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Abstract: Azide-containing compounds, organic azides, showcases a variety of reactivities, making
them highly convenient and chameleonic intermediates. An indoline derivative has been proven
to be of great significance in drug discovery due to its sp3-rich property. In this context, it is in-
teresting to perform such vigorous azidation on medicinal-relevant indoles/indolines, resulting in
the production of sp3-rich azidoindolines. The potential biological activity, in combination with
the sp3-rich indoline bearing the azido moiety, makes azidoindolines an attractive synthetic tar-
get for medicinal and synthetic chemists. This review describes recent advances in the synthesis
and application of azidoindolines: (1) iodine-mediated azidations, (2) metal-catalyzed azidations,
(3) electrochemical azidations, (4) photochemical azidations, (5) azidation using a combination of an
oxidant and an azide source, and (6) nucleophilic azidation.
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1. Introduction

Indoles and indolines are privileged structures that are found in natural products
and pharmaceutical agents, exhibiting significant biological activities [1–6]. In particular,
one indoline derivative has been proven to be of great significance in drug discovery due
to its sp3-rich property [7–9]. The construction of the sp3-rich framework needs regio-
and stereoselective methodologies, which are difficult to realize. Therefore, efficient and
divergent syntheses of added-value indolines are a pivotal challenge for medicinal and
organic chemists [10–12].

Azide-containing compounds, organic azides, showcases a variety of reactivities, such
as the Staudinger reaction [13], the aza-Wittig reaction [14], the click reaction [15], and C–H
amination [16], making them highly convenient and chameleonic intermediates. Along
with the recognition of azide radicals as a versatile species and the bloom of catalytic
reactions, many protocols and precursors for azide radicals generated from NaN3, XN3,
TMSN3, and azidoiodinane have been developed [17–19].

In this context, it is interesting to perform a vigorous azidation on medicinal-relevant
indoles/indolines, resulting in the production of sp3-rich azidoindolines. The potential
biological activity, in combination with the sp3-rich indoline bearing the azido moiety,
makes azidoindolines an attractive synthetic target for medicinal and synthetic chemists.
This review describes recent advances in the synthesis and application of azidoindolines:
(1) iodine-mediated azidations, (2) metal-catalyzed azidations, (3) electrochemical azida-
tions, (4) photochemical azidations, (5) azidation using a combination of an oxidant and an
azide source, and (6) nucleophilic azidation.

2. Azidation of Indoles Using Iodine Reagents

In the past decades, diverse methodologies for the dearomatization of indoles have
been developed. However, azides have rarely participated in the dearomatization of
indoles [20,21]. Pioneering work on an azidoindoline synthesis was achieved by Ikeda’s
group in 1975 (Scheme 1A) [22]. By taking advantage of a homolytic cleavage of the
iodine–nitrogen bond, the dearomatized azidation of indoles was accomplished.
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Scheme 1. Early report on direct azidations of indoles using IN3. 

In 1978, the [3 + 2] cycloaddition reaction of trans- or cis-diazidoindolines with acet-
ylene dicarboxylate was reported by the same group (Scheme 1B) [23]. The two examples 
of sp3-rich triazoles construction can be obtained by this protocol. 

In 1976, the Ikeda’s group also found that 3-azidoindolenine participated in the 
switchable synthesis of a quinoxaline and a quinazoline in DMF under reflux conditions 
(Scheme 1C) [24]. The bulky phenyl group may contribute to the formation of 3-az-
idoindolenine through monoazidation at the C3 position of 2-phenylindoles. This IN3 was 
quite unstable and explosive, and it must be used in situ. Thus, a mild protocol is neces-
sary for expanding the scope of azidation of indoles via azide radical generation. 

In 1986, Moriarty et al., reported the direct diazidation of indoles using a combination 
of PhIO and NaN3 (Scheme 2) [25]. The homolytic cleavage of the iodine–nitrogen bond 
of hypervalent iodine PhI(N3)2 gives an azidyl radical and PhIN3• radical, which undergo 

Scheme 1. Early report on direct azidations of indoles using IN3.

In 1978, the [3 + 2] cycloaddition reaction of trans- or cis-diazidoindolines with acety-
lene dicarboxylate was reported by the same group (Scheme 1B) [23]. The two examples of
sp3-rich triazoles construction can be obtained by this protocol.

