What Is the Maximum Likelihood Estimate When the Initial Solution to the Optimization Problem Is Inadmissible? The Case of Negatively Estimated Variances
Abstract
:1. Introduction
2. Example Model
3. The Argument
4. Simulation Study
4.1. Method and Evaluation Criteria
4.2. Results
4.2.1. Percentage Inadmissible Solutions
4.2.2. Statistical Properties
4.3. Summary
5. Discussion and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of
Appendix B. R & Mplus Code
generateSimpleOneFactorModelData <- function ( n, sl ) { v <- 3 # number of items sl <- rep( sl , v ) # standardized loadings l <- rep( 1, v ) # loadings m.eta <- 0 # mean of latent factor m.yy <- rep( 0, times = v ) # means of items var.eta <- 1.0 # variance of latent factor # Measurement error variances of items var .me.yy <- rep( NA , v ) for ( j in 1 : v ) { var .me.yy[ j ] <- ( ( 1 - sl[ j ]^2 ) / sl[ j ]^2 ) * l[ j ]^2 * var.eta } # Latent factor eta <- rep( NA , n ) for ( i in 1 : n ) { eta [ i ] <- rnorm ( 1, m.eta , sqrt ( var.eta ) ) }
# Items yy <- array ( rep( NA , n*v ), dim=c(n,v) ) for ( i in 1 : n ) { for ( jj in 1 : v ) { yy [ i, jj ] <- rnorm ( 1, m.yy[jj] + l[jj ]* eta[i], sqrt ( var .me.yy[jj] ) ) } } dat = data. frame ( yy ) return ( dat ) }
Title: Simple one - factor model Data: File is filename .dat; Variable: Names are y_1 y_2 y_3; Usevariables are y_1 y_2 y_3; Model: eta by y_1 y_2@1 y_3@1; eta (vareta); ! eta@0 (vareta); ! use this line to set the variance of the latent factor to zero when the initial solution for this variance is a negative value y_1 (vare); y_2 (vare); y_3 (vare);
References
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2012. [Google Scholar]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- van Driel, O.P. On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika 1978, 43, 225–243. [Google Scholar] [CrossRef]
- Wothke, W. Nonpositive definite matrices in structural modeling. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1993; pp. 256–293. [Google Scholar]
- Chen, F.; Bollen, K.A.; Paxton, P.; Curran, P.J.; Kirby, J.B. Improper solutions in structural equation models: Causes, consequences, and strategies. Sociol. Methods Res. 2001, 29, 468–508. [Google Scholar] [CrossRef]
- Savalei, V.; Kolenikov, S. Constrained versus unconstrained estimation in structural equation modeling. Psychol. Methods 2008, 13, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Kolenikov, S.; Bollen, K.A. Testing negative error variances: Is a Heywood case a symptom of msspecification? Sociol. Methods Res. 2012, 41, 124–167. [Google Scholar] [CrossRef]
- Jak, S.; Jorgensen, T.D.; Rosseel, Y. Evaluating cluster-level factor models with lavaan and Mplus. Psych 2021, 3, 134–152. [Google Scholar] [CrossRef]
- Bhargava, A.K.; Disch, D. Exact probabilities of obtaining estimated non-positive definite between-group covariance matrices. J. Stat. Comput. Simul. 1982, 15, 27–32. [Google Scholar] [CrossRef]
- Hill, W.G.; Thompson, R. Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics 1978, 34, 429–439. [Google Scholar] [CrossRef]
- Searle, S.R.; Casella, G.; McCulloch, C.E. Variance Components; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Baird, R.; Maxwell, S.E. Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects. Psychol. Methods 2016, 21, 175–188. [Google Scholar] [CrossRef]
- Lüdtke, O.; Marsh, H.W.; Robitzsch, A.; Trautwein, U. A 2 × 2 taxonomy of multilevel latent contextual models: Accuracy-bias trade-offs in full and partial error correction models. Psychol. Methods 2011, 16, 444–467. [Google Scholar] [CrossRef]
- Zitzmann, S.; Lüdtke, O.; Robitzsch, A.; Marsh, H.W. A Bayesian approach for estimating multilevel latent contextual models. Struct. Equ. Model. 2016, 23, 661–679. [Google Scholar] [CrossRef]
- Dijkstra, T.K. On statistical inference with parameter estimates on the boundary of the parameter space. Br. J. Math. Stat. Psychol. 1992, 45, 289–309. [Google Scholar] [CrossRef]
- Schoenberg, R. Constrained maximum likelihood. Comput. Econ. 1997, 10, 251–266. [Google Scholar] [CrossRef]
