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Abstract: Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine), an alkaloid obtained from
marine sponges of the genus Aaptos (Demospongiae, Suberitida, Suberitidae), has attracted signifi-
cant attention as a promising scaffold for the development of antioxidant, antibacterial, and anticancer
agents. This review offers an extensive overview of updated research on aaptamine, focusing on its
multifaceted pharmacological properties. The antioxidant potential of aaptamine reflects its potential
ability for use in the DPPH free radical scavenging assay, for suppressing ROS, and subsequently
deactivating the MAPK and AP-1 signaling pathway. Moreover, it demonstrates notable antibacterial
activity against pathogenic bacteria, including mycobacterial active and dormant states, making it
a potential candidate for combating bacterial infections. Additionally, aaptamine shows promis-
ing anticancer activity by inhibiting cancer cell proliferation, apoptosis induction, and suppressing
tumor growth through various signaling pathways, including the regulation of PTEN/PI3K/Akt
and CDK2/4, and the regulation of cyclin D1/E in cell cycle arrest. The unique chemical structure
of aaptamine offers opportunities for structural modifications aimed at enhancing its antioxidant,
antibacterial, and anticancer activities. The exploration of aaptamine as a scaffold in the development
of novel therapeutic agents offers great promise for addressing various challenges associated with
oxidative stress, bacterial infections, and cancer. This article underscores the potential of aaptamine as
a valuable marine-derived scaffold in the fields of antioxidant, antibacterial, and anticancer therapy.

Keywords: aaptamine; alkaloid; anticancer; antioxidant; drug discovery; marine sponge; pharmacological
properties

1. Introduction

Natural products (NPs) play a vital role in medicine, with many pharmaceuticals
derived from compounds found in nature. These natural products, which include sub-
stances like plants, fungi, bacteria, and marine organisms, have been integral components
of traditional medicinal practices [1]. They serve as an abundant source of potential drugs
and therapeutic agents due to their diverse structural framework and pharmacological
activities [2]. These natural components have emerged as novel drug candidates, particu-
larly in the case of life-threatening diseases which lack effective treatments [3,4]. Despite
the development of synthetic drugs, which tend to be more potent, approximately 60%
of drugs available today originate from natural sources. These natural drugs offer lower
risks of side effects and better absorption rates, making them the preferred choice for
lead structure identification and optimization [5,6]. The advantages of natural products in
medicine include their often well-established safety profiles, lower incidence of adverse
effects compared to synthetic drugs, and the potential for synergistic interactions among
multiple compounds within a natural source. Additionally, NPs provide inspiration for
drug discovery efforts, with scientists continually exploring their chemical diversity and
pharmacological properties to develop novel therapies [3,7,8]. Oceans cover 70% of the
earth and host a vast array of diverse marine life [9,10]. Marine organisms including algae,
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bacteria, fungi, invertebrates, and vertebrates bear an abundant source of compounds
with promising pharmaceutical potential [11,12]. These organisms acquire unique chem-
ical defenses and adaptations to survive in challenging marine environments, making
them promising candidates for new drug discovery and development. Marine-derived
compounds have demonstrated diverse biological activities, including antimicrobial, anti-
inflammatory, anticancer, analgesic, and neuroprotective activities [13–17]. The investiga-
tion of marine-derived NPs began in the 1950s with the discovery of nucleoside derivatives
in marine sponges, Tethya crypta, marking the emergence of promising research areas of
interest [18]. By the 1960s, research on marine products predominantly centered on their
chemical analysis, with fewer biological studies [19,20]. The isolation of prostaglandin
(PG) derivatives from the Caribbean Sea whip (coral), Plexaura homomalla, marked a sig-
nificant milestone in utilizing marine bioactive metabolites [21,22]. The unique structural
frameworks and diverse pharmacological activities of marine compounds have captured
researchers’ interest in describing novel pharmaceutical potentials [7,23]. These investiga-
tions have demonstrated that the marine environment harbors a wealth of new metabolites
with intriguing chemical structures, many of which hold promise to develop multiple
targeted drug candidates [24,25]. Among the plethora of marine invertebrates, sponges
stand out for their substantial production of metabolites, boasting unprecedented structures
and notable activity. Consequently, sponges have been the focal point of natural product
studies for numerous years [26]. Apart from aaptamine, several marine alkaloids, including
Pityriacitrin, Cyclizidine J, Neopetrosins A-D, Fascaplysin, and Lepadin A, have shown
potential anticancer activities. Notably, anticancer agents from marine sources, such as
didemnin B, aplidine, dolastatin-10, bryostatin-1, and ecteinascidin-743 (trabectedin), have
reached clinical trial stages. Aaptamine (1), a natural product isolated from marine sponges,
has garnered significant attention from researchers due to its intriguing chemical structure
and diverse pharmacological properties (Figure 1). This article provides an overview on
the current understanding of aaptamine, including its isolation, structural elucidation,
synthesis, and biological activities. Aaptamine exhibits a broad spectrum of biological
activities against cancer, inflammation, and microorganisms. Moreover, its unique chemical
architecture makes it an attractive target for synthetic efforts aimed at developing analogues
with improved therapeutic properties. The exploration of aaptamine and its derivatives
holds promise to discover new drug candidates for various medical applications including
cancer. This review article has been planned to elaborate on aaptamine as a versatile
therapeutic agent, emphasizing the antioxidant, antibacterial, and anticancer properties
of aaptamine derivatives. Future research should focus on structural modifications and
unexplored molecular targets to develop aaptamine as a promising candidate in drug
discovery and development.
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2. Isolation and Total Synthesis of Aaptamine
2.1. Isolation of Aaptamine

