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Abstract: The synthesis of zeolites from natural aluminosilicate minerals has drawn extensive
attention due to its significant utility in greening the zeolite manufacturing process. In this study, pure-
phase NaX zeolite was synthesized via a low-temperature hydrothermal method, utilizing natural,
low-quality attapulgite clay as the raw material. Acidified clay was fully activated through alkali
fusion at 200 ◦C, and the impact of alkali fusion temperature, H2O/Na2O ratio, aging temperature,
and crystallization time on the resulting crystalline NaX zeolite was investigated. The optimal
conditions for obtaining pure NaX zeolite were determined to be alkali melting at 200 ◦C for 4 h, an
H2O/Na2O ratio of 50, aging at 40 ◦C, and a crystallization period of 11 h at 90 ◦C. With a large BET
surface area of 328.43 m2/g, the obtained NaX zeolite was used to adsorb Pb2+ from wastewater
with a removal rate of 95%. This research provides a valuable method for the extensive and efficient
utilization of low-grade natural attapulgite clay. Moreover, this is the first report on the synthesis of
pure-phase NaX zeolite using only low-quality natural attapulgite clay as raw material through an
atmospheric pressure water bath method.
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1. Introduction

With the development of modern economy and industrial technology, heavy metal
pollution has become a major environmental concern. Combating the pollution of heavy
metals has become a hotspot of concern. Among them, Pb2+ is a common heavy metal
pollutant, mainly from smelting, electroplating, storage batteries, paints and pigments,
and other industries that produce wastewater. It is extremely important to prevent it
from entering the human body and causing more harm after enrichment through the food
chain [1,2]. Methods for treating lead-containing wastewater include chemical precip-
itation, ion exchange, electrolysis, membrane separation, etc., but all of them have the
disadvantage of high treatment costs and complex processes. The adsorption method
has been widely used due to its simple process, reusable adsorbent materials, and fast
adsorption rate [3]. It is of great practical significance to develop low-cost and efficient
adsorbents. Common adsorption materials for Pb2+ include activated carbon, ion exchange
resins, biosorbents, metal–organic framework materials, and molecular sieves. Among
these, molecular sieves have the advantages of higher selectivity, stronger renewability,
lower cost, larger adsorption capacity, being easy to operate and manage, and being conve-
nient for large-scale application. Therefore, it has broad application prospects in the field
of wastewater treatment through the synergistic effect of molecular sieve effect and ion
exchange effect.

Zeolite X has a unique three-dimensional pore structure, large specific surface area,
and pore size [4,5], making it widely used in fields such as gas separation [6], water treat-
ment [7], carbon dioxide capture [8], and catalyst industry [9]. At present, zeolite X is
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mainly synthesized by the hydrothermal method with caustic soda, aluminum hydroxide,
and water glass as raw materials, which has high production costs and pollution. Natural
clay material has become an alternative material for zeolite synthesis due to abundant
reserves, good performance, low cost, and no pollution. Kaolinite [10–13], illite [14–17],
bentonite [18–20], diatomite [21–24], and coal fly ash [25–28] have been used for synthesiz-
ing zeolites, achieving a certain degree of green sourcing of raw materials and a reduction
in the cost of raw materials.

Attapulgite clay minerals (ATP) are kinds of natural nanoscale water-rich magnesium-
aluminum silicates with large reserves, low cost, and abundant pore channels, which
are hot spots in the development and utilization of silicate minerals [29–31]. China has
abundant and inexpensive ATP reserves, with more than 1 billion tons of clay reserves
in Gansu Province alone, accounting for more than 74% of the world’s proven reserves.
The clays in this region are derived from clastic clay minerals in a lake environment with
a high impurity content and low grade, making it difficult to achieve high value-added
utilization [32–34]. Therefore, the development and utilization of low-grade clay have
become a difficult problem for researchers.

In this work, we report the synthesis of pure-phase NaX zeolite by a simple low-
temperature hydrothermal method using alkali fusion-activated low-grade natural atta-
pulgite clay as raw material. The effects of H2O/Na2O ratio, crystallization time, aging
temperature, and crystallization temperature on the crystalline products were systemati-
cally investigated. The crystal structure, surface morphology, pore structure, and surface
properties of the synthesized products were characterized by XRD, SEM, BET, and FTIR.
The clay-based NaX zeolite obtained then was used to treat Pb2+-containing wastewater,
and the effects of pH, initial concentration, adsorbent dosage, and effect of contact time on
the removal rate of Pb2+ were investigated.