- Lüdtke, O.; Ulitzsch, E.; Robitzsch, A. A comparison of penalized maximum likelihood estimation and Markov chain Monte Carlo techniques for estimating confirmatory factor analysis models with small sample sizes. Front. Psychol. 2021, 12, 615162. [Google Scholar] [CrossRef]
- Herbach, L.H. Properties of Model II–type analysis of variance tests, A: Optimum nature of the F-test for Model II in the balanced case. Ann. Math. Stat. 1959, 30, 939–959. [Google Scholar] [CrossRef]
- Arnold, S.F. The Theory of Linear Models and Multivariate Analysis; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Yuan, K.H.; Bentler, P.M. On normal theory based inference for multilevel models with distributional violations. Psychometrika 2002, 67, 539–562. [Google Scholar] [CrossRef]
- Greenland, S. Principles of multilevel modelling. Int. J. Epidemiol. 2000, 29, 158–167. [Google Scholar] [CrossRef]
- Zitzmann, S.; Helm, C. Multilevel analysis of mediation, moderation, and nonlinear effects in small samples, using expected a posteriori estimates of factor scores. Struct. Equ. Model. 2021, 28, 529–546. [Google Scholar] [CrossRef]
- Depaoli, S.; Clifton, J.P. A Bayesian approach to multilevel structural equation modeling With continuous and dichotomous outcomes. Struct. Equ. Model. 2015, 22, 327–351. [Google Scholar] [CrossRef]
- Zitzmann, S. A computationally more efficient and more accurate stepwise approach for correcting for sampling error and measurement error. Multivar. Behav. Res. 2018, 53, 612–632. [Google Scholar] [CrossRef]
- Molenberghs, G.; Verbeke, G. A note on a hierarchical interpretation for negative variance components. Stat. Model. 2011, 11, 389–408. [Google Scholar] [CrossRef]
- Stoel, R.D.; Garre, F.G.; Dolan, C.; van den Wittenboer, G. On the likelihood ratio test in structural equation modeling when parameters are subject to boundary constraints. Psychol. Methods 2006, 11, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Gerbing, D.W.; Anderson, J.C. Improper solutions in the analysis of covariance structures: Their interpretability and a comparison of alternate respecifications. Psychometrika 1987, 52, 99–111. [Google Scholar] [CrossRef]
- Bentler, P.M. EQS 6 Structural Equations Program Manual, 6th ed.; Multivariate Software, Inc.: Encino, CA, USA, 2006. [Google Scholar]
- Martin, J.K.; McDonald, R.P. Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika 1975, 40, 505–517. [Google Scholar] [CrossRef]
- Lee, S.Y. A Bayesian approach to confirmatory factor analysis. Psychometrika 1981, 46, 153–160. [Google Scholar] [CrossRef]
- Browne, W.J.; Draper, D. A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Anal. 2006, 1, 473–514. [Google Scholar] [CrossRef]
- Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006, 1, 515–534. [Google Scholar] [CrossRef]
- Lambert, P.C.; Sutton, A.J.; Burton, P.R.; Abrams, K.R.; Jones, D.R. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat. Med. 2005, 24, 2401–2428. [Google Scholar] [CrossRef]
- Zitzmann, S.; Helm, C.; Hecht, M. Prior specification for more stable Bayesian estimation of multilevel latent variable models in small samples: A comparative investigation of two different approaches. Front. Psychol. 2021, 11, 611267. [Google Scholar] [CrossRef]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Analytical Methods for Social Research, Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Hoff, P.D. A First Course in Bayesian Statistical Methods; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zitzmann, S.; Lüdtke, O.; Robitzsch, A.; Hecht, M. On the performance of Bayesian approaches in small samples: A comment on Smid, McNeish, Miočević, and van de Schoot (2020). Struct. Equ. Model. 2021, 28, 40–50. [Google Scholar] [CrossRef]
- Zitzmann, S.; Lüdtke, O.; Robitzsch, A. A Bayesian approach to more stable estimates of group-level effects in contextual studies. Multivar. Behav. Res. 2015, 50, 688–705. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. WinBUGS User Manual. 2003. Available online: http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf (accessed on 17 May 2022).
- Plummer, M. JAGS Version 3.4.0 User Manual. 2013. Available online: http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf (accessed on 17 May 2022).