In 1982, Nakamura et al. efficiently isolated aaptamine from the marine sponge A.
aaptos. They prepared a methanolic extract of the sea sponge and fractionated it with
various solvents. The purification of the ethanol soluble fraction was carried out using
column chromatography (CHCl3:MeOH = 8:2). The resulting product underwent three-
time recrystallization with a methanol: acetone solvent system, yielding bright yellow
crystals of aaptamine with a melting point of 110–113 ◦C [27].
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2.2. Total Synthesis of Aaptamine

In 2019, Yaun Gao et al. achieved aaptamine’s total synthesis efficiently. They treated
6,7-dimethoxyisoquinoline with trioxane and (nBu4N)2S2O8, leading to a coupling reaction.
The subsequent hydrolysis with BF3 yielded the corresponding aldehyde. Further steps
involved a Henry reaction and elimination reaction to produce the nitro-alkene, followed
by a palladium-catalyzed reductive cyclization, ultimately resulting in aaptamine synthesis
(Scheme 1) [28].
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3. Biological Activities
3.1. Antioxidant Activities

Exposure to ionizing radiation at the cellular level leads to increase levels of reactive
oxygen species (ROS), including hydroxyl radicals (HO•), hydrogen peroxide (H2O2),
and superoxide anions (O2

•−); this exposure causes oxidative stress and results in the
development of oxidative stress-induced diseases [29–31]. ROS have deleterious effects
on cells, primarily targeting macromolecules such as DNA, proteins, and lipids. At lower
concentrations, ROS function as intercellular signaling messengers. However, at higher
levels, ROS can induce oxidative stress, resulting in damage to cellular structures and
functions. This oxidative stress is associated with various diseases, including cancer, inflam-
mation, Alzheimer’s disease, Parkinson’s disease, and cardiovascular diseases [29,31–33].
Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-
S-transferase (GST), and reduced glutathione (GSH) represent endogenous mechanisms
crucial for preserving cellular redox balance. Exogenous antioxidants, such as vitamins
A, C, and E neutralize the effect of ROS generated from various sources [34,35]. In 2009,
Utkina et al. evaluated compounds 1 (IC50 18 µM) and 2 (IC50 16 µM) for their ability to trap
DPPH radicals, reduce the Folin–Ciocalteau reagent (FCR), and inhibit peroxide radical-
induced linoleic acid (LA) oxidation. They reacted strongly with DPPH, comparable to
trolox (IC50 16 µM), and showed a high FCR reducing ability (GAE 0.50 and 0.52 mmol/L)
compared to trolox (GAE 0.70 mmol/L). The inhibition of LA oxidation by compounds
1 and 2 (0.91 µm/min and 0.78 µm/min, respectively) was comparable to ionol (BHT)
at 0.84 µm/min [36]. The correlation between number and hydroxyl (OH) functionality
and antioxidant potential was established by Takamatus et al. in 2003 [37]. Aaptamine
and isoaaptamine displayed antioxidant potential (DPPH), while compounds remained
inactive towards Dichloro-dihydro-fluorescein diacetate (DCFH-DA), with IC50 > 55 µM
compared to ascorbic acid IC50 9.7 µM. The antioxidant potential of aaptamine depends
on the quenching ability and subsequent penetration to cellular membranes by using the
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2′7′-dichlorodihydrofluorescein diacetate cellular-based assay [37]. Aaptamine (10 µM)
can increase levels of antioxidant enzymes such as CAT (71.87%), SOD (26.2%), and GPx
(95.43%) as compared to a UVB control. Aaptamine (1, 5 or 10 µM) can suppress ROS, the
subsequent deactivation of mitogen-activated protein kinases (MAPKs) and the activator
protein-1 (AP-1) signaling pathway [38]. Aaptamine (10 µM) decreases pro-inflammatory
cytokines including cyclooxygenase-2 (COX-2) (518.75%), tumor necrosis factor-α (TNF-α)
(665.57%), interleukin-1β (IL-1β) (579.66%), and nuclear factor-kappa B (NF-κB) subunits
(453.33%), and p65 (352.89%) in UVB-irradiated human keratinocytes (Figure 2).
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3.2. Antimicrobial Activity