2. Experimental
2.1. Pretreatment Process of Natural Attapulgite Clay

The attapulgite clay utilized in this study was sourced from Zhengbei Mountain, Linze,
China. The clay was crushed and then sieved through a 100-mesh sieve. The obtained
sample was purified with the dispersant sodium hexametaphosphate to remove most of the
quartz impurities. The sample was later acid-activated using hydrochloric acid of 4 mol/L
to remove additional impurity components such as calcite from the clay. Analytically pure
hydrochloric acid, sodium hydroxide, and sodium hexametaphosphate were procured
from Sinopharm Reagent Co, Shanghai, China. Deionized water was prepared in-house.

2.2. Synthesis of NaX Zeolite

NaX zeolite samples were synthesized via a hydrothermal method following the alkali
melting of pretreated natural attapulgite clay, which was used as a source of silica and
alumina. To prepare the zeolite, sodium hydroxide was mixed with pretreated attapulgite
clay at a 2:1 mass ratio, and the resulting mixture was ground and calcined in a ceramic
crucible at 200 ◦C for 4 h. The fused mixture was subsequently cooled to room temperature
and ground again. The resulting attapulgite clay mixture was mixed with deionized water
at a ratio of 2:15 (2 g fused/15 mL water) and then aged with high-speed stirring (800 r/min)
at 50 ◦C for 2 h. The mixture was then subjected to crystallization at 90 ◦C with low speed
(300 r/min) for 8 h. The solids were separated via low-speed centrifugation, washed with
deionized water until the pH approached 8, and subsequently dried and ground at 70 ◦C.

2.3. Heavy Metal Adsorption Experiment

In adsorption experiments, key factors affecting the adsorption effect were studied,
including adsorption time, initial Pb2+ concentration, molecular sieve dosage, and pH value.
Firstly, 0.09 g of NaX zeolite was added to 100 mL of simulated wastewater solution with a
concentration of 100 mg/L. The samples were taken after 10, 20, 30, 60, 90, 120, 150, 180, 210,
and 240 min of oscillatory adsorption at 25 ◦C. The supernatant was obtained by high-speed
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centrifugation. After adding a color developer, the concentration of Pb2+ was determined
by a UV spectrophotometer. Then the effect of molecular sieve dosage on Pb2+ removal
was investigated. NaX zeolite of different masses (0.01 g, 0.03 g, 0.06 g, 0.09 g, 0.13 g, 0.16 g,
and 0.19 g) were added to 100 mL of simulated wastewater solution with a concentration
of 100 mg/L. Samples were taken for comparison after the adsorption was oscillated at
25 ◦C for 120 min. To study the effect of the initial concentration of simulated wastewater
on the adsorption effect, 100 mL of each of the different solutions of C0 (10 mg/L, 20 mg/L,
40 mg/L, 60 mg/L, 80 mg/L, 100 mg/L, 120 mg/L, and 140 mg/L) were taken, 0.09 g
of NaX zeolite was added, and the adsorption was carried out by oscillation for 120 min
under the condition of 25 ◦C. To study the effect of pH, the simulated wastewater was
adjusted to pH 1–7 with 0.1 mol/L HNO3 and 0.1 mol/L NaOH solutions, and 0.09 g of the
prepared NaX zeolite was added to compare the removal effect after oscillatory adsorption.
The removal rate η and the equilibrium adsorption capacity Qe are calculated as follows:

η =
C0 − Ct

C0
× 100% (1)

Qe =
V(C0 − Ce)

m0
× 100% (2)

where C0 is the initial concentration of Pb2+ in the simulated wastewater (mg/L), Ct
is the concentration of Pb2+ in the supernatant after adsorption (mg/L), and Ce is the
concentration of Pb2+ in the supernatant when adsorption reaches equilibrium (mg/L). Qe
is the equilibrium adsorption capacity (mg/g), V is the volume of simulated wastewater
(L); m0 is the dosage of clay-based NaX molecular sieves (g).

