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Abstract: The roots of Codonopsis lanceolata (Siebold & Zucc.) Benth. & Hook.f. ex Trautv.
have been traditionally used for medicinal purposes across East Asia. However, their chem-
ical constituents in Japanese-grown varieties remain uninvestigated. This study employed
ultra-high-performance liquid chromatography–quadrupole–orbitrap mass spectrometry to
perform a comprehensive chemical analysis of the roots of C. lanceolata cultivated in Nagano
Prefecture, Japan, leveraging fragment pattern analysis of both isolated and commercially
available compounds as references compounds. As a result, 27 compounds, including triter-
penoid saponins (19–22), polyacetylenes (6, 15, 18), flavonoids (16, 17), phenylpropanoids
(3–5, 7, 9), a lignan (10), glycolipids (8, 11–14), phospholipids (23–27), and amino acids
(1, 2), were identified. Notably, a triterpenoid saponin (19) was identified as a previously
unreported compound, and ten compounds (3, 6, 8, 10, 13, 17, and 23–27) were identified
from C. lanceolata roots for the first time. The ex vivo study revealed that lancemaside A (22)
exhibited a time-dependent vasodilatory effect on rat aortic ring specimens. These findings
not only advanced the understanding of the chemical constituents and biological activity
of C. lanceolata roots but also provided valuable insights for their future applications and
quality control.

Keywords: Codonopsis lanceolata; LC-MS; triterpenoid saponin; polyacetylene; vasodilatory
effect

1. Introduction
The Codonopsis genus (Campanulaceae) includes over 40 species distributed across

West and Central Asia [1]. The roots of these plants, such as C. pilosula, C. pilosula var.
modesta, and C. tangshen, have been widely used for enhancing the immune system, improv-
ing gastrointestinal function, alleviating gastric ulcers, stimulating appetite, and reducing
blood pressure as part of traditional medicine for the treatment of various diseases and dis-
orders in Japan, China, and Vietnam [2–4]. Additionally, some Codonopsis species are used
as ingredients in tea, wine, and soups [3,4]. Previous phytochemical investigations have
identified over one hundred compounds from plants of the Codonopsis genus, including
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polyacetylenes (polyynes), flavonoids, alkaloids, phenylpropanoids, lignans, terpenoids,
and steroids [2].

Codonopsis lanceolata is a herbaceous perennial plant distributed in East Asia whose
roots are edible and also used in traditional Chinese medicine, with reported pharmaco-
logical properties such as anti-fatigue, antioxidant [5], blood pressure reduction [6], anti-
diabetes [7], antitussive, and expectorant effects [1]. Phytochemical investigations reported
the isolation and structural determination of triterpenoid saponins, phenylpropanoids, gly-
colipids, ceramides, and lignans [2], while liquid chromatography (LC)–mass spectrometry
(MS) analysis has revealed the presence of sesquiterpenes, triterpenoid saponins, phenyl-
propanoids, polyacetylenes, glycolipids, and amino acids [8,9]. However, the chemical
constituents in Japanese-grown varieties remain uninvestigated.

In recent years, advancements in LC-MS and LC-MS/MS technology have greatly
facilitated the analysis of natural products, proving particularly effectiveness for rapid
structural identification [10,11]. In the present study, four compounds (18, 21, 22, and
27) were isolated from the C. lanceolata roots using chromatographic methods, and their
structures were confirmed by nuclear magnetic resonance (NMR) spectroscopic analysis.
Based on characteristic ion fragmentation patterns of both isolated and commercially
available compounds in LC-MS and MS/MS, the roots of C. lanceolata grown in Japan
were analyzed using ultra-high-performance liquid chromatography (UHPLC) coupled
with quadrupole–orbitrap mass spectrometry to investigate their chemical constituents.
As a result, a total of 27 compounds were identified, including a previously unreported
triterpenoid saponin (19). Among them, ten compounds (3, 6, 8, 10, 13, 17, and 23–27)
were identified from C. lanceolata roots for the first time. The ex vivo vasodilatory effects
of the fractions and two major compounds (18 and 22) were also evaluated on rat aortic
ring specimens.