In 1976, the Ikeda’s group also found that 3-azidoindolenine participated in the
switchable synthesis of a quinoxaline and a quinazoline in DMF under reflux condi-
tions (Scheme 1C) [24]. The bulky phenyl group may contribute to the formation of
3-azidoindolenine through monoazidation at the C3 position of 2-phenylindoles. This IN3
was quite unstable and explosive, and it must be used in situ. Thus, a mild protocol is
necessary for expanding the scope of azidation of indoles via azide radical generation.
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In 1986, Moriarty et al., reported the direct diazidation of indoles using a combination
of PhIO and NaN3 (Scheme 2) [25]. The homolytic cleavage of the iodine–nitrogen bond of
hypervalent iodine PhI(N3)2 gives an azidyl radical and PhIN3

• radical, which undergo
abstractions of hydrogen bonding and azidation. In general, PhI(N3)2 generated from PhIO,
PhI(OAc)2/NaN3, or TMSN3 is highly reactive and unstable [26]. Thus, optimization of the
reaction conditions may occasionally result in an insufficient outcome.
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Over the past decade, hypervalent iodine reagents have been shown to be useful re-
agents to achieve umpolung disconnections [27]. Various nucleophiles can be changed 
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iodonium salts has led to the development of broadly applicable reactions. 

In 2011, applications of more stable indole-based iodonium reagents were introduced 
by Suna and co-workers (Scheme 3) [28]. The azide acted as not only as a group transfer 
reagent but also as a stabilizer against the iodonium reagents. However, the indolylazides 
are also unstable and the reaction should be performed on site and in situ. Consequently, 
a Cu(I)-catalyzed azidation/reduction and azidation/1,3-cycloadition have been con-
ducted in a one-pot operation. 

 
Scheme 3. Direct azidation of indoles through the in situ formation of indole-based iodonium inter-
mediates. 

In 2016, Sudalai found that a simple combination of molecular iodine and NaN3 could 
be used for the direct umpolung azidation of indoles, affording 3-azidoindoles (Scheme 
4) [29]. Reduction and 1,3-dipolar cycloaddition have been conducted. 

Scheme 2. Diazidations of indoles using NaN3 and PhIO.

Over the past decade, hypervalent iodine reagents have been shown to be useful
reagents to achieve umpolung disconnections [27]. Various nucleophiles can be changed
into electrophiles by these iodine reagents. The introduction of reactive yet stable indolyl
iodonium salts has led to the development of broadly applicable reactions.

In 2011, applications of more stable indole-based iodonium reagents were introduced
by Suna and co-workers (Scheme 3) [28]. The azide acted as not only as a group transfer
reagent but also as a stabilizer against the iodonium reagents. However, the indolylazides
are also unstable and the reaction should be performed on site and in situ. Consequently, a
Cu(I)-catalyzed azidation/reduction and azidation/1,3-cycloadition have been conducted
in a one-pot operation.
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Scheme 3. Direct azidation of indoles through the in situ formation of indole-based iodonium
intermediates.

In 2016, Sudalai found that a simple combination of molecular iodine and NaN3
could be used for the direct umpolung azidation of indoles, affording 3-azidoindoles
(Scheme 4) [29]. Reduction and 1,3-dipolar cycloaddition have been conducted.
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Scheme 4. Umpolung direct azidation of indoles using I2 and NaN3. 

In the system of TMSN3, PhI(OAc)2, and Et3N, radical coupling of 3-substituted 2-
oxindoles with an azidyl radical takes place in the absence of a transition metal catalyst 
(Scheme 5) [30]. To promote this transformation, the C3-aryl group plays an important 
role. It is proposed that the azidyl radical generates through a cleavage of the iodine–
nitrogen bond of diazidoiodine(III) [PhI(N3)2], generated in situ. 3-substituted 3-azido-2-
oxindoles participated in the H2/Pd-C reduction and Cu-catalyzed 1,3-dipolar cycloaddi-
tion. 

 
Scheme 5. Direct azidation of indoles using TMSN3. PhI(OAc)2 and Et3N. 

Scheme 4. Umpolung direct azidation of indoles using I2 and NaN3.