Tuberculosis (TB) is a prevalent cause of mortality and is linked with HIV-positive
candidates, with millions of new TB cases and deaths every year [39–41]. It is difficult to
eradicate non-replicating persistent Mycobacterium tuberculosis (Mtb), and the development
of dormancy requires a 6-month treatment regimen [42,43]. Therefore, there is still a sig-
nificant demand for the development of new anti-mycobacterial compounds which are
effective against both active and dormant tubercular states. Among all the screened test
compounds (Figure 3), 3-(phenethylamino)demethyl(oxy)aaptamine (5) exhibited potential
anti-mycobacterium bovis BCG activity with an MIC value of 0.75 µg/mL, while the refer-
ence compound, isoniazid, showed an MIC value of 0.05 µg/mL under aerobic conditions
(Table 1) (Scheme 2) [44]. Compound 1 showed potential towards M. tuberculosis H37Rv
strains, with the MIC value ranging from 0.5 to 2.0 µg/mL. The insertion of rifluoromethyl
diazirine as a probe moiety in the 3-(phenethylamino)demethyl(oxy)aaptamine (5) product
retains equivalent anti-mycobacterium activity compared to the parent compound 5 [45].
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(a) HCO2H, 175 ◦C; (b) POCl3, toluene, 95 ◦C; (c) 48% HBr, 95 ◦C, 46% (3 steps); (d) 40% HNO3,
NaNO2, EtOH, −15 ◦C to 0 ◦C, 59%; (e) monoethyl malonate, reflux, 89%; (f) H2, Pd-C, AcOH, 71%;
(g) Boc2O, CHCl3, reflux; (h) NaOMe, MeOH-CH2Cl2, 88% (2 steps); (i) BnBr, K2CO3; (j) Boc2O,
Et3N, DMAP, CHCl3, reflux, (89%); (k) KHMDS, trisylazide, −78 ◦C, then AcOH, 0 ◦C, 70%; (l) Zn,
NH4HCO2, CH2Cl2-MeOH; (m) PhCH2COCl, pyridine; (n) TFA, CH2Cl2, 46% (3 steps); (o) H2, Pd-C,
THF-MeOH, 80%; (p) (i) BH3·THF, THF, 45 ◦C, (ii) 5% HCl, THF; (iii) O2, 20% TFA, 85 ◦C, 45%.
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Table 1. MICs of aaptamines against M. smegmatis and M. bovis BCG under aerobic and hypoxic
conditions. Adapted with permission from Ref. [44]. 2020, Elsevier.

Compounds
MICs (µg/mL)

M. smegmatis M. bovis BCG
Aerobic Hypoxic Aerobic Hypoxic

1 100 200 200 200
2 6.25 12.5 100 100
3 25 6.25 200 200
4 12.5 6.25 0.75 0.75
5 25 6.25 >200 >200
6 25 12.5 100 100
7 6.25 1.5 50 25
8 6.25 1.5 200 100
9 25 6.25 25 25

Isoniazid 2.5 25 0.05 >200

Mukomura et al. have synthesized several quinolone derivatives of aaptamine and
observed that 3-(phenethylamino)demethyl(oxy)aaptamine compound 5 showed potential
to develop potential anti-mycobacterial agents (Figure 4) (Table 2) [46]. The structure activ-
ity relationship (SAR) study indicates that the quinoline ring and the π-electron density
over the aromatic ring is essential for anti-mycobacterial potential. Anti-mycobacterial
activity trends were observed in the sequence of 2-naphthyl > 2-thienyl > phenyl > cyclo-
hexyl > methyl. In brief, the N-(2-arylethyl) quinolin-3-amine moiety showed a promising
framework for anti-mycobacterial candidates (Figure 5).