2. Materials and Methods
2.1. General Experimental Procedures

All LC-MS mobile phases were prepared using LC-MS-grade reagents from Kanto
Chemical Co., Inc. (Tokyo, Japan). The mobile phases used for column chromatography
(CC) and semi-preparative high-performance liquid chromatography (HPLC) were HPLC-
grade and obtained from Fujifilm Wako Pure Chemical Industries, Ltd. (Osaka, Japan). The
Diaion HP-20 resin used for CC was from Mitsubishi Chemical Corporation (Tokyo, Japan).
For HPLC separations, an RP-C18 silica gel column (YMC Actus Triart C18, 150 × 20 mm
I.D., YMC. Co., Ltd., Kyoto, Japan) was used at a flow rate of 5.0 mL/min. The 1H and 13C
NMR spectra were recorded on a JEOL ECA-500 spectrometer (JEOL Ltd., Tokyo, Japan)
with deuterated solvents as the internal references, and chemical shifts were reported in
δ (ppm) units. Standards including hesperidin (90%) and chlorogenic acid hydrate (98%)
were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan); L-tryptophan
(99%), L-phenylalanine (99%), and syringin (98%) were purchased from Fujifilm Wako Pure
Chemical Industries, Ltd. (Osaka, Japan).

2.2. Plant Materials

The roots of Codonopsis lanceolata (Siebold & Zucc.) Benth. & Hook.f. ex Trautv. used
in this study were cultivated at Azumino city in Nagano Prefecture, Japan, and harvested
in June 2021. The plant materials were identified by one of the authors, WL. A voucher
specimen (TH-CLR-1) was deposited at the Department of Pharmacognosy, Faculty of
Pharmaceutical Sciences, Toho University, Japan.
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2.3. LC-MS Analysis
2.3.1. Preparation of LC-MS Analysis Solution of C. lanceolata

The dried root powder (10 g) was extracted ultrasonically with methanol (MeOH)
(100 mL) at room temperature. The extract was then placed on a Diaion HP-20 column and
eluted with H2O and MeOH, yielding a MeOH eluate fraction (308 mg). A portion of the
MeOH eluate fraction (10 mg) was placed on a Sep-Pak C18 column Cartridge and eluted
with MeOH to prepare the 1 mg/mL solution, filtered (0.2 µm), and subjected to LC-MS.

2.3.2. LC-MS Conditions

LC-MS analysis utilized a Vanquish UHPLC system coupled with a Q-Exactive hy-
brid quadrupole orbitrap high-resolution accurate mass spectrometer (Thermo Scientific,
Waltham, MA, USA) with an electrospray ionization (ESI) source operated in both positive
and negative ionization modes.

The mobile phase consisted of solvent A (0.1% formic acid in water) and solvent B
(0.1% formic acid in acetonitrile (MeCN)). Gradient elution was performed as follows:
0–1 min, 5% B; 1–15 min, 5–80% B; 15–30 min, 100% B. The samples were injected into a
TSKgel ODS-120H column (2.0 mm 1.D. × 10 cm, 1.9 µm, Tosoh Corporation, Tokyo, Japan)
at a flow rate of 0.4 mL/min with a column oven temperature of 40 ◦C.

Mass spectrometer calibration solutions ensured high mass accuracy. Optimized
parameters included a spray voltage of +3.5 kV (positive mode) or −2.5 kV (negative
mode), a capillary temperature of 262.5 ◦C, and sheath, auxiliary, and sweep gas flow rates
of 50, 12.5, and 25 units, respectively. The S-lens RF level was set at 50, and the probe
heater temperature was maintained at 425 ◦C. Data collection included both full MS and
data-dependent MS/MS (dd-MS/MS) modes. In-source collision-induced dissociation was
set at 0 eV. The resolution was maintained at 70,000 for full MS and 35,000 for dd-MS/MS,
with an AGC target of 1 × 106 and 1 × 105, respectively. The maximum injection times
were 200 ms for full MS and 50 ms for dd-MS/MS. Scans covered an m/z range of 150–2000.
Data-dependent scanning was performed using high-energy collision dissociation with
normalized collision energies (NCEs) of 10 eV and 25 eV. Extracted ion chromatograms
were generated with a mass tolerance of 5 ppm. All data were processed and analyzed
using Thermo Xcalibur 5.1 software.