In the system of TMSN3, PhI(OAc)2, and Et3N, radical coupling of 3-substituted 2-
oxindoles with an azidyl radical takes place in the absence of a transition metal catalyst
(Scheme 5) [30]. To promote this transformation, the C3-aryl group plays an important role.
It is proposed that the azidyl radical generates through a cleavage of the iodine–nitrogen
bond of diazidoiodine(III) [PhI(N3)2], generated in situ. 3-substituted 3-azido-2-oxindoles
participated in the H2/Pd-C reduction and Cu-catalyzed 1,3-dipolar cycloaddition.
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In the system of NaN3 and I2, the radical coupling of 2-oxindoles with an azide
radical takes place in the absence of a transition metal catalyst (Scheme 6) [31]. The 3,3-
diazido-2-oxindoles showed new reactivities against amine nucleophiles, with a release
of N2, affording quinazolinone derivatives and cyanophenylureas. The structure of a
quinazolinone derivative was determined by using X-ray crystallography (CCDC 1841281).
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In 2023, a metal-free radical coupling of indoles with an azidyl radical and a selenyl
radical was reported (Scheme 7) [32]. 3-alkyl- and aryl selenyl indolines bearing the azide
moieties can be obtained by this protocol. The structure of aryl selenyl indoline was
determined by using X-ray crystallography (CCDC 2058416).
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A possible reaction mechanism was also proposed. First, an azidyl radical is generated
from TMSN3 and PhI(OAc)2. Then, azidyl radical addition at the C2 position of the
indoles occurs, generating a C3 radical. The C3 radical intermediates simultaneously are
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captured by the selenyl radical (generated by homolytic cleavage of RSe-SeR) to afford
2-azido-3-selenylindolines with high diastereoselectivity.

3. Metal-Catalyzed Azidation of Indoles

Transition metals such as Mn, Fe, and Cu have a pivotal role in the radical azidation
process by generating the azide radical or metal–azide species [33–37].

In 2013, the Gade group reported the (EtCO2)2Fe-catalyzed enantioselective azida-
tion of β-ketoesters and oxindoles using azidobenziodate ABDX as an azide transfer
reagent (Scheme 8) [38]. A combination of iron propionate/chiral pincer-type triden-
tate ligand/azidobenziodate gave a high isolated yield with high enantioselectivity. By
subjecting the Cu-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click reaction), 3-azido-
2-oxindoles (90% ee) gave a 94% triazole yield, with 90% ee. Subsequently, the Boc group
was removed by TFA in CH2Cl2, resulting in the isolation of N-H-triazole in a 95% yield
with 90% ee.
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Scheme 8. Iron-catalyzed enantioselective azidation of indoles.

In 2014, Jiao found that a merge of stable hypervalent cyclic iodine reagents (IBA-
N3, Zhdankin reagents) and Cu(acac)2 can be used as a source of azide radicals for the
direct azidation of indoles (Scheme 9A) [39]. This protocol afforded 3-azidoindolenine and
3-azido-2-oxiindoles under mild conditions.
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Scheme 9. (A) Copper-catalyzed oxyazidation of indoles. (B) Possible mechanism for the copper-
catalyzed oxyazidation of indoles. 

The radical mechanism involving the redox system between Zhdankin reagents and 
Cu(acac)2 was also proposed (Scheme 9B). By subjecting the reaction of the obtained 3-
azidoindolines to phenylacetylene, triazole can obtain in a 95% yield. 

Based on the above precedent, an alternative protocol using PhI(OAc)2-NaN3 instead 
of Zhdankin reagents was reported by Hong, Wang, and co-workers (Scheme 10) [40]. The 
reaction mechanism is similar to that proposed in Scheme 8. The obtained 3-az-
idopyrroloindoline was converted to an amine derivative. In addition, the click reaction 
of 3-azidofuroindoline with phenylacetylene provided the triazole-containing furoindo-
line in an 85% yield. 

 
Scheme 10. Copper-catalyzed oxyazidation of indoles using PhI(OAc)2 and NaN3. 

The radical azidation involving the redox system can also participate in a switchable 
synthesis of 3-azidoindoles and 2-azidoindoles (Scheme 11) [41]. A radical less-stabilizing 
group, such as an alkyl or amide at the C3 position of indoles, results in C3 azidation 

Scheme 9. (A) Copper-catalyzed oxyazidation of indoles. (B) Possible mechanism for the copper-
catalyzed oxyazidation of indoles.