Table 2. Anti-mycobacterial activity and cytotoxicity of PDOA analogues [46].

Compound MIC (Aerobic) 1 MIC (Hypoxic) 1 Cytotoxicity 2

5 1.56 1.56 1.36
22 6.25 50 18
23 100 50 8.1
24 200 200 >100
25 100 >200 <1.0
26 25 50 <1.0
27 >200 >200 >100
28 100 100 4.9
29 6.25 50 16
30 100 100 18
31 50 100 11
32 50 100 15
33 100 >200 11
34 6.25 12.5 13
35 6.25 50 14
36 >200 >200 53
37 100 200 11.9

Isoniazid 0.39 >200 -
1 MIC against M. bovis BCG (µM) under respective conditions; 2 IC50 against HUVECs (µM).

Hypoxia is recognized as a significant factor that triggers a state of non-replicating
persistence in tubercle bacilli. The depletion of oxygen initiates a dormancy response in TB,
including resistance to isoniazid, in Mycobacterial bacilli [46,47]. In active aerobic growth
conditions, compounds 41, 42, and 43 exhibited strong antimicrobial effects, displaying MIC
values of 6.25 µg/mL (aerobic environment), while the reference isoniazid showed an MIC
value of 2.5 µg/mL against M. smegmatis, and it moves to 25 µg/mL in a 0.2% O2 containing
N2 atmosphere (Figure 6) (Table 3). The results indicated that under active growing
conditions, the presence of carbonyl functionality at position (C-3 or 9) imparts incremental
potential against M. smegmatis. Compounds 40, 41, 42, and 44 displayed antimicrobial
efficacies towards M. smegmatis (dormancy-induced), with MIC values of 6.25, 6.25, 1.5, and
1.5 µg/mL, respectively. In aerobic and O2 deficient conditions, compound 41 (MIC value:
6.25 µg/mL) and 42 (MIC value: 1.25 µg/mL) demonstrated the highest potency along with
selectivity [48]. In 2011, Takahashi et al. synthesized bromoindole derivatives of aaptamine.
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Amongst these bromoindole derivatives, nakijinamines C (45) and E (46) containing a 1H-
oxazolo[4′,5′:4,5]benzo[1,2,3-de][1,6]naphthyridine ring system (Figure 7) demonstrated
potential towards A. niger (MIC value of 16 µg/mL) [49]. Isoaaptamine inhibited Sortase A
(SrtA) and enhanced virulence in S. aureus (IC50 value: 3.7 ± 0.2 µg/mL) [50].
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3.3. Anticancer Activity