2.4. Extraction and Isolation

The dried roots of C. lanceolata (883 g) were extracted with MeOH at room temperature
via ultrasonic treatment, yielding a crude extract (380 g). The resulting MeOH extract was
partitioned sequentially between ethyl acetate (EtOAc), n-butanol (n-BuOH), and H2O.

A portion (1 g) of the EtOAc soluble fraction (6.4 g), obtained after the concentration of
the solvent, was fractionated to Diaion HP-20 CC. The MeOH-eluted fraction was separated
using reversed-phase (RP)–HPLC under gradient conditions and isocratic preparative
HPLC to obtain 1-lyso-palmitoylphosphatidylcholine (27, 2.5 mg) [60% MeCN].

The n-BuOH soluble fraction (32 g) underwent Diaion HP-20 CC, yielding the 80%
MeOH elution (3.9 g) which was subsequently separated using gradient RP-HPLC (30–80%
MeOH) and RP-HPLC to obtain lancemasides A (22, 67.6 mg) and B (21, 33.0 mg) and
lobetyolin (18, 40.4 mg) [27% MeCN containing 0.06% trifluoro acetic acid (TFA), 60%
MeOH containing 0.06% TFA, and 40% MeOH containing 0.06% TFA, respectively].

2.5. Evaluation of Vasodilatory Effects
2.5.1. Animals

The experiments were approved by the Toho University Animal Care and User Com-
mittee (No. 21-51-490 and No. 22-52-490) and performed according to the Guideline for
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the Care and Use of Laboratory Animals of Toho University. Male SD rats were purchased
from Japan SLC, Inc. (Shizuoka, Japan). In the period between receiving the animals and
starting the activity evaluation, they were quarantined and acclimatized for over a week
to confirm that no abnormalities in appearance and behavior occurred, and the negative
microbiological tests were accepted. The animals were reared in aluminum cages (2 to
3 animals/cage) with a temperature of 23 ± 1 ◦C, a relative humidity of 50±10%, and a
lighting time from 6:00 to 18:00 in compliance with the light–dark cycle in the breeding
room. Solid feed and purified water were available ad libitum.

2.5.2. Evaluation for Vasodilatory Effects on Rat Aortic Ring Specimens

The evaluation samples were dissolved and diluted to the optimum concentration
using dimethyl sulfoxide (DMSO) for the administration specimen. The activity detection
samples were the EtOAc fraction, the n-BuOH fraction, lobetyolin (18), and lancemaside A
(22). Each sample was added to a final concentration of 1 × 10−5 g/mL in a magnus tube,
and the vasodilation effect was evaluated.

Rats (388 ± 69 g) were anesthetized with ketamine (100 mg/kg i.p.) and xylazine
(10 mg/kg i.p.). A midline incision was made on the chest and abdomen, and then the
abdominal aorta was incised and bled. A ring-shaped specimen approximately 3 mm wide
was created with the isolated thoracic aorta. The specimens were suspended using two
stainless steel wires which were inserted into the lumen of the ring in a filled-nutrient
solution magnus tube. A static tension (1.0 g) was applied, and the tension transducer
measured the tension of the ring. Each specimen was contracted with phenylephrine (PE),
and when the tension became constant, each sample was added. The tension changes in
the specimen were recorded.