The radical mechanism involving the redox system between Zhdankin reagents and
Cu(acac)2 was also proposed (Scheme 9B). By subjecting the reaction of the obtained
3-azidoindolines to phenylacetylene, triazole can obtain in a 95% yield.

Based on the above precedent, an alternative protocol using PhI(OAc)2-NaN3 instead
of Zhdankin reagents was reported by Hong, Wang, and co-workers (Scheme 10) [40]. The re-
action mechanism is similar to that proposed in Scheme 8. The obtained 3-azidopyrroloindoline
was converted to an amine derivative. In addition, the click reaction of 3-azidofuroindoline
with phenylacetylene provided the triazole-containing furoindoline in an 85% yield.
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The radical azidation involving the redox system can also participate in a switchable
synthesis of 3-azidoindoles and 2-azidoindoles (Scheme 11) [41]. A radical less-stabilizing
group, such as an alkyl or amide at the C3 position of indoles, results in C3 azidation
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through a C2 radical intermediate, while an ester or ketone at the C3 position of indoles
leads to 2-azidoindoles through the C3 radical intermediate. All of the obtained products
possess the pharmaceutically important pharmacophore, which may lead to drug discovery.
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In 2018, Ji and co-workers reported the efficient synthesis of 2-arylquinazolin-4-amines
through ring expansion triggered by the 3,3-diazidation of indoles (Scheme 12) [42]. TBPB
(tert-butyl peroxybenzoate) plays an important role in generating the tert-buthoxy radical.
The novel ring rearrangements can be explained, as the cascade process involves C3-
selective diazidation, cyclization, and ring expansion.
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In 2018, Xu and co-workers reported a new iron-catalyzed diazidation of indoles via
the tridentate nitrogen–ligand-promoted activation of peroxyester TBPB as a tert-butoxy
radical source (Scheme 13) [43]. This work revealed that the combination of TMSN3 and an
iron catalyst suppressed the non-productive oxidant decomposition pathway, unlike the
cyclic hypervalent iodine reagent method. iPrOH can promote the generation of an azidyl
radical from TMSN3 by the tert-butoxy radical.
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In 2019, Ji and co-workers reported the copper-catalyzed oxidative hydroxyazidation
of indoles (Scheme 15) [45]. The reaction was initiated by the addition of an azidyl radi-
cal at the C2 position, and subsequent O2-trapping to afford a peroxyradical. Then, the
peroxyradical underwent SET by Cu(I) and protonation by H2O to yield a hydroxyper-
oxy intermediate. Finally, the reduction of the hydroxyperoxy intermediate by triethyl
phosphite P(OEt)3 afforded the 3-hydroxy-2-azidoindolines. The origin of the high trans-
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selectivity is unknown, although this reaction features a broad substrate scope with quite
high regio- and diastereoselectivities.
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Scheme 15. Copper-catalyzed oxidative hydroxyazidation of indoles under O2.

In 2019, Wei, Liu, and co-workers reported the C(sp3)-H azidation of 2-oxindoles
catalyzed by Cu(OAc)2 with TMSN3 in MeCN at 40 ◦C (Scheme 16) [46]. Interestingly,
the reaction pathway involves the addition of an azido radical to the enol tautomer. This
protocol is convenient because of the mild reaction conditions, with a short reaction time
and broad substrate scope that includes biologically important products.
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Scheme 16. Copper-catalyzed azidation of 2-oxindoles.

In 2020, Zhu and co-workers reported the copper-catalyzed 2,3-diazidation of indoles
with the assistance of N1-directing groups (Scheme 17A) [47]. This protocol exhibits
wide functional group compatibility and enables the further synthesis of vicinal diamines,
triazoles, and benzotriazoles (Scheme 17B). The directing group can be removed by sodium
ethoxide in DMSO after the reaction.
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In 2022, Liu and co-workers reported the first manganese-catalyzed site- and enanti-
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azidoindolines allows for the installation of a variety of nitrogen-based functional groups, 
including pharmaceutically relevant scaffolds. 

Scheme 17. (A) Copper-catalyzed 2,3-diazidation of indoles with the assistance of directing groups.
(B) Follow-up chemistry of the copper-catalyzed 2,3-diazidation of indoles with the assistance of
directing groups.