2.4. Characterization

The chemical compositions of attapulgite clay were quantified using XRF (XRF-Axios,
Panalytical, Almelo, The Netherlands). The crystal phase and mineral compositions of the
samples were identified using X-ray diffraction (XRD-X’Pert3Powder Panalytical, Almelo,
The Netherlands). Phase identification was conducted by leveraging the ICDD (Joint Com-
mittee on Powder Diffraction Standards) documentation for inorganic compounds. Fourier
transform infrared spectroscopy (FT-IR) spectra were collected by a Nicolet iS50 spectrome-
ter (Thermo Scientific, Waltham, MA, USA), with a spectral range of 400–4000 cm−1 and a
resolution of 0.5 cm−1, using the KBr technique. FE-SEM measurements were taken with a
Quanta 450FEG scanning electron microscope (FEI, Brno, Czech Republic). The specific
surface area and the pore diameter of the synthesized NaX were collected by the specific
surface area and pore structure analyzer Tri StarII3020 (Micromeritics, Norcross, GA, USA).

3. Results and Discussion
3.1. Analysis of the Composition, Structure and Morphology of the Clay and the Obtained
Zeolite NaX

According to Table 1, the natural attapulgite clay primarily comprises silica (43.9%),
alumina (15.5%), sodium oxide (19.1%), and CaO (10.1%). Additionally, the clay contains
several metallic Fe, Mg, and K elements and trace amounts of other elements. Figure 1
displays XRD patterns of raw attapulgite clay, acid-activated clay, and the alkali melted
clay. The bottom curve in Figure 1 displays the X-ray diffraction pattern of the low-grade
attapulgite clay. The diffraction peak at 8.544◦ (2θ value) corresponds to the diffraction
peak of attapulgite clay. There are also two peaks at 26.718◦ and 29.505◦, corresponding to
the most prominent peak of quartz (SiO2) and calcite (CaCO3), respectively. These results
suggest that the low-grade attapulgite clay in this region contains a substantial amount of
crystalline quartz and calcite and attapulgite crystals. This finding is consistent with the
compositional analysis results and aligns with the basic composition of the attapulgite clay
in this region reported in the literature [33]. This low-quality mixed-dimensional attapulgite
clay was subjected to alkali fusion activation to maximize the utilization of raw materials.
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The upper two curves in Figure 1 present a comparison of the XRD patterns of the natural
attapulgite clay before and after activation treatment. The purification and acidification
resulted in the removal of some quartz and all calcite, while the typical characteristic peaks
of the attapulgite clay were unaffected. After undergoing additional alkali fusion treatment,
the main characteristic peaks and impurity peaks of the clay disappeared. It is believed that
the quartz and amorphous materials reacted with NaOH during alkali fusion treatment,
resulting in the formation of two new amorphous materials primarily comprised of sodium
silicate (NaSiO3) and sodium silicoaluminate (NaAlSiO4). These materials serve as the
primary active ingredients for zeolite synthesis. Therefore, acidification followed by alkali
fusion treatment is an effective method for activating the natural attapulgite clay.

Table 1. Chemical composition (%) of the attapulgite clay sample determined by XRF.

Component SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O

Content (wt%) 43.9 15.5 4.90 10.1 3.38 2.25 19.1
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Figure 1. XRD patterns of the raw attapulgite clay, acid-activated clay, and the alkali-melted clay.

Figure 2a presents the SEM micrograph of the natural attapulgite clay, revealing not
only short-rod attapulgite structures but also a significant accumulation of haphazardly
arranged lamellar imonite. The particle size ranges from about 1 to 10 µm. The morphology
of the synthesized NaX zeolites is depicted in Figure 2b,c. The particle is approximately
1.5 µm, exhibiting uniform particle size and good dispersion. The observed crystal structure
exhibits an octahedral shape with a distinct and well-defined outline. The surfaces of the
crystal are characterized by a substantial presence of adherent particles, indicating an
adherent-type growth mechanism for zeolite in this specific system. This also indirectly
proves the efficiency of the activation method used in the experiment. The alkali fusion
process was able to fully activate the natural clay to sodium silicate and sodium silicoalumi-
nate. The addition of water resulted in the formation of primary structural units required
for zeolite synthesis, and these primary structures were reorganized and further condensed
into polyhedral zeolite crystals [35]. Finally, the pure-phase NaX zeolite was obtained at
the appropriate temperature, time, and alkalinity.
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Figure 2. (a) SEM image of natural attapulgite clay. (b,c) SEM images of as-synthesized products
under different magnifications.

