, tuberculosis (TB), a lung disease
caused by Mycobacterium tuberculosis (M. tuberculosis), continues to pose a serious threat
to the world. As seen in Figure 12, the World Health Organization (WHO) estimates that
7.5 million individuals worldwide passed away from tuberculosis (TB) in 2022 [90].



Chemistry 2024, 6 454Chemistry 2024, 6, FOR PEER REVIEW 20 
 

 

 
Figure 12. The global trend in case notifications of people newly diagnosed with TB, 2010–2022 
(WHO 2022) [90]. 

A useful building block for the discovery of novel pharmaceuticals with a variety of 
therapeutic uses is the thiourea scaffold. An essential component of M. tuberculosis’s my-
colic acid production pathway is InhA, an enoyl-acyl carrier protein reductase. Because of 
this, InhA is essential for the growth of M. tuberculosis (TB) and presents a promising target 
for the development of novel antituberculosis drugs [91]. Şengül et al. [92] synthesized 
thiourea derivatives 74 and 75, depicted in Figure 13, which possess essential structural com-
ponents to function as InhA inhibitors and growth inhibitors of M. tuberculosis. 

 

Figure 13. Structural moieties to be M. tuberculosis growth and InhA inhibitors [92]. 

Five thiourea derivatives were synthesized by Emine et al. [93] and are represented 
in Figure 14 as follows: N-((2-chloropyridin-3-yl)carbamothioyl)thiophene-2-carbox-
amide (76), N-((6-methylpyridin-2-yl)carbamothioyl)thiophene-2-carboxamide (77), N-
(allylcarbamothioyl) thiophene-2-carboxamide (78), 2-chloro-N-(methyl(1-phenylethyl) 
carbamothioyl) benzamide (79) and 2-chloro-N-(bis((R)-1-phenylethyl) carbamothioyl) 
benzamide (80). Five common bacterial strains—H37RV, INH resistant, RIF resistant, STM 
resistant and EMB resistant—were used to test these drugs’ antituberculosis effectiveness. 
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Figure 12. The global trend in case notifications of people newly diagnosed with TB, 2010–2022
(WHO 2022) [90].

A useful building block for the discovery of novel pharmaceuticals with a variety of
therapeutic uses is the thiourea scaffold. An essential component of M. tuberculosis’s mycolic
acid production pathway is InhA, an enoyl-acyl carrier protein reductase. Because of this,
InhA is essential for the growth of M. tuberculosis (TB) and presents a promising target
for the development of novel antituberculosis drugs [91]. Şengül et al. [92] synthesized
thiourea derivatives 74 and 75, depicted in Figure 13, which possess essential structural
components to function as InhA inhibitors and growth inhibitors of M. tuberculosis.
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Figure 13. Structural moieties to be M. tuberculosis growth and InhA inhibitors [92].