In 2022, Liu and co-workers reported the first manganese-catalyzed site- and enan-
tioselective C(sp3)-H azidation of indolines (Scheme 18) [48]. The obtained optically pure
azidoindolines allows for the installation of a variety of nitrogen-based functional groups,
including pharmaceutically relevant scaffolds.
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4. Electrochemical Azidation of Indoles

The old and new electrochemistry mechanisms are compatible with redox transfor-
mations [49,50]. They offer the use of electrons instead of toxic oxidants and reductants,
and also allow for chemo-selective reactions by changing the electrochemical conditions.
These merits make them attractive and sustainable protocols to substitute for traditional
azidations (Scheme 19). Electrochemical radical generation does not require the use
of oxidants.
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In 2017, the Lin group reported the Earth-abundant manganese-catalyzed electro-
chemical diazidation of alkenes using NaN3 as an azide transfer reagent (Scheme 20) [51].
Among various substrates, they reported one example of the reaction with N-Ts indole,
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affording 2,3-diazidoindoline at a 69% yield, with a high diastereomeric ratio. The mech-
anistic experiments revealed that the metal-mediated azidyl radical transfer enabled a
dual-azidation reaction. In general, an inorganic azide radical is highly reactive and un-
stable, while the reactivity of the metal–azide complexes can be controlled by the reaction
conditions.
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Scheme 20. Manganese-catalyzed electrochemical diazidation of unactivated alkenes.

In 2019, a direct anodic oxidation method of N-substituted indoles was reported by
Vincent and co-workers (Scheme 21A) [52].

The reaction proceeds through the anodic oxidation of indoles into a radical cation
(Scheme 21B). The radical cation undergoes nucleophilic attack by N3

−, yielding the
2,3-diazidoindoles. This protocol does not rely on stoichiometric oxidants and proceeds
smoothly under environmentally benign conditions.

In 2022, a direct anodic oxidation method of the 2-oxindoles was reported by Maulide
and co-workers (Scheme 22) [53]. In similar to Vincent’s work, the reaction proceeds
through the anodic oxidation of 2-oxindoles into a radical cation, which undergoes nucle-
ophilic attack by nucleophiles, yielding the 3-alkoxy-2-oxindoles and 3-diazido-2-oxindoles.
This protocol requires 5 equivalents of TMSN3 as azide transfer reagents.
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catalyst.

In 2022, Wu and co-workers developed a manganese-mediated electrochemical ap-
proach to access 2-azido-spirocyclic indolines (Scheme 23) [54]. An azide-bound Mn(III)
complex promotes the azidative dearomatization of indoles. A redox-active MnBr2 can tune
the reactivity of the azidyl radical species. Synthetic application of the spirocyclic indolines
was performed to demonstrate the synthetic utilities. The click reaction of the spirocyclic
indoline afforded the corresponding 1,2,3-triazole. The azido group was converted into a
phosphoramidate-containing spirocyclic indoline in the presence of triethyl phosphite.

In 2022, Weng and co-workers reported a late-stage functionalization of Trp-containing
peptides by manganese-catalyzed diazidation/cyclization in aqueous buffer solution (Tris-
AcOH) (Scheme 24A) [55]. This methodology provides access to C3-azide-containing
tetrazolo[1,5-a]indole peptides with broad functional group tolerance. Mechanistic experi-
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ments revealed that the diazidation/heterocyclization of Trp-containing peptides proceeds
through a radical pathway rather than the previously known radical cation pathway.

Trp-containing peptides with C3-azide and tetrazole moieties were derivatized to a
series of 1,2,3-triazole peptides by a click reaction of alkynes with azides (Scheme 24B).
BODIPY-derived alkyne was also applicable for the click reaction of C3-azide-containing
tetrazolo[1,5-a]indole peptides.

In 2024, Ren and co-workers reported a C–H functionalization of 2-oxindoles by
manganese-catalyzed azidation in CH3CN/HFIP (Scheme 25) [56]. The cyclic voltammetry
experiments exclude the possibility of the direct oxidation of N3

− into an azide radical. The
azidyl radical Mn(III)-N3 species generated in situ seems to be an azide transfer reagent.
Enantioselective azidation using a Jacobsen-(R,R)-Mn(salen) catalyst was also discovered,
although the enantioselectivities were low (30% ee and 43% ee).
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Scheme 24. (A) Manganese-catalyzed electrochemical diazidation/cyclization of tryptophan-con-
taining peptides. (B) Follow-up chemistry of the C3-azide-containing tetrazolo[1,5-a]indole pep-
tides. 