Cyclins and cyclin-dependent kinases (CDKs) play pivotal roles in governing the
progression of the cell cycle [51,52]. Cell progression via the G1 phase is crucially regulated
by cyclin D1, which functions as a subunit component of Cdk4 and Cdk6 [53,54]. Cyclin E
binds to cdk2, forming a kinase complex necessary for the G1 to S phase transition. Cyclin
A, when paired with Cdk2 or Cdk1, regulates the S phase, whereas pairing the cyclin B
complex to Cdk1 regulates the M phase [55]. Aberrations in cell cycle checkpoints along
with the overexpression of growth-promoting factors including cyclin D1 and cyclin E
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results in tumor genesis [56,57]. Aoki et al. found that aaptamine inhibits growth in human
osteosarcoma MG63 cells by activating the p21 promoter, leading to cell cycle arrest at the
G2/M phase, independent of p53 [58]. Jin et al. evaluated the anti-proliferative efficacy of
aaptamine on K562 cells, a type of chronic myeloid leukemia (CML) cells [59]. Aoki et al.
conducted the first isolation and structural elucidation of aaptamine from A. suberitoides
from Java, Indonesia [58]. The isolated compound exhibited significant anti-proliferative
activity against MG63 cells by modulating the p21 promoter, leading to cell cycle arrest at
the G2/M phase independently of p53. Additionally, aaptamine induced G2/M phase cell
cycle arrest through the stimulation of p21 gene expression at a concentration of 10 mM.
In lung and prostate cancer cells, aaptamine demonstrated GI50 values of 7 and 10 µM,
respectively. Li et al. (2015) demonstrated aaptamine’s potential against hepatocellular car-
cinoma HepG2 and LM3 cells in vitro and in subcutaneous xenograft models in vivo [60].
Their findings indicated that cell cycle arrest was associated with the reduced expression
of CDK2 and SOX9, along with enhanced p21 levels due to inhibitory activity on the
CDK2 kinase. The phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling
pathway regulates numerous cellular functions such as cell cycle regulation, growth, and
proliferation by activating downstream effector molecules [61,62]. The activation of the
PI3K/Akt pathway contributes to malignant transformation and resistance to apoptosis
induced by conventional anticancer therapies [63,64]. The inhibition of the PI3K/AKT
pathway can disrupt tumor cell proliferation and growth, making them more susceptible
to programmed cell death. mTOR, a key component of the PTEN/PI3K/AKT pathway, is
frequently disrupted in cancer cells [65,66]. The simultaneous suppression of mTOR and
the PTEN/PI3K/AKT pathway is proposed as an effective strategy against cancer [67,68].
Lung cancer has gained notoriety for being known worldwide as an aggressive form of
cancer and causing cancer-related deaths [69,70]. Lung cancer continues to hold its po-
sition as the most aggressive form of malignant tumor, with low survival rates [71–73].
The PI3K/AKT/GSK3β signaling pathway and its downstream regulation is one of most
promising targets of cancer management. GSK3β, a key player in cellular growth regula-
tion and tumorigenesis, is phosphorylated at the Ser9 residue by various protein kinases
including AKT, MAPK/ERK, and PKA pathways, promoting cellular survival [74–78]. The
activation of the PI3K/AKT pathways regulates growth, survival, and cellular metabolism,
with AKT phosphorylation at Ser473 and Thr308 leading to GSK3β phosphorylation at
Ser9 [79,80]. Key regulators of cell cycle progression, including CDK2/4 and cyclin D1/E,
are modulated by GSK3β, which is crucial for G1 phase progression and stability [81].
Gong et al. observed the potential of aaptamine against non-small cell lung carcinoma
(NSCLC) proliferation and progression in A549 and H1299 cells [82]. Aaptamine inhibited
NSCLC A549 cell (IC50: 13.91 µg/mL) and H1299 cell (IC50: 10.47 µg/mL) proliferation,
arresting G1 phase cell cycle progression by targeting CDK2/4 and cyclin D1/E. Further-
more, aaptamine arrested G1 phase cell cycle progression by targeting key regulators of
cell cycle progression, namely CDK2/4 and cyclin D1/E. A Western blot analysis revealed
reduced levels of MMP-7 and -9 proteins alongside the upregulation of cleaved-PARP and
cleaved-caspase 3 expression. Additionally, aaptamine suppressed the PI3K/AKT/GSK3β
signaling pathway by degrading phosphorylated AKT and GSK3β specifically. Trang et al.
reported that demethyl(oxy)aaptamine exhibited anticancer potential over lung carcinoma
(SK-LU-1, IC50: 9.2 ± 1.0 µM), breast carcinoma (MCF-7, IC50: 7.8 ± 0.6 µM), hepatocellular
carcinoma (HepG2, IC50: 8.4 ± 0.8 µM), and melanoma (SK-Mel-2, IC50: 7.7 ± 0.8 µM) [83].
In 2009, Shaari K et al. observed that both 3-(phenethylamino)demethyl(oxy)aaptamine (47)
and 3-(isopentylamino)demethyl(oxy)aaptamine (48) inhibited T-lymphoblastic leukemia
(CEM-SS), with IC50 values of 5.32 and 6.73 µg/mL, respectively, compared to aaptamine
(IC50 15.03 µg/mL) (Figure 8). These findings suggest that substitution at the C-3 position
enhances cytotoxic effects [83].
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Stuhldreier et al. examined the impact of two sponge-derived alkaloids, aaptamine
and aeroplysinin-1 (49) over acute myeloid leukemia (AML) cells (Figure 9). They found
that the viability of AML cells decreased significantly, with an IC50 value ranging from 10
to 20 µM. Moreover, they observed increased levels of p21 and p16 expression, decreased
levels of p-chk-2 phosphorylation expression, and a noticeable cellular accumulation of the
S phase of the cell cycle [84].
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Pham et al. screened several aaptamine derivatives (Figure 10) over the L5178Y cell
line (murine lymphoma). Compound 55 exhibited a notable cytotoxic potential with an
IC50: 0.9 µM, compared to the reference kahalalide F (IC50: 4.3 µM). Compound 52 showed
comparable efficacy with an IC50 of 5.5 µM (Table 4) [85].
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Table 4. Cytotoxic activities of compounds 50–57. Adapted with permission from Ref. [85]. 2013,
American Chemical Society.