- Lüdtke, O.; Robitzsch, A.; Wagner, J. More stable estimation of the STARTS model: A Bayesian approach using Markov chain Monte Carlo techniques. Psychol. Methods 2018, 23, 570–593. [Google Scholar] [CrossRef]
- Zitzmann, S.; Lohmann, J.F.; Krammer, G.; Helm, C.; Aydin, B.; Hecht, M. A Bayesian EAP-based nonlinear extension of Croon and van Veldhoven’s model for analyzing data from micro-macro multilevel designs. Mathematics 2022, 10, 842. [Google Scholar] [CrossRef]
No. of Persons | Standardized Loadings | Inadmissible Solutions |
---|---|---|
= | 23.7 | |
= | 11.5 | |
= | 0.4 | |
= | 15.6 | |
= | 4.0 | |
= | 0.0 | |
= | 6.9 | |
= | 0.4 | |
= | 0.0 | |
= | 1.6 | |
= | 0.0 | |
= | 0.0 |
No. of Persons | Standardized Loadings | Relative Bias | Relative RMSE | Coverage Rate | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Default | Default | ML | Default | Default | ML | Default | Default | ML | ||
Variance of Latent Factor | ||||||||||
= | 0.00 | 0.51 | 0.15 | 1.34 | 1.19 | 1.14 | 95.3 | 99.6 | 76.0 | |
= | −0.02 | 0.16 | 0.02 | 0.85 | 0.74 | 0.78 | 93.2 | 99.8 | 88.3 | |
= | −0.03 | −0.03 | −0.03 | 0.46 | 0.45 | 0.46 | 91.0 | 91.4 | 91.0 | |
= | −0.02 | 0.24 | 0.05 | 0.97 | 0.83 | 0.86 | 94.8 | 99.4 | 83.9 | |
= | −0.01 | 0.04 | 0.00 | 0.62 | 0.58 | 0.61 | 93.5 | 97.1 | 93.2 | |
= | −0.01 | −0.01 | −0.01 | 0.33 | 0.33 | 0.33 | 92.4 | 92.4 | 92.4 | |
= | 0.03 | 0.12 | 0.04 | 0.70 | 0.64 | 0.67 | 95.7 | 98.9 | 92.1 | |
= | 0.01 | 0.01 | 0.01 | 0.42 | 0.42 | 0.42 | 95.1 | 95.5 | 95.1 | |
= | −0.02 | −0.02 | −0.02 | 0.23 | 0.23 | 0.23 | 93.2 | 93.2 | 93.2 | |
= | -0.01 | 0.01 | -0.01 | 0.48 | 0.46 | 0.48 | 95.4 | 97.0 | 95.4 | |
= | 0.02 | 0.02 | 0.02 | 0.31 | 0.31 | 0.31 | 94.9 | 94.9 | 94.9 | |
= | −0.01 | −0.01 | −0.01 | 0.16 | 0.16 | 0.16 | 95.5 | 95.5 | 95.5 | |
Measurement Error Variance | ||||||||||
= | −0.05 | −0.09 | −0.06 | 0.20 | 0.20 | 0.19 | 89.0 | 86.4 | 88.1 | |
= | −0.04 | −0.07 | −0.05 | 0.20 | 0.19 | 0.20 | 90.1 | 88.9 | 89.5 | |
= | −0.05 | −0.05 | −0.05 | 0.20 | 0.20 | 0.20 | 89.2 | 89.2 | 89.2 | |
= | −0.02 | −0.04 | −0.02 | 0.14 | 0.14 | 0.14 | 91.9 | 90.5 | 91.1 | |
= | −0.03 | −0.04 | −0.03 | 0.14 | 0.14 | 0.14 | 91.7 | 91.7 | 91.5 | |
= | −0.02 | −0.02 | −0.02 | 0.14 | 0.14 | 0.14 | 93.3 | 93.3 | 93.3 | |
= | −0.01 | −0.02 | −0.01 | 0.10 | 0.10 | 0.10 | 93.3 | 93.0 | 93.3 | |
= | −0.01 | −0.01 | −0.01 | 0.10 | 0.10 | 0.10 | 94.8 | 94.9 | 94.7 | |
= | −0.01 | −0.01 | −0.01 | 0.10 | 0.10 | 0.10 | 94.5 | 94.5 | 94.5 | |
= | 0.00 | 0.00 | 0.00 | 0.07 | 0.07 | 0.07 | 94.7 | 95.0 | 94.6 | |
= | −0.01 | −0.01 | −0.01 | 0.07 | 0.07 | 0.07 | 92.4 | 92.4 | 92.4 | |
= | −0.01 | −0.01 | −0.01 | 0.07 | 0.07 | 0.07 | 94.6 | 94.6 | 94.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zitzmann, S.; Walther, J.-K.; Hecht, M.; Nagengast, B. What Is the Maximum Likelihood Estimate When the Initial Solution to the Optimization Problem Is Inadmissible? The Case of Negatively Estimated Variances. Psych 2022, 4, 343-356. https://doi.org/10.3390/psych4030029
Zitzmann S, Walther J-K, Hecht M, Nagengast B. What Is the Maximum Likelihood Estimate When the Initial Solution to the Optimization Problem Is Inadmissible? The Case of Negatively Estimated Variances. Psych. 2022; 4(3):343-356. https://doi.org/10.3390/psych4030029
Chicago/Turabian StyleZitzmann, Steffen, Julia-Kim Walther, Martin Hecht, and Benjamin Nagengast. 2022. "What Is the Maximum Likelihood Estimate When the Initial Solution to the Optimization Problem Is Inadmissible? The Case of Negatively Estimated Variances" Psych 4, no. 3: 343-356. https://doi.org/10.3390/psych4030029
APA StyleZitzmann, S., Walther, J. -K., Hecht, M., & Nagengast, B. (2022). What Is the Maximum Likelihood Estimate When the Initial Solution to the Optimization Problem Is Inadmissible? The Case of Negatively Estimated Variances. Psych, 4(3), 343-356. https://doi.org/10.3390/psych4030029