Trp-containing peptides with C3-azide and tetrazole moieties were derivatized to a 
series of 1,2,3-triazole peptides by a click reaction of alkynes with azides (Scheme 24B). 
BODIPY-derived alkyne was also applicable for the click reaction of C3-azide-containing 
tetrazolo[1,5-a]indole peptides. 

In 2024, Ren and co-workers reported a C–H functionalization of 2-oxindoles by man-
ganese-catalyzed azidation in CH3CN/HFIP (Scheme 25) [56]. The cyclic voltammetry ex-
periments exclude the possibility of the direct oxidation of N3− into an azide radical. The 
azidyl radical Mn(III)-N3 species generated in situ seems to be an azide transfer reagent. 
Enantioselective azidation using a Jacobsen-(R,R)-Mn(salen) catalyst was also discovered, 
although the enantioselectivities were low (30% ee and 43% ee). 

 
Scheme 25. Manganese-catalyzed electrochemical C–H azidation of 2-oxindoles. Asterisk (*) indi-
cates stereocenter. 
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5. Photochemical Azidation of Indoles

The photochemical approach is also old and less-explored due to its complex na-
ture. However, photocatalysis, light-emitting diodes (LEDs), and photoreactors make it a
privileged field. Photochemistry can play a role in the sustainable and environmentally
benign process, with reduced chemical waste. Thus, the photochemical approach has
gained much attention [57,58]. In this section, a direct bifunctionalization of alkenes using
photochemistry is introduced (Scheme 26). The key feature is an efficient generation of an
azidyl radical under visible-light irradiation in the presence or absence of a photocatalyst.
Due to the mild reaction conditions, successive 2nd radical additions by another radical
species can be undertaken.
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In 2020, Xu, Ji, and co-workers reported a visible-light/acridine red-enabled multi-
component cascade from indoles to 2-azidoindolin-3-yl 2-aminobenzoates using TMSN3 
as an azide-transferring reagent (Scheme 27A) [59]. This protocol can merge multiple com-
ponents into one pot to produce sp3-rich, complicated indolines. Interestingly, two types 
of reactions, such as azido-3-hydroxylation/ring-opening, proceed in one pot under visi-
ble-light irradiation. An interesting structure was determined by using X-ray crystallog-
raphy (CCDC 1965932). 
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In 2020, Xu, Ji, and co-workers reported a visible-light/acridine red-enabled multi-
component cascade from indoles to 2-azidoindolin-3-yl 2-aminobenzoates using TMSN3 as
an azide-transferring reagent (Scheme 27A) [59]. This protocol can merge multiple compo-
nents into one pot to produce sp3-rich, complicated indolines. Interestingly, two types of
reactions, such as azido-3-hydroxylation/ring-opening, proceed in one pot under visible-
light irradiation. An interesting structure was determined by using X-ray crystallography
(CCDC 1965932).
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Scheme 27. (A) Organocatalyst-enabled multicomponent cascade of indoles with TMSN3 under 
LED irradiation. (B) Mechanism for multicomponent cascade of indoles with TMSN3 under LED 
irradiation. 

The mechanism of the formation of the products was proposed (Scheme 27B). First, 
the 2-azido-3-hydroperoxyindolines are converted into 2-azido-3-oxindoles A with the as-
sistance of PhSeSePh as a reductant. Next, the 2-azido-3-hydroperoxyindolines are re-
duced to 2-azido-3-hydroxyindolines B by PhSeSePh, which can attack the carbonyl group 
of the intermediate A with the help of Et3N. Finally, the ring opening takes place to afford 
2-azido-indolin-3-yl 2-benzamide derivatives, with a release of HCHO and HN3. 