3. Results and Discussion
3.1. Identification of Compounds in C. lanceolata Roots Using LC-MS and LC-MS/MS Analyses

The solution obtained from C. lanceolata roots was analyzed using LC-MS and LC-
MS/MS analyses (Figure 1). The retention time (tR), molecular weight, molecular formula,
and fragmentations both in the positive and negative ion modes were compared with the
data of previous studies, and eight compounds, phenylalanine (1), tryptophan (2), syringin
(4), chlorogenic acid (5), (E)-2-hexenyl-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside
(12), lobetyolinin (18), lancemaside B (21), and lancemaside A (22), were easily identi-
fied [9,12,13]. To assist with LC-MS and LC-MS/MS analyses, phytochemical extraction
and isolation were also carried out on C. lanceolata roots. As a result, four compounds (18,
21, 22, and 27) were successfully isolated, and their chemical structures were determined
through NMR data analysis and comparison with literature data [14–17]. These compounds,
along with commercially available compounds, phenylalanine, tryptophan, chlorogenic
acid, and hesperidin, were used as reference standards for LC-MS and LC-MS/MS analy-
ses. Ultimately, through the examination of molecular formulas, retention times, and the
regularity of fragmentation patterns, a total of 27 compounds were identified (Figure 2,
Table 1).
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Figure 2. The chemical structures of compounds in C. lanceolata roots. 
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Table 1. Compounds identified from C. lanceolata roots by LC-MS.

No. tR, min
Positive Mode Negative Mode Molecular

Formula Identification
m/z Adduct Ion m/z Adduct Ion

1 a 2.07 166.0865 [M+H]+ 164.0718 [M−H]− C9H11O2N Phenylalanine
2 a 3.45 205.0973 [M+H]+ 203.0827 [M−H]− C11H12O2N2 Tryptophan
3 3.76 552.2290 [M+NH4]+ 579.1938 [M+HCOO]− C23H34O14 Syringinoside
4 a 4.08 390.1756 [M+NH4]+ 417.1401 [M+HCOO]− C17H24O9 Syringin
5 a 4.22 355.1021 [M+H]+ 353.0876 [M−H]− C16H18O9 Chlorogenic acid
6 4.37 430.2068 [M+NH4]+ 457.1715 [M+HCOO]− C20H28O9 Tangshenyne A
7 4.53 390.1756 [M+NH4]+ 417.1406 [M+HCOO]− C17H24O9 Tangshenoside II

8 4.75 442.2281 [M+NH4]+ 469.1925 [M+HCOO]− C18H32O11

(E)-2-Hexenyl-β-D-
glucopyranosyl-(1→2)-β-D-
glucopyranoside

9 4.87 696.2704 [M+NH4]+ 677.2294 [M−H]− C29H42O18 Tangshenoside I
10 5.22 760.3021 [M+NH4]+ 787.2679 [M+HCOO]− C34H46O18 Syringaresinol diglucoside

11 4.97 412.2179 [M+NH4]+ 439.1820 [M+HCOO]− C17H30O10

(E)-2-Hexenyl-α-L-
arabinopyranosyl-(1→2)-β-D-
glucopyranoside

12 a 5.15 412.2173 [M+NH4]+ 439.1820 [M+HCOO]− C17H30O10

(E)-2-Hexenyl-α-L-
arabinopyranosyl-(1→6)-β-D-
glucopyranoside

13 5.21 444.2440 [M+NH4]+ 471.2083 [M+HCOO]− C18H34O11
Hexyl-β-D-glucopyranosyl-(1→6)-
β-D-glucopyranoside

14 5.66 414.2332 [M+NH4]+ 441.1793 [M+HCOO]− C17H32O10 Creoside IV
15 5.88 576.2651 [M+NH4]+ 603.2303 [M+HCOO]− C26H38O13 Lobetyolinin
16 5.92 581.1865 [M+H]+ 579.1727 [M−H]− C27H32O14 Naringin
17 a 6.30 611.1968 [M+H]+ 609.1829 [M−H]− C28H34O15 Hesperidin
18 c 6.50 414.2118 [M+NH4]+ 441.1761 [M+HCOO]− C20H28O8 Lobetyolin
19 b 7.59 1386.6553 [M+NH4]+ 1367.6113 [M−H]− C63H100O32 2-Hydroxylancemaside B
20 7.96 1207.5736 [M+NH4]+ 1205.5582 [M−H]− C59H90O27 Lancemaside G
21 c 7.96 641.3328 [M+NH4]+ 1351.6165 [M−H]− C63H100O31 Lancemaside B
22 c 8.20 583.3271 [M+NH4]+ 1189.5635 [M−H]− C57H92O26 Lancemaside A

