Azidoindolines—From Synthesis to Application: A Review
Abstract
:1. Introduction
2. Azidation of Indoles Using Iodine Reagents
3. Metal-Catalyzed Azidation of Indoles
4. Electrochemical Azidation of Indoles
5. Photochemical Azidation of Indoles
6. Azidation of Indoles Using a Combination of an Oxidant and an Azide Source
7. Nucleophilic Azidation of Indoles
8. Conclusions
Funding
Institution Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MeCN | acetonitrile |
Bz | benzoyl |
DMF | N,N-dimethylformamide |
TMS | trimethylsilyl |
Ts | p-toluenesulfonyl |
DMSO | dimethyl sulfoxide |
TBS | tert-butyldimethylsilyl |
ADBX | azidodimethylbenziodoxole |
IBA | 2-iodosobenzoic acid |
TFA | trifluoroacetic acid |
acac | acetylacetonate |
TBTA | tris(benzyltriazolyl)methylamine |
SET | single electron transfer |
TBHP | tert-butyl hydroperoxide |
TBPB | tert-butyl peroxibenzoate |
Boc | tert-butoxycarbonyl |
Troc | 2,2,2-trichloroethoxycarbonyl |
DG | directing group |
1,10-phen | 1,10-phenanthroline |
Cbz | benzyloxycarbonyl |
LED | light emitting diode |
PC | photocatalyst |
HFIP | 1,1,1,3,3,3-hexafluoropropan-2-ol |
CAN | ceric ammonium nitrate |
TEMPO | 2,2,6,6-tetramethylpiperidine 1-oxyl |
DMA | N,N-dimethylacetamide |
AZIN | 2-alkoxy-3-azidoindoline |
TBAF | n-tetrabutylammonium fluoride |
BNN3 | n-tetrabutylammonium azide |
AZIHY | 3-azido-2-hydroxyindoline |
CCDC | Cambridge crystallographic data centre |
References
- Ishikura, M.; Yamada, K.; Abe, T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 2010, 27, 1630–1680. [Google Scholar] [CrossRef]
- Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 2013, 30, 694–752. [Google Scholar] [CrossRef]
- Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 2015, 32, 1389–1471. [Google Scholar] [CrossRef]
- Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019, 89, 103021. [Google Scholar] [CrossRef]
- Umer, S.M.; Solangi, M.; Khan, K.M.; Saleem, R.S.Z. Indole-Containing Natural Products 2019–2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 2022, 27, 7586. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, L.N.; Burdette, J.E.; de Blanco, E.C.; Coss, C.C.; Eustaquio, A.S.; Fuchs, J.R.; Kinghorn, A.D.; MacFarlane, A.; Mize, B.K.; Oberlies, N.H.; et al. Discovery of Anticancer Agents of Diverse Natural origin. Nat. Prod. 2022, 85, 702–719. [Google Scholar] [CrossRef] [PubMed]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Nicholls, A.; McGaughey, G.B.; Sheridan, R.P.; Good, A.C.; Warren, G.; Mathieu, M.; Muchmore, S.W.; Brown, S.P.; Grant, J.A.; Haigh, J.A.; et al. Molecular Shape and Medicinal Chemistry: A Perspective. J. Med. Chem. 2010, 53, 3862–3886. [Google Scholar] [CrossRef] [PubMed]
- Talele, T.T. Opportunities for Tapping into Three-Dimensioned Chemical Space through a Quaternary Carbon. J. Med. Chem. 2020, 63, 13291–13315. [Google Scholar] [CrossRef]
- Roche, S.P.; Porco, J.A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem. Int. Ed. 2011, 50, 4068–4093. [Google Scholar] [CrossRef]
- Zhuo, C.-X.; Zhang, W.; You, S.-L. Catalytic Asymmmetric Dearomatization Reactions. Angew. Chem. Int. Ed. 2012, 51, 12662–12686. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.P.; Youte Tendoung, J.-J.; Tréguier, B. Advances in Dearomatization Strategies of Indoles. Tetrahedron 2015, 71, 3549–3591. [Google Scholar] [CrossRef]
- Schilling, C.I.; Jung, N.; Biskup, M.; Schepers, U.; Bräse, S. Bioconjugation via azide-Staudinger ligation: An overview. Chem. Soc. Rev. 2011, 40, 4840–4871. [Google Scholar] [CrossRef] [PubMed]
- Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J.M. The aza-Wittig reaction: An efficient tool for the construction of carbon-nitrogen double bonds. Tetrahedron 2007, 63, 523–575. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reaction. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Henessy, E.T.; Betley, T.A. Complex N-Heterocycles Synthesis via Iron-Catalyzed, Direct C–H Bond Amination. Science 2013, 340, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: An exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 2005, 44, 5188–5240. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, H.; Kakiuchi, K. Recent Applications and Developments of Organic Azides in Total Synthesis of Natural Products. Nat. Prod. Commun. 2013, 8, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.M.; Nazarova, L.A.; Presher, J.A. Finding the Right (Bioorthogonal) Chemistry. Acc. Chem. Biol. 2014, 9, 592–605. [Google Scholar] [CrossRef]
- Sivaguru, P.; Ning, Y.; Bi, X. New Strategies for the Synthesis of Aliphatic Azides. Chem. Rev. 2021, 121, 4253–4307. [Google Scholar] [CrossRef]
- Sala, R.; Loro, C.; Foschi, F.; Broggini, G. Transition Metal Catalyzed Azidation Reactions. Catalysts 2020, 10, 1173. [Google Scholar] [CrossRef]
- Tamura, Y.; Kwon, S.; Tabusa, F.; Ikeda, M. Reaction of iodine azide with 1-acylindoles: Formation of 1-acyl-cis- and trans-2,3-diazidoindolines. Tetrahedron Lett. 1975, 16, 3291–3294. [Google Scholar] [CrossRef]
- Tamura, Y.; Chun, M.W.; Kwon, S.; Bayomi, S.M.; Okada, T.; Ikeda, M. Reaction of Benzo[b]furan and 1-Acylindoles with Iodine Azide. Chem. Pharm. Bull. 1978, 26, 3515–3520. [Google Scholar] [CrossRef]
- Ikeda, M.; Tabusa, F.; Nishimura, Y.; Kwon, S.; Tamura, Y. The reactions of some indoles with iodine azide: Synthesis of 3-azidoindolenines, 2-azidomethylindoles, and 3a-azido-furo- and pyrrolo-[2,3-b]indoles. Tetrahedron Lett. 1976, 27, 2347–2350. [Google Scholar] [CrossRef]
- Moriarty, R.M.; Khosrowshahi, J.S. A Versatile synthesis of vicinal diazides using hypervalent iodine. Tetrahedron Lett. 1986, 27, 2809–2812. [Google Scholar] [CrossRef]
- Pedersen, C.M.; Marinescu, L.G.; Bols, M. Substitution with Azide: TMSN3–PhI(OAc)2 as a Substitute of IN3. Org. Biomol. Chem. 2005, 3, 816–822. [Google Scholar] [CrossRef]
- Yoshimura, A.; Zhdankin, V.V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chem. Rev. 2016, 116, 3328–3435. [Google Scholar] [CrossRef]
- Lubriks, D.; Sokolovs, I.; Suna, E. Indirect C–H Azidation of Heterocycles via Copper-Catalyzed Regioselective Fragmentation on Unsymmetrical λ3-Iodanes. J. Am. Chem. Soc. 2012, 134, 15436–15442. [Google Scholar] [CrossRef]
- Prasad, P.K.; Kalshetti, R.G.; Reddi, R.N.; Kamble, S.P.; Sudalai, A. I2-mediated regioselective C-3 azidation of indoles. Org. Biomol. Chem. 2016, 14, 3027–3030. [Google Scholar] [CrossRef]
- Chen, W.-T.; Gao, L.-H.; Bao, W.-H.; Wei, W.-T. Metal-Free C(sp3)-H Azidation in a Radical Strategy for the Synthesis of 3-Azido-2-oxindoles at Room Temperature. J. Org. Chem. 2018, 83, 11074–11079. [Google Scholar] [CrossRef]
- Holzschneider, K.; Mohr, F.; Kirsch, S.F. Metal-free Synthesis and Reactivity of 3,3-Diazidooxindoles. Org. Lett. 2018, 20, 7066–7070. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Goud, G.K.; Sridhar, B.; Mainkar, P.S.; Nayani, K.; Chandrasekhar, S. Metal-free dearomatization 2,3-difunctionalization of indoles via radical cascade. Tetrahedron Lett. 2023, 121, 154478. [Google Scholar] [CrossRef]
- Ge, L.; Chiou, M.-F.; Li, Y.; Bao, H. Radical azidation as a means of constructing C(sp3)-N3 bonds. Green Synth. Catal. 2020, 1, 86–120. [Google Scholar] [CrossRef]
- Liu, Y.; Ebadi, A.G.; Youseftabar-Miri, L.; Hassanpour, A.; Vessally, E. Methods for direct C(sp2)-H bonds azidation. RSC Adv. 2019, 9, 25199–25215. [Google Scholar] [CrossRef] [PubMed]
- Mironova, I.A.; Kirsch, S.F.; Zhdankin, V.V.; Yoshimura, A.; Yusubov, M.S. Hypervalent Iodine-Mediated Azidation Reactions. Eur. J. Org. Chem. 2022, 2022, e202200754. [Google Scholar] [CrossRef]
- Shee, M.; Singh, N.D.P. Chemical versatility of azide radical: Journey from a transient species to synthetic accessibility in organic transformations. Chem. Soc. Rev. 2022, 51, 255–2312. [Google Scholar] [CrossRef] [PubMed]