In 2021, Lu, Wang, and co-workers reported a visible-light-enabled hydroxyazidation 
of indoles using TMSN3 as an azide-transferring reagent and bis(pinacolato)diboron as a 
reductant (Scheme 28) [60]. Surprisingly, the N-pyrimidyl indole substrates can act as a 
self-photocatalyst through excitation by LED irradiation. The excited substrate S* can un-
dergo energy transfers withTMSN3 to generate an azidyl radical. 
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In 2021, Kashyap and co-workers reported a visible-light-enabled azido-oxygenation 
of alkenes using in situ-generated PhI(N3)2 from PhI(OAc)2/TMSN3 as an azide-transfer-
ring reagent and TEMPO as another radical (Scheme 29) [61]. The LED irradiation enables 
a homolytic cleavage of the iodine–nitrogen bond to generate an azide radical. Thus, this 
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LED irradiation. (B) Mechanism for multicomponent cascade of indoles with TMSN3 under LED
irradiation.

The mechanism of the formation of the products was proposed (Scheme 27B). First,
the 2-azido-3-hydroperoxyindolines are converted into 2-azido-3-oxindoles A with the
assistance of PhSeSePh as a reductant. Next, the 2-azido-3-hydroperoxyindolines are
reduced to 2-azido-3-hydroxyindolines B by PhSeSePh, which can attack the carbonyl
group of the intermediate A with the help of Et3N. Finally, the ring opening takes place to
afford 2-azido-indolin-3-yl 2-benzamide derivatives, with a release of HCHO and HN3.

In 2021, Lu, Wang, and co-workers reported a visible-light-enabled hydroxyazidation
of indoles using TMSN3 as an azide-transferring reagent and bis(pinacolato)diboron as
a reductant (Scheme 28) [60]. Surprisingly, the N-pyrimidyl indole substrates can act as
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a self-photocatalyst through excitation by LED irradiation. The excited substrate S* can
undergo energy transfers withTMSN3 to generate an azidyl radical.
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In 2021, Kashyap and co-workers reported a visible-light-enabled azido-oxygenation of
alkenes using in situ-generated PhI(N3)2 from PhI(OAc)2/TMSN3 as an azide-transferring
reagent and TEMPO as another radical (Scheme 29) [61]. The LED irradiation enables a
homolytic cleavage of the iodine–nitrogen bond to generate an azide radical. Thus, this
transformation does not require a photocatalyst. In this work, one example of indoles as a
substrate is presented.
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6. Azidation of Indoles Using a Combination of an Oxidant and an Azide Source

In 2014, Shi and co-workers demonstrated that ceric ammonium nitrate (CAN) can
generate an azide radical from NaN3 in the azidative spirocyclization of 3-substituted
indoles (Scheme 30) [62]. Diazidation at the C2 position of an indole ring was also achieved
in the case of a reaction with N-Boc tether-substituted substrates. The indicated stereochem-
istry was determined by using X-ray analysis (CCDC 1015318). Furthermore, the structure
of the diazide spirocycle was also confirmed by the X-ray analysis (CCDC 1015373).
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7. Nucleophilic Azidation of Indoles

One of the most reliable methods to access alkyl azide is a Finkelstein-type (SN2-
type) nucleophilic substitution of alkyl halide with the highly nucleophilic NaN3 [17].
However, their application to indoline halides has not been reported due to the possibilities
of competition with the elimination reaction powered by the aromatization of indolines.

In 2021, Abe and co-workers reported a concise synthesis of 2-alkoxy-3-azidoindolines
(AZINs) from 2-RO-3-bromoindolines and NaN3 in DMF (Scheme 31) [63]. With the help
of an O–Nβ bonding stabilization (X-ray analysis: CCDC 2107262), an unprecedented
production of cis-2-alkoxy-3-azidoindolines was dominant. The AZINs are a stable and
versatile synthon for the synthesis of 2-monosubstituted 3-oxindoles through a formal
umpolung process [64] and of 2-alkoxy-3-(quinazolin2,4-dione)idolines through the aza-
Wittig reaction/cyclization [65].
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In 2023, Li and co-workers reported the first hydroazidation of phenacylideneoxin-
doles using n-tetrabutylammonium fluoride (TBAF) and TMSN3 (Scheme 32) [66]. In this 
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(BNN3) and TMSF [67]. This BNN can attack the carbonyl group of phenacylideneoxin-
doles, affording the silyl enol ether with the pendant of an azide group. Then, Claisen 
([3.3]-sigamtropic) rearrangement of the allylic azide vinyl silyl ethers results in hydroly-
sis to afford 3-azido-2-oxindoles. 