Compound L5178Y Growth Inhibition in
% (at 10 µg/mL) IC50 (µM)

50 0.0 n.d. a

51 38.6 n.d. a

52 93.7 5.5
53 64.4 n.d. a

54 100.0 8.3
55 100.0 0.9
56 51.2 n.d. a

57 98.7 13.5
Kahalalide F b 4.3

a n.d. = not determined. b Positive control.

Aoki et al. noted that aaptamine could upregulate p21 promoter expression and induce
G2/M phase cell cycle arrest in human osteosarcoma MG63 cells (MG63luc+), independent
of p53. Aaptamine (1), isoaaptamine (2), and demethylaaptamine (58) were reported as
potential inhibitors of proteasomes (Figure 11). These compounds inhibited chymotrypsin
(IC50: 1.6 to 4.6 µg/mL) and caspase-like activities without affecting trypsin-like activity,
and exhibited cytotoxic effects against HeLa cells, though their proteasome inhibition
potency did not correlate with cytotoxicity [58].
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In 2018, Wu et al. demonstrated that isoaaptamine displayed significant cytotoxic
effects against T-47D cells (breast cancer), inducing apoptosis through DNA ladder forma-
tion, caspase-7 activation, XIAP inhibition, and PARP cleavage, achieving up to 90% cell
death by impairing the Nrf2/p62 pathway. Isoaaptamine also affected cleaved caspases-3
and -7, PARP, p62, LC3-II, XIAP, p-Akt, and mTOR [86]. Dyshlovoy et al. found that
aaptamine inhibited the proliferation of NT2 human embryonal carcinoma cells (IC50
of 50 µM) and induced the G2/M phase cell cycle arrest [87]. Bis-aaptamine alkaloids,
named suberitines A-D (Figure 12), were discovered, featuring two aaptamine skeleton
units. These compounds contain 8,9,9-trimethoxy-9H-benzo[de][1,6]-naphthyridine and
demethyl(oxy)-aaptamine, 1,6-naphthyridine rings linked via the C-3-C-3′ or C-3-C-6′

σ-bond. Compounds 59 (IC50: 1.8 µM) and 62 (IC50: 3.5 µM) exhibited significant cytotoxic
activity against P388 cell lines [88].

Pettit et al. reported the synthetic transformation of aaptamine to isoaaptamine (2),
9-demethylaaptamine (63), and 4-methylaaptamine (64) and their anticancer and antibacte-
rial activity (Figure 13). The SAR study indicated that presence of the C-9 methoxy group
and N-1 methylation are essential for their anticancer and antibacterial activity. Again,
Pettit et al. reported that isoaaptamine (2) showed better anticancer activity than aaptamine
and demethyloxy aaptamine. The instability of the potential isoaaptamine can be improved
with a conversion to the phosphate prodrug hystatin 1 (63), but the anticancer and antimi-
crobial activity profile of hystatin 1 (63) was inferior to the parent compound. The insertion
of a bulky group at the N-1 and N-4 position improved activity. 4-methylaaptamine (64)
inhibited growth in the S phase of cell cycle [89].
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He et al. (2022) screened aaptamine and its analogues (Figure 14) for cytotoxicity
against H1299, SCG7901, H520, SW680, and CNE-2 cancer cells. Compounds 67–69 exhib-
ited cytotoxicity over H1299 and H520 cells (IC50: 12.9 to 20.6 µg/mL). Compounds 67–69
(Figure 14) demonstrated potent inhibitory activity against CDK2, with IC50 values of 14.3,
3.0, and 6.0 µg/mL, respectively. Moreover, compounds 67–69 exhibited significant G1
arrests in H1299 cells. Compound 67 also efficiently bound to the CDK2 protein, protecting
it from degradation [90].
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6 (IC50: 0.6 µM). Furthermore, compound 70 demonstrated cytotoxic effects on various
lymphoma cell lines, such as Ramos, Raji, WSU-DLCL2, and SU-DHL-4 cells [91]. Shen et al.
synthesized various 9-O-acylisoaaptamine and 4-N-acyl-dihydroaaptamine derivatives,
which were then assessed for their anti-tumor activity against murine P-388 cells and
various human tumor cell lines such as KB16, A549, and HT-29. All compounds exhibited
a greater sensitivity towards P-388 cells [92]. Shubina et al. (2010) found that 2,3-dihydro-
2,3-dioxoaaptamine, 6-(N-morpholinyl)-4,5-dihydro-5-oxo-demethyl(oxy) aaptamine, and
3-(methylamino) dimethyl (oxy) aaptamine have the potential to trigger apoptosis in THP-1
cells (human leukemia) [93].
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3.4. Miscellaneous Activity