Five thiourea derivatives were synthesized by Emine et al. [93] and are represented in
Figure 14 as follows: N-((2-chloropyridin-3-yl)carbamothioyl)thiophene-2-carboxamide (76),
N-((6-methylpyridin-2-yl)carbamothioyl)thiophene-2-carboxamide (77), N-(allylcarbamothioyl)
thiophene-2-carboxamide (78), 2-chloro-N-(methyl(1-phenylethyl) carbamothioyl) benzamide
(79) and 2-chloro-N-(bis((R)-1-phenylethyl) carbamothioyl) benzamide (80). Five common
bacterial strains—H37RV, INH resistant, RIF resistant, STM resistant and EMB resistant—
were used to test these drugs’ antituberculosis effectiveness. According to the results,
derivative 79 had the highest activity.
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Anna et al. [94], investigated the antitubercular capabilities of a series of halogenated
copper (II) complexes. To assess the impact of substitution isomerism and electron-
withdrawing functions, they employed various phenyl ring substituent arrangements.
Among the thiourea derivative complexes were those containing 1-(2-bromophenyl)-
halogenated copper (II) complexes: 1-(2-bromophenyl)-3-(4-chloro-3-nitrophenyl)thiourea
(81), 1-(3-bromophenyl)-3-(4-chloro-3-nitrophenyl)thiourea (82), 1-(4-bromophenyl)-3-(4-
chloro-3-nitrophenyl)thiourea (83), 1-(3-chloro-4-fluorophenyl)-3-(4-chloro-3-nitrophenyl)
thiourea (84), 1-(4-chloro-3-nitrophenyl)-3-(3,4-dichlorophenyl)thiourea (85), 1,3-bis(4-chloro-
3-nitrophenyl)thiourea (86), 1-(2-fluorophenyl)-3-(4-chloro-3-nitrophenyl) thiourea (87) and
1-(4-iodophenyl)-3-(4-chloro-3-nitrophenyl)thiourea (88), according to Figure 15. The an-
tituberculosis activity of each complex was evaluated, and the findings indicated that
combinations including streptomycin and halogenated copper (II) complexes 83 or 84 were
more successful. These mixtures show potential utility in M. tuberculosis 800 strains that are
INH mono-resistant and multidrug-resistant. The development of MDRTB strain 210 was
suppressed by all complexed thiourea compounds, with MICs ranging from 2 to 8 µg/mL.
When measured against the reference medicines, isoniazid (INH), rifampicin (RMP), strep-
tomycin (SM) and ethambutol (EMB), the most effective 3,4-dichlorophenylthiourea coordi-
nate acted 8–16 times stronger.
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The synthesis and assessment of urea and thiourea derivatives of 5-phenyl-3-
isoxazolecarboxylic acid methyl esters, which exhibit promise as anti-TB drugs, were
reported by Santosh et al. [95]. Developing medications that work requires a deep compre-
hension of the Structure–Activity Relationship (SAR), as shown in Figure 16. This led to the
synthesis of a number of thiourea derivatives based on isoxazole carboxylic acid methyl
ester, as shown in Figure 17.
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Figure 17. Synthetic route to 5-phenyl-3-isoxazole carboxylic acid methyl ester-linked thiourea
derivatives [95].

When synthetic compounds 89–102 were examined for their ability to combat tu-
berculosis (TB), they all displayed nearly identical levels of efficacy. The most potent
monosubstituted thiourea derivatives were those containing a chlorine atom, with p-chloro
being the most active (MIC 1 µg/mL). On the other hand, the m-chloro and m-bromo
compounds only showed a moderate level of efficacy. The 2,4-difluoro derivatives among
the disubstituted analogs exhibited good efficacy (MIC 2 µg/mL).

7. Anti-Alzheimer

Dementia may result from Alzheimer’s disease, a degenerative and crippling neuro-
logical condition that impairs cognitive function. Studies indicate that hereditary variables,
including apolipoprotein E, can contribute to the onset of the illness. The two main pro-
cesses that harm neural cells are oxidative damage and inflammation [96–98]. Research
has demonstrated the potential application of sulfur-containing compounds, including
thiols, disulfides and sulfides, in the treatment of Alzheimer’s disease (Figure 18). In
addition, various classes of compounds containing sulfur have demonstrated promise in
the treatment of the disease, such as sulfoxides and thiocarboxylic acids with a +4 oxidation
state, thioesters, thioketones, thioureas and heterocyclic compounds containing sulfur with
a −2 oxidation state, and sulfones and sulfonamides with a +6 oxidation state [99,100].

Targeting the enzymes Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE),
which are essential for the breakdown of different compounds, is the goal of treating
Alzheimer’s disease (AD). BChE also aids in the breakdown of ACh in a healthy brain,
exacerbating the course of AD. In order to cure AD, it may be beneficial to inhibit both
AChE and BChE [101]. As illustrated in Figure 19, AChE inhibitors such as donepezil,
rivastigmine and galantamine are currently the most often prescribed medications for
AD in clinics. Patients with mild to moderate AD may obtain symptom relief from these
inhibitors, which interfere with the enzyme’s active site [102].
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Figure 19. Anti-Alzheimer drugs [103].

As shown in Figure 20, Mehtab et al. [103] produced a range of thiourea and thiazolidi-
none compounds, 103–106, and investigated their inhibitory activity against AChE and BChE.