The infrared spectroscopic analysis of NaX zeolite was performed, as shown in
Figure 3a. Within the vibrational interval ranging from 4000 cm−1 to 400 cm−1, seven
prominent peaks associated with the framework vibrations of the zeolite were predomi-
nantly detected. The peaks at 984.79 cm−1 and 671.76 cm−1 are attributed to the symmetric
stretching vibration and anti-symmetric absorption vibration of the silicon–oxygen tetrahe-
dron and aluminum–oxygen tetrahedron, respectively. The peak observed at 460.44 cm−1

signifies the bending vibration of the T–O bonds within the zeolite. The notable intensities
of these three absorption peaks indicate the existence of well-formed structural units of
silicon–oxygen tetrahedra and aluminum–oxygen tetrahedra in the synthesized NaX ze-
olite. The characteristic peak observed at 562.61 cm−1 in the infrared spectrum confirms
the presence of the D6R structure, comprising double six-membered rings, within the NaX
zeolite. Moreover, a vibration peak at 749.48 cm−1 is attributed to the Si (Al)–O bonds.
Additionally, the peaks at 3455.47 cm−1 and 1639.79 cm−1 correspond to the characteristic
absorption of hydroxyl groups from the structural water and physically adsorbed water,
respectively, in the NaX zeolite.
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To further investigate the structural characteristics of the sample and uncover the
transformation of its specific surface area and pore structure, N2 adsorption–desorption
measurement was conducted. The sample was pretreated by drying at 250 ◦C under
atmospheric pressure for 3 h. Subsequently, at an analysis bath temperature of −195.8 ◦C
and with an equilibration interval of 30 s, 64 points were taken within the relative pressure
(p/P0) range from 0 to 1 for forward and reverse measurements. As shown in Figure 3b, the
zeolite showed a typical type I isotherm but was not completely consistent, indicating that
this material was primarily microporous and mesoporous. The N2 adsorption–desorption
curve of the synthetic zeolite exhibited a hysteresis loop within the pressure range of
0.4–1.0 p/P0. This hysteresis loop lacks a distinct saturation adsorption platform and is
classified as the H4 slit pore type among the four types of mesoporous hysteresis loops.
This provides evidence that the pore channel structure of the prepared molecular sieve is
intricate, consisting of a combination of micropores and mesopores, potentially including
narrow slit pores. The obtained zeolite X showed a relatively high BET surface area
of 328.43 m2 g−1 with a micropore volume of 0.23 cm3/g. The external surface area of
83.66 m2 g−1 accounted for 25% of the BET surface area. The large external surface area
and textural mesopores might have been the cause of the isotherm deviation from the type
II isotherm. The external surface area and micropore volume were obtained by the t-plot
method. The micropores exhibited a broad distribution of pore sizes, with the majority of
pore sizes falling within the range of 3–5 nm.

3.2. Effect of Different Reaction Parameters on the Structure of Zeolite NaX

The commonly utilized activation methods for aluminosilicate clay minerals are high-
temperature calcination activation and alkali fusion activation, both of which typically
require a high-temperature environment exceeding 500–900 ◦C to achieve optimal results.
In this experiment, the effects of different alkali fusion calcination temperatures (200 ◦C,
400 ◦C, and 600 ◦C) on the synthesized zeolites were investigated, as shown in Figure 4a. It
can be seen that the samples synthesized with clays treated with alkali fusion at different
temperatures all showed the typical diffraction peaks 2θ = 6.10, 9.97, 11.76, 15.39, 18.46,
20.12, 23.24, 26.58, and 30.86 of X zeolite (JCPDS 38-0237). These results confirm that the
attapulgite clay activated at different temperatures can be utilized to synthesize highly crys-
talline and pure-phase X zeolite. The highest characteristic peaks of zeolites were especially
synthesized after alkali fusion at 200 ◦C, which proved that the acidified clay could obtain
a better activation effect at a relatively low temperature, providing high-quality active
silicon and aluminum species for zeolite synthesis. This method significantly mitigates the
energy consumption associated with raw material activation and provides an efficient and
energy-saving treatment process for the pre-treatment of the clay. Subsequent experimental
processes utilized 200 ◦C alkali fusion-activated clay as the primary raw material.