Depression ranks in the top four of the major contributors among the globally recog-
nized burdens of disease and one of the top most prevalent psychiatric disorders, impacting
approximately 120 million individuals globally. Natural compounds found in marine
sources, including peptides, alkaloids, polyphenols, diterpenes, glycosides, vitamins, and
minerals, have been under investigation for their therapeutic potential for treating depres-
sion [94,95]. In a forced swim test, 5,6-dibromo-N,N-dimethyltryptamine 71 (Figure 16)
showed significant antidepressant activity [96].
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In 1984, Ohizu et al. isolated hetero-aromatic compounds (Figure 17) from the sea
sponge A. aaptos and assessed them for their potential as inhibitors of the α-adrenoceptor
in vascular smooth muscles [97]. Their investigation revealed that biological activity
requires the presence of a C-11 methyl group. Additionally, the reduction of aaptamine to
dihydroaaptamine significantly diminishes the compound’s effectiveness. Cholinesterase
inhibitors play an important role in neurological conditions such as dementia, Alzheimer’s
disease, myasthenia gravis, and glaucoma. Marine organisms spanning from algae to
ascidians showed potential anti-cholinesterase activity [98,99]. Miao et al. observed that
aaptamine has the potential to display dual-targeted AChE and BuChE inhibitors for
AD treatment via binding with PAS and CAS sites [100]. Sung et al. documented that the
neuropathic pain management potential of aaptamine was a result of its delta-opioid agonist
properties. The intrathecal administration of aaptamine effectively mitigated chronic
constriction injury (CCI)-induced nociceptive sensitization, allodynia, and hyperalgesia.
Furthermore, aaptamine notably decreased the expression of vascular endothelial growth
factor (VEGF), the cluster of differentiation 31 (CD31), and LDHA induced by CCI in
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the spinal cord [101]. Aaptamine exhibits potent effects on specific G-protein coupled
receptors (GPCRs), including antagonistic activity on the α-adrenoreceptor (ADRA2C, IC50:
11.9 µM), β-adrenoreceptor (ADRB2, IC50: 0.20 µM), and dopamine receptor D4 (DRD4,
IC50: 6.9 µM). Furthermore, it demonstrates agonistic effects on certain chemokine receptors
either independently (CCR1, EC50: 11.8 µM; CXCR7, EC50: 6.2 µM) or as an enhancer of
agonist activity (CCR3, EC50: 16.2 µM; CXCR3, EC50: 31.8 µM) [102–104].
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4. Conclusions

In summary, aaptamine and its derivatives showed a wide range of pharmacological
activities including anticancer, antioxidant, antimicrobial, and anti-neurological disorder
activities, etc. The key findings from the study of aaptamine include its potential to inhibit
cancer cell proliferation, induce apoptosis, and suppress tumor growth through various
signaling pathways, including PTEN/PI3K/Akt and CDK2/4 and cyclin D1/E regulation
in cell cycle arrest. Its antioxidant potential is evident in its ability to scavenge free radicals
in DPPH assays, suppress ROS, and deactivate the MAPK and AP-1 signaling pathways.
Aaptamine also shows notable antibacterial activity against pathogenic bacteria, including
active and dormant mycobacterial states, making it a promising candidate for combat-
ing bacterial infections. Presently, the biological activities and structural optimization of
aaptamine have not been extensively explored. There is still a great need for researchers
to explore structural modifications and to establish aaptamine as a multi-targeted entity.
Future research should explore additional molecular targets, conduct extensive preclinical
studies to evaluate the efficacy and safety of aaptamine in animal models, assess its syner-
gistic effects in multi-drug regimens, and test its effectiveness against a broad spectrum
of resistant pathogens. Apart from challenges associated with drug development and
approval, aaptamine could have a significant impact on public health if its anticancer, an-
tioxidant, and antimicrobial properties are effectively harnessed and translated for clinical
applications. Based on the literature reviews, and with the possibility of diverse struc-
tural modifications in aaptamine and its analogues, aaptamine can be used for preparing
anti-tumor drugs (especially in cases of lung cancer) as well as anti-fungal drugs.
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98. Moodie, L.W.K.; Sepčić, K.; Turk, T.; Frangež, R.; Svenson, J. Natural cholinesterase inhibitors from marine organisms. Nat. Prod.
Rep. 2019, 36, 1053–1092. [CrossRef] [PubMed]