23 12.33 615.3323 [M+H]+ 564.3309 [M+HCOO]− C26H50O7NP 2-Linoleoyl-sn-glycero-3-
phosphocholine

24 12.43 547.3271 [M+H]+ 476.2783 [M−H]− C23H45O7NP 2-Linoleoyl-sn-glycero-3-
phosphoethanolamine

25 12.52 643.3469 [M+H]+ 564.3309 [M+HCOO]− C26H50O7NP 2-Linoleoyl-sn-glycero-3-
phosphocholine

26 12.88 585.3420 [M+H]+ 452.2782 [M−H]− C21H45O7NP 2-Palmitoyl-3-
glycerylphosphorylethanolamine

27 c 12.94 759.3731 [M+H]+ 540.3307 [M+HCOO]− C24H50O7NP 1-Lyso-
palmitoylphosphatidylcholine

a Identifications were confirmed by comparison of retention times and product ion spectra with reference
compounds or standards. b Previously unreported compounds. c Compounds isolated in this study.

3.1.1. Triterpenoid Saponins

Lancemaside A (22) and lacemaside B (21), which have the same aglycone but different
sugar chains, were highly characteristic saponin markers of C. lanceolata. In the positive
ion mode of full MS of 22 and 21, ammonium adduct ions [M+NH4]+ and aglycone
dehydration ions [Aglycone−H2O+H]+ were observed. In the MS/MS analysis with
[Aglycone–H2O+H] + as the precursor ion at an NCE = 25 eV, product ions which were
interpreted as the dissociation of the hydroxyl group at the C-16 position and the carboxyl
group at the C-18 position were observed. The product ions in the low mass-to-charge ratio
region (m/z 190–270) were interpreted as those generated through the retro-Diels–Alder
(rDA) reaction, specifically product ions resulting from the cleavage of the C ring, as well
as product ions derived from the D/E rings formed sequentially through decarboxylation
and dehydration, and product ions originating from the A/B rings formed via dehydration
(Figure 3A). In the MS/MS analysis of 22 with [M+NH4]+ as the precursor ion at an NCE
= 10 eV, the sequential loss of two xylose (Xyl), a rhamnose (Rha), an arabinose (Ara),
and a glucuronic acid (GlcA) moieties was observed. A characteristic product ion at m/z
795 C57H92O26

+ was attributed to the incomplete cleavage of the rhamnose moiety, likely
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resulting from an rDA reaction and the elimination of CO (Figure 3B). In lancemaside B (21),
a similar MS/MS fragment pattern was observed, with the additional detection of product
ions derived from the detachment of the glucose moiety. Furthermore, the precursor ion
m/z 1221 [M−Xyl+H]+ produced m/z 1089 [M−2Xyl+H]+ and m/z 1059 [M−Xyl−Glc+H]+

product ions, confirming that the glucose moiety was attached to the arabinose moiety
(Figures S7–S10).
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Figure 3. Fragmentation pathway of lancemaside A (22) using precursor ions of m/z 455
(NCE = 25 eV) (A) and m/z 1208 (NCE = 10 eV) (B).

Through full MS analysis, the molecular formulas and precursor ions were determined,
and by logically examining the fragmentation pathways under varying voltages in MS/MS,
two more saponins 19 and 20 in C. lanceolata were identified. Saponin 19 has the same sugar
chain as 21, while 20 has the same sugar chain as 22, as suggested by the product ion spectra
at an NCE = 10 eV using [M+NH4]+ as the precursor ion. Meanwhile, in comparison to
21 and 22, the MS/MS spectra of [Aglycone−H2O+H]+ in 19 and 20 showed product ions
derived from the A/B rings, with the loss of an additional H2O molecule, suggesting the
presence of 2,3-dihydroxy substituents in the A ring. Consequently, 20 was identified as
lancemaside G, a previously reported saponin from C. lanceolata [9], and 19 was identified
as 2-hydroxylancemaside B, a previously unreported compound.
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3.1.2. Polyacetylenes