Water is essential in the hydrothermal synthesis of zeolites. On one hand, the constant
synthesis conditions and the effect of H2O/Na2O on the synthesized zeolites were exam-
ined, and the results are illustrated in Figure 4b. With the increase in the H2O/Na2O ratio,
the alkalinity of the system gradually decreased, and the crystallinity of the synthesized
zeolite products demonstrated an initial rise followed by a decline. When the H2O/Na2O
ratio reached 100:1, NaX zeolite was not obtained, and crystallographic phase analysis
indicated that the primary product was a mixture of sodium silicate (NaSiO3), sodium
silicoaluminate (NaAlSiO4), and amorphous material with very low crystallinity. This may
be attributed to the low concentration of silica–alumina seeds in the precursors and the
restricted alkalinity of the system. These factors hindered precursors and the restricted
alkalinity of the system. These factors hindered zeolite nuclei formation and impeded the
further growth of zeolite crystals. At a water/sodium ratio of 25:1, inadequate solvent leads
to incomplete dissolution of silicon and aluminum seeds, resulting in insufficient crystal
growth. Furthermore, excessively high alkali content under this condition leads to poor
stability of zeolite in highly alkaline solutions and the generation of heterogeneous phases,
which is unfavorable for zeolite synthesis. The optimal water/sodium ratio for synthesizing
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NaX zeolite in this system is 50:1, which results in high crystallinity and a nearly pure
phase. This ratio facilitates the dissolution of silicon and aluminum components in the pre-
cursor material, shortening the induction period and nucleation time and accelerating the
crystallization rate, thereby promoting the synthesis of zeolite products. This phenomenon
is attributed to the appropriate alkaline concentration and solvent amount.
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Aging is the time between the formation of aluminosilicate gels and their crystalliza-
tion. This process plays a very important role in the nucleation of amorphous gels. During
the aging process, the composition and structure of the gel undergo changes, which is a
slow nucleation process. During the middle and later stages of aging, seed nuclei remain
in a dormant state, and upon being heated to the crystallization temperature, these nuclei
gradually undergo growth to form zeolite products. Appropriate aging can increase the
nucleation rate, shorten the induction period and crystallization duration, reduce crystal
size, and increase the number of crystals. In this experiment, the effects of different aging
temperatures on the obtained zeolite products were investigated under the conditions of a
crystallization temperature of 90 ◦C, crystallization time of 8 h, and H2O/Na2O ratio of 50.
The results as shown in Figure 4c indicate that the crystallinity of zeolite decreased with an
increase in aging temperature, with a very low yield of NaX zeolite observed at an aging
temperature of 70 ◦C. In contrast, NaX zeolite with high crystallinity and a nearly pure
phase was obtained at an aging temperature of 40 ◦C, indicating that lower temperatures
are favorable for the formation of zeolite nuclei during aging.

To investigate the effect of different crystallization times on the zeolite products, the
aged stock solution was crystallized at 90 ◦C for 5 h, 8 h, 11 h, and 14 h. The XRD pattern
in Figure 4d indicates that the crystallinity of NaX zeolite initially increases and then
decreases as the crystallization time is prolonged. After 5 h of crystallization, NaX zeolite
was obtained, but with a minor formation of zeolite A and hydroxysodalite. After 8 h
of crystallization, an almost pure phase of NaX zeolite was successfully synthesized. Ex-
tending the crystallization time to 11 h resulted in further crystal growth and perfection,
and the characteristic diffraction peaks continued to increase. However, the characteristic
diffraction peaks of hydroxysodalite also began to emerge at this stage. The 14 h crys-
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tallization resulted in a decrease in the intensity of the NaX diffraction peak and a more
pronounced characteristic peak of hydroxysodalite. Excessive crystallization time may
lead to the disintegration of some NaX zeolite crystals and partial conversion to zeolites A.
Therefore, the optimal crystallization time for zeolite synthesized through this method is
approximately 8 h.