Very recently, Abe and co-workers reported a switchable synthesis of two different 
medicinally relevant backbones with the merge of Grignard reagents and AZIHY (3-az-
ido-2-hydroxyindolines) (Scheme 33) [68]. The newly designed AZIHY, bearing both in-
doline hemiaminal and an azide functional group, can be harnessed as a novel denitro-
genative cascade. This property enabled the switchable synthesis under a tautomeric con-
trol of hemiaminals. 
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In 2023, Li and co-workers reported the first hydroazidation of phenacylideneoxin-
doles using n-tetrabutylammonium fluoride (TBAF) and TMSN3 (Scheme 32) [66]. In this
transformation, TMSN3 is activated by TBAF, generating n-tetrabutylammonium azide
(BNN3) and TMSF [67]. This BNN can attack the carbonyl group of phenacylideneoxin-
doles, affording the silyl enol ether with the pendant of an azide group. Then, Claisen
([3.3]-sigamtropic) rearrangement of the allylic azide vinyl silyl ethers results in hydrolysis
to afford 3-azido-2-oxindoles.
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Very recently, Abe and co-workers reported a switchable synthesis of two different
medicinally relevant backbones with the merge of Grignard reagents and AZIHY (3-azido-
2-hydroxyindolines) (Scheme 33) [68]. The newly designed AZIHY, bearing both indoline
hemiaminal and an azide functional group, can be harnessed as a novel denitrogena-
tive cascade. This property enabled the switchable synthesis under a tautomeric control
of hemiaminals.
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8. Conclusions

Both organic azides and indole/indolines are privileged motifs in organic and medici-
nal chemistry. This review focused on advances and applications made with the azidation
of indolines and indoles. Recent developments have demonstrated that the azidation of
indoles/indolines have predominantly been discovered under radical technologies, in-
cluding hypervalent iodine, electro-, and photochemistry. There are some drawbacks to
hypervalent iodine: one is the high cost of manufacturing due to its multi-step production
process. After the reaction, iodosobenzene is also produced as a byproduct. The advantages
of methodologies using hypervalent iodine are environmentally friendly chemistry due
to its low toxicity. In this line, the protocols utilizing electro- and photochemistry are
also employ green chemistry as there is no need for any extra oxidants and the simple
set-ups/work-ups.

Surprisingly, traditional approaches such as the SN2 reaction by N3
− and alkyl halides

are quite scarce. Nucleophilic substitution is a straightforward reaction due to the intrinsic
polar match, while the electro- and photochemistry processes require umpolung reactivities.
Thus, they are suitable for the control of stereochemistry depending on the choice of starting
material. Among the control of stereochemistry, the cis-selective synthesis of azidoindolines
is rather limited. It is expected that a stereoselective synthesis will develop through a novel
reaction pathway to expand the unexplored chemical space, leading to unique sp3-rich
heterocycles [69,70].
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Although many synthetic applications of azidoindolines are found, most of them
are related to the reaction of alkyl azides, such as the click reaction and amine synthesis.
There have been a few examples of the bio-orthogonal azidation of tryptophans reported to
date [71,72]. I expect that a variety of bio-orthogonal applications of azidoindolines will
appear in the future.
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Abbreviations

MeCN acetonitrile
Bz benzoyl
DMF N,N-dimethylformamide
TMS trimethylsilyl
Ts p-toluenesulfonyl
DMSO dimethyl sulfoxide
TBS tert-butyldimethylsilyl
ADBX azidodimethylbenziodoxole
IBA 2-iodosobenzoic acid
TFA trifluoroacetic acid
acac acetylacetonate
TBTA tris(benzyltriazolyl)methylamine
SET single electron transfer
TBHP tert-butyl hydroperoxide
TBPB tert-butyl peroxibenzoate
Boc tert-butoxycarbonyl
Troc 2,2,2-trichloroethoxycarbonyl
DG directing group
1,10-phen 1,10-phenanthroline
Cbz benzyloxycarbonyl
LED light emitting diode
PC photocatalyst
HFIP 1,1,1,3,3,3-hexafluoropropan-2-ol
CAN ceric ammonium nitrate
TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
DMA N,N-dimethylacetamide
AZIN 2-alkoxy-3-azidoindoline
TBAF n-tetrabutylammonium fluoride
BNN3 n-tetrabutylammonium azide
AZIHY 3-azido-2-hydroxyindoline
CCDC Cambridge crystallographic data centre
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