- Goswami, M.; de Bruin, B. Metal-Catalysed Azidation of Organic Molecules. Eur. J. Org. Chem. 2017, 2017, 1152–1176. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.-H.; Bleith, T.; Wadepohl, H.; Gade, L.H. Enantioselective Iron-Catalyzed Azidation of β-Keto Esters and Oxindoles. J. Am. Chem. Soc. 2013, 135, 5356–5359. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Wang, T.; Jiao, N. Copper-Catalyzed Oxoazidation and Alkoxyazidation of Indoles. Org. Lett. 2014, 16, 2302–2305. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, W.; Li, G.; Hong, L.; Wang, R. Copper-catalyzed cascade azidation-cyclization of tryptophols and tryptamines. Chem. Commun. 2015, 51, 12293–12296. [Google Scholar] [CrossRef]
- Dhineshkumar, J.; Gadde, K.; Prabhu, K.R. Substituent-Directed Regioselective Azidation: Copper-Catalyzed C–H Azidation and Iodine-Catalyzed Dearomatizative Azidation of Indole. J. Org. Chem. 2018, 83, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-M.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. Efficient synthesis of 2-arylquinazolin-4-amines via a copper-catalyzed diazidation and ring expansion cascade of 2-arylindoles. Chem. Commun. 2018, 54, 12602–12605. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.-J.; Zhu, C.-L.; Lu, D.-F.; Xu, H. Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Activation Promoted by Nitrogen-Based Ligands. ACS Catal. 2018, 8, 4473–4482. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-L.; Wang, C.; Qin, Q.-X.; Yruegas, S.; Martin, C.D.; Xu, H. Iron(II)-Catalyzed Azidotrifluoromethylation for Expedient Vicinal Trifluoromethyl Amine Synthesis. ACS Catal. 2018, 8, 5032–5037. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-M.; Cao, W.-B.; Ding, R.; Li, H.-Y.; Xu, X.-P.; Ji, S.-J. Dearomatization of Indoles via Azido Radical Addition and Dioxygen Trapping to Access 2-Azidoindolin-3-ols. Org. Lett. 2019, 21, 6217–6220. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.-H.; Gao, L.-H.; Ying, W.-W.; Chen, W.-T.; Chen, G.-P.; Wei, W.-T.; Liu, Y.-Y.; Li, Q. Copper-Catalyzed C(sp3)–H Azidation of 1,3-Dihydro-2H-indol-2-ones Under Mild Conditions. Synlett 2019, 30, 109–113. [Google Scholar]
- Liu, J.; Fang, Z.; Liu, X.; Dou, Y.; Jiang, J.; Zhang, F.; Qu, J.; Zhu, Q. Diastereoselective 2,3-diazidation of indoles via copper(II)-catalyzed dearomatization. Chin. Chem. Lett. 2020, 31, 1332–1336. [Google Scholar] [CrossRef]
- Cao, M.; Wang, H.; Ma, Y.; Tung, C.-H.; Liu, L. Site- and Enantioselective Manganese-Catalyzed Benzylic C–H Azidation of Indolines. J. Am. Chem. Soc. 2022, 144, 15383–15390. [Google Scholar] [CrossRef]
- Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265–2299. [Google Scholar] [CrossRef]
- Horn, E.J.; Rosen, B.R.; Baran, P.S. Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method. ACS Cent. Sci. 2016, 5, 302–308. [Google Scholar] [CrossRef]
- Fu, N.; Sauer, G.S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Sciences 2017, 357, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dou, Y.; Guillot, R.; Kouklovsky, C.; Vincent, G. Electrochemical Dearomative 2,3-Difunctionalization of Indoles. J. Am. Chem. Soc. 2019, 141, 2832–2837. [Google Scholar] [CrossRef] [PubMed]
- Pator, M.; Vayer, M.; Weinstabl, H.; Maulide, N. Electrochemical Umpolung C–H Functionalization of Oxindoles. J. Org. Chem. 2022, 87, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Mo, K.; Zhou, X.; Wu, J.; Zhao, Y.J. Manganese-Mediated Electrochemical Dearomatization of Indoles To Access 2-Azido Spirocyclic Indolines. Org. Chem. 2022, 87, 16106–16110. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Xu, X.; Chen, H.; Zhang, Y.; Zhuo, X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan-Containing Peptides under Buffer Conditions. Angew. Chem. Int. Ed. 2022, 61, e202206308. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Ma, R.; Yang, A.; Jia, H.; Dong, Y.; Guo, C.; Ren, J. Mn-electrocatalytic oxidative C(sp3)-H azidation of 2-oxindoles and β-ketoesters and azidation-cyclization of tryptamines. Org. Chem. Front. 2024, 11, 336–342. [Google Scholar] [CrossRef]
- Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S.D.A.; Noël, T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem. Rev. 2022, 122, 2752–2906. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. Angew. Chem. Int. Ed. 2019, 58, 1586–1604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Xu, M.-M.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. Visible-Light-Enabled Multicomponent Cascade Transformation from Indoles to 2-Azidoindolin-3-yl 2-Aminobenzoates. Adv. Synth. Catal. 2020, 362, 1–7. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, K.; Wang, Z.; Li, H.; Lu, P.; Wang, Y. Visible-Light-Induced Photocatalyst-Free Aerobic Hydroxyazidations of Indoles: A Highly Regioselective and Stereoselective Synthesis of trans-2-Azidoindolin-3-ols. J. Org. Chem. 2021, 86, 7955–7962. [Google Scholar] [CrossRef]
- Gurawa, A.; Kumar, M.; Kashyap, S. Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ3-azidoiodinane Species. ACS Omega 2021, 6, 26623–26639. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, M.; Tian, H.; Shi, Y. A facile approach to spirocyclic 2-azidoindolines via azidation of indoles with ceric ammonium nitrate. Org. Biomol. Chem. 2014, 12, 9769–9772. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, T.; Abe, T.; Tanioka, M.; Kamino, S.; Sawada, D. cis-3-Azido-2-methoxyindolines as safe and stable precursors to overcome the stability of fleeting 3-azidoindoles. Chem. Commun. 2021, 57, 13381–13384. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, T.; Abe, T.; Sawada, D. Synthesis of 2-monosubstituted indolin-2-3-ones by cine-substitution of 3-azido-2-methoxyindolines. Org. Chem. Front. 2022, 9, 1897–1903. [Google Scholar] [CrossRef]
- Yamashiro, T.; Tokushige, K.; Abe, T. One-Pot Synthesis of Core Structure of Shewanalline C Using an Azidoindoline. J. Org. Chem. 2023, 88, 3992–3997. [Google Scholar] [CrossRef] [PubMed]
- Aisikaer, A.; Ma, J.; Li, J.; Li, X. Hydroazidation of phenacylideneoxindoles: Synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones via anti-electro addition. Tetrahedron Lett. 2023, 120, 154447. [Google Scholar] [CrossRef]
- Wang, C.-G.; Chong, A.M.L.; Lu, Y.; Liu, X.; Goto, A. Metal-Free Fast Azidation by Using Tetrabutylaamonium Azide: Effective Synthesis of Alkyl Azides and Well-Defined Azido-End Polymethacrylates. Chem. Eur. J. 2019, 25, 13025–13029. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, T.; Abe, T. Switchable synthesis of 3-aminoindolines and 2′-aminoarylacetic acids using Grignard reagents and 3-azido-2-hydroxyindolines. Chem. Commun. 2024, 60, 6615–6618. [Google Scholar] [CrossRef]
- Mortensen, K.T.; Wong, D.S.Y.; King, T.A.; Sore, H.F.; Spring, D.R. Synthesis of sp3-rich heterocyclic frameworks by a divergent synthesis strategy. Org. Biomol. Chem. 2023, 21, 4591–4595. [Google Scholar] [CrossRef]
- Gruber, F.; McDonagh, A.W.; Rose, V.; Hunter, J.; Guasch, L.; Martin, R.E.; Geigle, S.N.; Britton, R. sp3-Rich Heterocycle Synthesis on DNA: Application to DNA-Encoded Library Production. Angew. Chem. Int. Ed. 2024, 63, e202319836. [Google Scholar] [CrossRef]
- Agard, N.J.; Baskin, J.M.; Prescher, J.A.; Lo, A.; Bertozzi, C.R. A Comparative Study of Bioorthogonal Reactions with Azides. ACS Chem. Biol. 2006, 1, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Mitry, M.M.A.; Greco, F.; Osborn, H.M.I. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chem. Eur. J. 2023, 29, e202203942. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, T. Azidoindolines—From Synthesis to Application: A Review. Chemistry 2024, 6, 556-580. https://doi.org/10.3390/chemistry6040034
Abe T. Azidoindolines—From Synthesis to Application: A Review. Chemistry. 2024; 6(4):556-580. https://doi.org/10.3390/chemistry6040034
Chicago/Turabian StyleAbe, Takumi. 2024. "Azidoindolines—From Synthesis to Application: A Review" Chemistry 6, no. 4: 556-580. https://doi.org/10.3390/chemistry6040034
APA StyleAbe, T. (2024). Azidoindolines—From Synthesis to Application: A Review. Chemistry, 6(4), 556-580. https://doi.org/10.3390/chemistry6040034