3.3. Adsorption Performance of Zeolite NaX

In the adsorption experiments, the influences of adsorption time, initial concentration
of Pb2+, NaX molecular sieve dosage, and pH value on the removal rate of Pb2+ were
investigated. As shown in Figure 5a, with the increase in adsorption time, the removal
rate of Pb2+ rose rapidly in the first 60 min and approached approximately 90%. As the
adsorption time was prolonged further, the removal rate increased gradually to around
95%. At the initial stage of adsorption, Pb2+ rapidly occupied the active sites on the surface
of the molecular sieve, leading to a rapid escalation in the removal rate. After 60 min
of adsorption, the active sites of the molecular sieve were gradually occupied by Pb2+,
and the removal rate increased at a slower pace until the adsorption reached equilibrium.
Figure 5b illustrates the influence of different initial concentrations of Pb2+ in the simulated
wastewater on the removal rate. In general, the initial concentration has little influence
on the effectiveness of clay-based zeolite molecular sieves in removing Pb2+. The removal
effect can be stabilized at approximately 95%. Nevertheless, at the lower Pb2+ concentration
range of 0~40 mg/L, the removal rate is relatively low and shows a slowly increasing trend.
The possible reason for this phenomenon is that at low initial concentrations, it is mainly
influenced by adsorption kinetics. Although there are abundant active sites on the surface
of the molecular sieve, the low concentration of Pb2+ leads to a low removal rate due to
the reduced chance of mutual contact and collision between the molecular sieve and Pb2+.
Figure 5c illustrates the effect of different zeolite dosages on the removal of Pb2+. The
adsorption results indicated that the removal rate of Pb2+ increased with the increase in
molecular sieve dosage. Particularly, when the molecular sieve dosage was in the range
of 0.2~1.0 g/L, the removal rate increased rapidly. This might be attributed to the fact
that increasing the amount of molecular sieves provides more adsorption sites, thereby
promoting adsorption. At a molecular sieve dosage of 0.9 g/L, the removal rate of Pb2+

by NaX zeolite was 93.13%. As the dosage of the molecular sieve continued to increase,
the removal rate eventually reached more than 96%, but the growth was slow. This is
because most of the heavy metal ions had already been adsorbed and the adsorption had
reached equilibrium. Considering economic factors, a molecular sieve dosage of 0.9 g/L
was selected as the optimal dosage for the experiment. Figure 5d depicts the effect of
solution pH on the efficacy of 13X zeolite in removing Pb2+. The results suggest that the
initial pH of the simulated wastewater is a crucial influencing factor in the adsorption
process. As can be seen, NaX zeolite has a lower adsorption capacity at pH = 1~3. This
is because there is adsorption competition between H+ and Pb2+ in the solution under
strong acidic conditions. As a result, H+ is preferentially exchanged with Na+ on the
surface of NaX zeolites, negatively affecting the adsorption of Pb2+. The removal rate of
NaX zeolite for Pb2+ gradually increases with the increase in pH. Overall, the clay-based
NaX zeolite exhibits good adsorption capacity under weakly acidic, neutral, and alkaline
wastewater conditions, demonstrating good adaptability. However, when the solution is
alkaline, especially when the pH is greater than 7, Pb2+ and OH− produce precipitation.
Although the removal rate does not decrease, the adsorption effect is weakened and the
metal precipitation effect is enhanced. Therefore, pH = 5 was selected as the optimal initial
pH value in the experiment.
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3.4. Adsorption Isotherm and Adsorption Kinetic Analysis

The process of clay-based NaX zeolite adsorbing Pb2+ in solution at 25 ◦C can be
studied by using the Langmuir equation and Freundlich equation that describe the solid–
liquid isothermal adsorption process.

Langmuir isothermal equation:

Qe =
KLCeQmax

1 + KLCe
(3)

Freundlich isothermal equation:

Qe= KFC1/n
e (4)

Qe is the equilibrium adsorption capacity (g/mg); KL is the Langmuir equilibrium
adsorption constant (L/mg); Ce is the molar concentration (mg/L) of Pb2+ in the solution
at equilibrium; Qmax is the saturated adsorption capacity (mg/g); KF is the Freundlich
constant (mg/g) (mg/L)−n); and n is the Freundlich constant.