The compounds showed varying degrees of inhibitory efficacy against AChE and
BChE, according to the study. In particular, 103 < 105 < 104 was the sequence of inhibitory
activities against AChE, whereas 105 < 104 < 103 < 106 was the sequence against BChE. The
compound’s IC50 values against AChE and BChE were 33.27–93.85 nM and 105.9–412.5 nM,
respectively. All results showed that the compounds worked better against AChE than they
did against BChE [103]. There have also been reports of other thiourea compounds acting
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as enzyme inhibitors, including isobutylphenylthiourea and tert-butylphenylthiourea [104].
Six crystalline thiourea derivatives were evaluated against BChE and AChE in a different
investigation [105]. Figure 21 displays the compounds that were produced.
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Figure 21. Structure of asymmetrical thiourea derivatives, 1-cyclohexyl-3-(iso-butyl)thiourea 107,
1-cyclohexyl-3-(tert-butyl)thiourea 108, 1-cyclohexyl-3-(3-chlorophenyl)thiourea 109, 1-phenyl-3-
(1,1-dibutyl)thiourea 110, 1-phenyl-3-(2-chlorophenyl)thiourea 111 and 1-phenyl-3-(4-chlorophenyl)
thiourea 112 [105].

Compounds 110 and 109 showed outstanding inhibitory properties. Compounds 109
and 110 exhibited different IC50 values for AChE and BChE. Specifically, compound 109’s
IC50 value was 50 µg/mL, and compound 110’s IC50 value was 63 µg/mL. Galantamine,
the standard, had an IC50 value of 15 µg/mL against both enzymes.

Compound 109 established contact with Asn-83, Asn-85 and His-77, and compound
110 was effective in creating associations with Try-128 and Try-82, according to the results
of the molecular docking of compounds 109 and 110, as shown in Figure 22. Complicated
interactions are what give compound 109 its increased potency.
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Figure 22. Three-dimensional binding interaction modes of compounds 109 and 110 as inhibitors
of AChE and BChE. (a,b) Interaction posing of compound 109 and 110 with AChE, respectively;
(c,d) Interaction of compound 109 and 110 with BChE, respectively [105].

In comparison with the normal donepezil (IC50, 2.16 and 4.5 µM, respectively), thiazole–
thiourea hybrid compounds have recently demonstrated exceptional activity against both
AChE and BChE enzymes, with IC50 values ranging from 0.3 to 15 µM against AChE and
0.4 to 22 µM against BChE [106].

8. Antimalarial Activity

The parasite Plasmodium, a member of the phylum Apicomplexa, is the cause of
malaria. About 50% of people worldwide are at risk of malaria, according to the World
Health Organization (WHO) [107]. Malaria poses a threat to about half of the world’s
population. Drug-resistant forms of the malaria parasite have emerged as a result of
the indiscriminate use of antimalarial medications like artemisinin and chloroquine. To
tackle antimalarial drug resistance, Cheo et al. [108] and Mohamed et al. [109] synthesized
promising compounds with chalcone pyrazoline and pyrimidine scaffolds, as seen in
Figure 23.
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Figure 23. Structures of chalcone, pyrazoline and pyrimidine [109].

Four chalcones, 113–116, were created in the manner shown in Scheme 18. Twelve
novel pyrazoline compounds, 113–116A(i–iii), were produced by the cyclo-condensation
reactions between the chalcones and hydrazine hydrate derivatives, as illustrated in
Scheme 19.
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Scheme 20 illustrates the formation of eight novel pyrimidine derivatives, 113–116B(i–iii),
from the reaction of chalcones with guanidine or thiourea.
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Scheme 20. Synthesis of pyrimidine derivatives 113–116B(i–iii) [109].