Lobetyolin (18) showed product ions by the losses of the glucose moiety, H2O
molecules, and sequential carbon eliminations from the long-chain aglycone in MS/MS
analysis using [M+NH4]+ as the precursor ion at an NCE of 25 eV (Figure 4). Compound
15 was identified as lobetyolinin, a previously reported polyacetylene from C. lanceolata [9],
based on the MS/MS analysis where product ions were observed due to the sequential
elimination of two glucose moieties, along with sequential carbon eliminations from the
long-chain aglycone similar to those observed for 18. In compound 6, the presence of a
hydroxyl group at the C-12 position was suggested by the presence of the product ion m/z
171 (C12H11O+). Tanshenine A (6) was found for the first time in C. lanceolata, although it
has been reported from other Codonopsis species [18].
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3.1.3. Flavonoids

Hesperidin (17) and compound 16 exhibited product ions due to the loss of rhamnosyl
and glucosyl moieties in the MS/MS analysis using [M+NH4]+ as the precursor ion at an
NCE of 10 eV. In the MS/MS analysis using [Aglycone+H]+ as the precursor ion at an
NCE of 25 eV, the two compounds showed identical product ions derived from the A-ring
via the cleavage of the C-ring, but differences in those derived from the B-ring. Namely,
in compound 16, a product ion originating from the B-ring was observed with one less
methoxy group than 17. Therefore, compound 16 was identified as naringin [19].

3.1.4. Phenylpropanoids and Lignans

Compound 3 was identified as syringinoside based on its MS/MS fragmentation
patterns, which were similar to those of syringin (4), except for the loss of an additional
glucosyl moiety [20]. Compound 7 has the same molecular formula as 4 and exhibited a
similar MS/MS fragmentation pattern; however, based on the chromatographic behavior
reported in the literature [15], it was identified as tangshenoside II. Compound 9 exhibited
similar product ions as 4 in the MS/MS analysis using [M+NH4]+ as the precursor ion
at an NCE of 25 eV. Meanwhile, the MS/MS analysis using [M−H]− as the precursor
ion showed product ions derived from eliminations of the glucosyl moiety, CO2, and the
3-methylglutaric acid moiety. Therefore, compound 9 was identified as tangshenoside
I [15]. While compounds 7 and 9 are known in C. lanceolata [9], compound 3 has not been
previously reported from the Codonopsis genus.
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Compound 10 is a dihydrofuranofuran-type lignan, and in the MS/MS analysis using
[M−H]− as the precursor ion, the product ions derived from the aglycone and the C6-C1

unit matched the spectrum reported in the literature [21]. Compound 10 was identified as
syringaresinol diglucoside, which has been reported in C. convolvulacea [22].

3.1.5. Phospholipids

1-Lyso-palmitoylphosphatidylcholine (27), using MS/MS analysis (NCE = 25 eV) with
[M+H]+ as the precursor ion, was interpreted to generate product ions corresponding to
the phosphocholine moiety resulting from the loss of palmitic acid, as well as a choline
moiety and its dehydration ion. In addition, the MS/MS analysis using [M+HCOO]− as
the precursor ion detected ions derived from the palmitic acid moiety. Compounds 23
and 25 have the same molecular formula and exhibited similar MS/MS fragmentation
patterns to 27. However, in the MS/MS analysis using [M+HCOO]− as the precursor
ion, ions derived from the linolenic acid moiety were observed. Compounds 23 and 25
were considered to be 2-linoleoyl-sn-glycero-3-phosphocholine [23,24], likely isomers with
different stereochemical structures or positions of the double bonds. In the MS/MS spectra
of compounds 24 and 26 with [M+H] + as the precursor ion, product ions derived from
the ethanolamine moiety, rather than the choline moiety, were observed. Additionally,
in the MS/MS spectra with [M−H]− as the precursor ion, compound 24 exhibited ions
derived from the linolenic acid moiety, identical to 23, while compound 26 showed ions
derived from palmitic acid, identical to 27. Therefore, compound 24 was identified as
2-linoleoyl-sn-glycero-3-phosphoethanolamin [25], and 26 was identified as 2-palmitoyl-3-
glycerylphosphorylethanolamine [26].