The adsorption mechanism is explored by using adsorption kinetic laws. The pseudo-
first-order Equation (5) and pseudo-second-order Equation (6) models are used to further
analyze the adsorption process.

ln(Q e − Qt)= ln Qek1t (5)

t/Qt =
1

k2Q2
e
+ t/Qe (6)

Qe (mg/g) is the equilibrium adsorption capacity of Pb2+, Qt (mg/g) is the adsorption
capacity of Pb2+ at time t, k1 (min−1) is the pseudo-first-order rate constant, t (min) is the
time, and k2 [g/(mg min)] is the pseudo-second-order rate constant.

The fitting results of the Langmuir and Freundlich models for the adsorption of Pb2+

by clay-based NaX zeolite are shown in Figure 6 and Table 2. It can be seen that, compared
with the Freundlich model, the Langmuir adsorption isotherm equation can better describe
the adsorption law of attapulgite-type 13X zeolite on Pb2+. The adsorption process is
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monolayer adsorption. The Qmax is about 114.58 g/mg, and the saturated adsorption
capacity measured experimentally is 113.28 g/mg.
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Table 2. Parameters of Langmuir and Freundlich adsorption isotherm equations for the adsorption of
Pb2+ by clay-based NaX zeolite.

Langmuir Constants Freundlich Constants

Qmax KL R2 Qmax KF R2

114.58 5.3 0.922 117.32 24.15 0.756

The adsorption curves after kinetic simulation are shown in Figure 6b and Table 3.
It can be seen that although the saturated adsorption capacity (102.695 mg/g) fitted
by the pseudo-first-order kinetic model is close to the equilibrium adsorption capacity
(102.21 mg/g) measured experimentally, the fitting curve has R2 (0.875) with a relatively
large deviation. It can be inferred that this process does not fully conform to the adsorption
process of Pb2+ by NaX zeolite. Judging from the kinetic second-order fitting curve, it is
highly consistent with the experimental data with R2 (0.998). Therefore, the adsorption
process of Pb2+ by clay-based NaX zeolite is more in line with the pseudo-second-order
kinetic model. The maximum adsorption capacity of this zeolite is about 98.8 g/mg, which
is higher than the maximum adsorption capacity reported in the literature in Table 4. It has
great application value in the field of heavy metal adsorption.

Table 3. Results of pseudo-first-order and second-order kinetic models for the adsorption of Pb2+ by
clay-based NaX zeolite.

Pseudo-First-Order Pseudo-Second-Order Kinetic

Qe K1 R2 Qe K2 R2

102.695 14.36 0.875 98.814 0.038 0.998

Table 4. Comparison with the maximum adsorption of Pb2+ by zeolite adsorbents reported in the
available literature.

Absorbent pH Qmax mg/g Isotherm Model Reference

Zeolite composites 6 47.619 Langmuir [36]
Y Zeolite 4.7 57.47 Langmuir [37]

5A Zeolite 5.5 46.67 Langmuir [38]
Sodium aluminum silicate hydrate/ANA 5.5 58.86 Langmuir [39]

Natural zeolite 7 7.59 Langmuir [40]
Zeolite + tuff 3.5 27.548 Langmuir [41]
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4. Conclusions

In this study, zeolite NaX was successfully synthesized using activated low-quality
mixed-dimensional attapulgite clay. This synthesis process was not only simple but also
highly efficient, offering a promising direction for the utilization of low-grade natural
clay mineral resources. In addition, the optimum synthesis conditions were obtained as
follows: an alkali melting temperature of 200 ◦C, a water-to-sodium ratio of 50:1, an aging
temperature of 40 ◦C, and a crystallization time of 11 h at 90 ◦C. The prepared zeolite was
well crystallized with a regular octahedral structure, a specific surface area of 328.43 m2/g,
and a microporous volume of 0.23 cm3/g. The results of the Pb2+ adsorption experiments
indicated that the clay-based NaX molecular sieve has a strong removal ability for Pb2+ in
the simulated wastewater. Under the conditions of 25 ◦C, pH = 5, an adsorbent dosage
of 0.9 g/L, and an adsorption time of 60 min, the removal rate of Pb2+ with an initial
concentration ranging from 40 to 140 mg/L can reach more than 95%, which represents
a good adsorption effect. This low-grade mixed-dimensional attapulgite clay proved to
be an ideal raw material for the synthesis of NaX zeolite, showcasing immense industrial
application value.
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