99. Lins Alves, L.K.; Cechinel Filho, V.; de Souza, R.L.R.; Furtado-Alle, L. BChE inhibitors from marine organisms—A review. Chem.
Biol. Interact. 2022, 367, 110136. [CrossRef] [PubMed]

100. Miao, S.; He, Q.; Li, C.; Wu, Y.; Liu, M.; Chen, Y.; Qi, S.; Gong, K. Aaptamine—A dual acetyl—And butyrylcholinesterase inhibitor
as potential anti-Alzheimer’s disease agent. Pharm. Biol. 2022, 60, 1502–1510. [CrossRef] [PubMed]

101. Sung, C.S.; Cheng, H.J.; Chen, N.F.; Tang, S.H.; Kuo, H.M.; Sung, P.J.; Chen, W.F.; Wen, Z.H. Antinociceptive effects of aaptamine,
a sponge component, on peripheral neuropathy in rats. Mar. Drugs 2023, 21, 113. [CrossRef] [PubMed]

102. Luyao, H.; Luesch, H.; Uy, M. GPCR pharmacological profiling of aaptamine from the Philippine sponge Stylissa sp. extends its
therapeutic potential for noncommunicable diseases. Molecules 2021, 26, 5618. [CrossRef] [PubMed]

103. Carroll, A.R.; Copp, B.R.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122. [CrossRef] [PubMed]
104. Chabowska, G.; Barg, E.; Wójcicka, A. Biological Activity of Naturally Derived Naphthyridines. Molecules 2021, 26, 4324.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jprot.2013.11.009
https://www.ncbi.nlm.nih.gov/pubmed/24269226
https://doi.org/10.1021/ol3004589
https://www.ncbi.nlm.nih.gov/pubmed/22472093
https://doi.org/10.1021/jo0300486
https://www.ncbi.nlm.nih.gov/pubmed/15049616
https://doi.org/10.1080/14786419.2021.2024533
https://www.ncbi.nlm.nih.gov/pubmed/35007168
https://doi.org/10.1021/acs.jnatprod.0c00769
https://www.ncbi.nlm.nih.gov/pubmed/33170001
https://doi.org/10.1021/np990156g
https://www.ncbi.nlm.nih.gov/pubmed/10514310
https://doi.org/10.1177/1934578X1000501208
https://www.ncbi.nlm.nih.gov/pubmed/21299112
https://doi.org/10.2174/1871524923666230825105035
https://www.ncbi.nlm.nih.gov/pubmed/37622698
https://doi.org/10.3390/md15080248
https://www.ncbi.nlm.nih.gov/pubmed/28792478
https://doi.org/10.1016/j.pbb.2007.10.021
https://www.ncbi.nlm.nih.gov/pubmed/18037479
https://doi.org/10.1111/j.2042-7158.1984.tb04876.x
https://www.ncbi.nlm.nih.gov/pubmed/6150989
https://doi.org/10.1039/C9NP00010K
https://www.ncbi.nlm.nih.gov/pubmed/30924818
https://doi.org/10.1016/j.cbi.2022.110136
https://www.ncbi.nlm.nih.gov/pubmed/36096160
https://doi.org/10.1080/13880209.2022.2102657
https://www.ncbi.nlm.nih.gov/pubmed/35968601
https://doi.org/10.3390/md21020113
https://www.ncbi.nlm.nih.gov/pubmed/36827154
https://doi.org/10.3390/molecules26185618
https://www.ncbi.nlm.nih.gov/pubmed/34577088
https://doi.org/10.1039/C8NP00092A
https://www.ncbi.nlm.nih.gov/pubmed/30663727
https://doi.org/10.3390/molecules26144324
https://www.ncbi.nlm.nih.gov/pubmed/34299599

	Introduction 
	Isolation and Total Synthesis of Aaptamine 
	Isolation of Aaptamine 
	Total Synthesis of Aaptamine 

	Biological Activities 
	Antioxidant Activities 
	Antimicrobial Activity 
	Anticancer Activity 
	Miscellaneous Activity 

	Conclusions 
	References