3.1.6. Glycolipids

Compounds 11, 12, and 14, based on their molecular formulas and chromato-
graphic behaviors reported in the literature, were identified as (E)-2-hexenyl-α-L-
arabinopyranosyl-(1→2)-β-D-glucopyranoside (11), (E)-2-hexenyl-α-L-arabinopyranosyl-
(1→6)-β-D-glucopyranoside (12), and creoside IV (14), which have been reported in C.
lanceolata [9,27]. In the MS/MS using [M+NH4]+ as the precursor ion, these compounds
exhibited product ions derived from the arabinopyranosyl glucopyranoside moiety as
well as from the hexenyl or hexyl parts. Compound 8, also reported in C. lanceolata, is
(E)-2-hexenyl-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (8) [27], and in the MS/MS
with [M+NH4]+ as the precursor ion, ions from the hexenyl moiety and glucopyranosyl
glucopyranoside moiety were observed. On the other hand, compound 13, which exhibited
product ions from the hexyl moiety, is inferred to be hexyl-β-D-glucopyranosyl-(1→6)-β-
D-glucopyranoside (13), which has been reported in C. tangshen [28].

3.2. Evaluation of Vasodilatory Effect

The vascular dilator effects of the EtOAc fraction, the n-BuOH fraction, lancemaside
A (22), and lobetyolin (18) were evaluated at a final concentration of 1 × 10−5 g/mL
using rat aortic ring specimens (Figure 5). Lanceocide A (22) showed a significant time-
dependent vasodilatory effect. It has been reported that 22 can activate nitric oxide (NO)
synthase [29], suggesting that its vasodilatory action was likely due to an increase in
endothelial-derived NO.
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3.3. Compound Distribution in Different Parts of C. lanceolata

This study identified 27 compounds contained in the roots of C. lanceolata, while
the compounds in the aerial parts of this plant have also been reported in a previous
study [30]. From the aerial parts, one alkaloid, one amino acid derivative, ten flavonoids,
one phenylpropanoid derivative, and one polyacetylene have been isolated. Among these,
the phenylpropanoid and polyacetylene, identified as tangshenoside I (9) and lobetyolin
(15), respectively, were common to both the roots and aerial parts. On the other hand, while
only two flavonoids were detected in the roots, various flavonoid compounds were isolated
from the aerial parts. However, triterpenoid saponins, which were the major compounds of
the roots, were not isolated from the aerial parts. The abundance of triterpenoid saponins in
the roots may contribute to the medicinal effects of the roots used in traditional medicines.

4. Conclusions
This study employed ultra-high-performance liquid chromatography coupled with

quadrupole exactive–orbitrap mass spectrometry to conduct a comprehensive chemical
analysis of the C. lanceolata cultivated in Nagano prefecture, Japan. LC-MS analysis was con-
ducted using nine compounds, including four isolated ones, as reference standards. Based
on chromatographic behavior and MS/MS fragmentation patterns, a total of twenty-seven
compounds were identified, including four triterpenoid saponins, three polyacetylenes,
two flavonoids, five phenylpropanoids and their derivatives, one lignan, five glycolipids,
five phospholipids, and two amino acids. Among these, compound 19 is a previously
unreported compound, and a phenylpropanoid (3), a polyacetylene (6), a lignan (10), a
flavonoid (17), two glycolipids (8 and 13) and phospholipids (23–27) have not been previ-
ously reported in C. lanceolata roots. The ex vivo study revealed that lancemaside A (22)
exhibits a time-dependent vasodilatory effect. These discoveries not only enhance our
understanding of the chemical constituents and biological activities of C. lanceolata but also
offer valuable insights into its future pharmacological applications and quality evaluations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/chemistry7010004/s1: Tables S1–S4: NMR data of isolated com-
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pounds; Figures S1–S106: LC-MS analysis of compounds. Figures S107–S114: 1H and 13C NMR
spectra of isolated compounds.
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