All of the produced compounds were evaluated to see how well they worked against
the chloroquine-resistant RKL9 strain of malaria, as well as the chloroquine-sensitive 3D7
strain. Next, the compounds’ IC50 values were contrasted with those of chloroquine. Chal-
cones 113–116 were shown to be less efficient than the heterocyclic compound produced
from them in combating P. falciparum malaria. Furthermore, it was shown that molecules
with a methoxy group in the para position were more potent than those with a methoxy
group in the meta position. An investigation into molecular docking was carried out on the
ATPase ‘PfATP4’ enzyme, which is thought to be essential for resistance mechanisms. The
strongest binding energies to the “PfATP4” receptor were exhibited by compounds 113,
113Aiii and 113Bi, out of all the produced derivatives, according to the results. Figure 24
shows the compound model with the effective functional groups.

Chemistry 2024, 6, FOR PEER REVIEW 28 
 

 

with a methoxy group in the para position were more potent than those with a methoxy 
group in the meta position. An investigation into molecular docking was carried out on 
the ATPase ‘PfATP4’ enzyme, which is thought to be essential for resistance mechanisms. 
The strongest binding energies to the “PfATP4” receptor were exhibited by compounds 
113, 113Aiii and 113Bi, out of all the produced derivatives, according to the results. Figure 
24 shows the compound model with the effective functional groups. 

 
Figure 24. SAR of thiourea derivatives as antimalarial agents [109]. 

9. The Recent Strategies in the Synthesis of Thiourea Derivatives 
As a result of the environmental problems associated with the diversity of the tradi-

tional chemical synthesis of organic compounds, the trend of using green chemistry was 
the alternative to avoid these problems. The automated synthetic systems were a useful 
tool to accelerate the research of organic synthesis and reduce the harm of chemicals to 
the human body [110,111].  

Capsaicin derivatives with thiourea structures (CDTS) are known for their higher an-
algesic potency in rodent models and higher agonism in vitro. As shown in Figure 25, 
capsaicin derivatives with thiourea structures showed higher analgesic potency in rodent 
models and higher agonism in vitro [112]. Lina et al. [113] reported a green, facile and 
practical synthetic method for capsaicin derivatives with thiourea structures, which was 
developed by using an automated synthetic system, as shown in Figure 26. The synthesis 
of CDTS was performed via a condensation reaction of vanilylamine hydrochloride and 
isothiocyanates at room temperature and under green solvent (water) conditions with 
goo/excellent yields [113].  

Figure 24. SAR of thiourea derivatives as antimalarial agents [109].



Chemistry 2024, 6 463

9. The Recent Strategies in the Synthesis of Thiourea Derivatives

As a result of the environmental problems associated with the diversity of the tradi-
tional chemical synthesis of organic compounds, the trend of using green chemistry was
the alternative to avoid these problems. The automated synthetic systems were a useful
tool to accelerate the research of organic synthesis and reduce the harm of chemicals to the
human body [110,111].

Capsaicin derivatives with thiourea structures (CDTS) are known for their higher
analgesic potency in rodent models and higher agonism in vitro. As shown in Figure 25,
capsaicin derivatives with thiourea structures showed higher analgesic potency in rodent
models and higher agonism in vitro [112]. Lina et al. [113] reported a green, facile and
practical synthetic method for capsaicin derivatives with thiourea structures, which was
developed by using an automated synthetic system, as shown in Figure 26. The synthesis
of CDTS was performed via a condensation reaction of vanilylamine hydrochloride and
isothiocyanates at room temperature and under green solvent (water) conditions with
goo/excellent yields [113].
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10. Conclusions

Thiourea is a significant compound that is used as a basic building block to syn-
thesize a wide range of derivatives with different biological activities. Strong antibac-
terial and anticancer effects have been demonstrated by these derivatives, which also
comprise tris thioureas, complexes and symmetrical and asymmetrical bis thioureas. In
addition, urea-thiourea hybrids have shown notable anti-inflammatory properties, and
other thiourea-containing pyrazole, thiazole and pyran moieties have shown a variety of
biological activities. Herien, I highlight several therapeutic applications and the devel-
opment of synthetic strategies. I track the progress in this field by discussing traditional
methods, green chemistry and, recently, the automated synthetic system. This system can
be considered the starting point for improving not only the quality but also the quantity of
the targeted product, while maintaining a healthy environment. According to the above-
mentioned information, I hope that this review will motivate researchers to conduct more
research in this exciting field.
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