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Abstract: The default procedures of the software programs Mplus and lavaan tend to yield an
inadmissible solution (also called a Heywood case) when the sample is small or the parameter is close
to the boundary of the parameter space. In factor models, a negatively estimated variance does often
occur. One strategy to deal with this is fixing the variance to zero and then estimating the model again
in order to obtain the estimates of the remaining model parameters. In the present article, we present
one possible approach for justifying this strategy. Specifically, using a simple one-factor model as an
example, we show that the maximum likelihood (ML) estimate of the variance of the latent factor is
zero when the initial solution to the optimization problem (i.e., the solution provided by the default
procedure) is a negative value. The basis of our argument is the very definition of ML estimation,
which requires that the log-likelihood be maximized over the parameter space. We present the results
of a small simulation study, which was conducted to evaluate the proposed ML procedure and
compare it with Mplus’ default procedure. We found that the proposed ML procedure increased
estimation accuracy compared to Mplus’ procedure, rendering the ML procedure an attractive option
to deal with inadmissible solutions.

Keywords: maximum likelihood; Heywood case; inadmissible solution; confirmatory factor analysis

1. Introduction

Confirmatory factor analysis is a common tool to analyze data from questionnaires. A
latent variable software such as Mplus [1] or lavaan [2] is often used to conduct this type of
analysis. When using the default procedure of such software, which is an unconstrained
estimator, one might encounter a Heywood case—a solution for a loading, a measurement
error variance, or a (residual) variance of a latent factor that is impossible. Such solutions
are also often called “improper” or “inadmissible” in the psychometric literature [3,4], and
many possible causes for their occurrence have been identified; for example, the model
may be misspecified [5–7], the sample may be too small, or the population parameter
itself may be close to the boundary of the parameter space e.g., a variance close to 0 [8].
For relatively prototypical statistical models, the probability of such solutions can be
determined analytically e.g., [9–11]. To address Heywood cases, one may want to check
the modification indices for model improvement. Deleting items from the model might
also eliminate Heywood cases. However, there is no guarantee that this strategy will lead
to the desired goal and, for example, a negatively estimated variance might remain. A
prominent strategy for addressing negatively estimated variances that is often used in
research practice is equal to the variance to zero and fits the model again to obtain the
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estimates of the remaining model parameters for examples of this practice in psychological
research, see, e.g., [12–14]. Another strategy is to use a nonnegativity constraint and thus
constrained estimation e.g., [15,16] or penalized/Bayesian estimation e.g., [17] to force
the variance estimate to be equal to or greater than zero. All these strategies have in
common that they lead to variance estimates that are “admissible” (i.e., nonnegative values
for variances).

The present article focuses on the class of factor models and builds on the statistical
framework of maximum likelihood (ML) estimation. As a negatively estimated variance
does often occur, we ask what the ML estimate of the variance is when the initial solution
for this variance is a negative value (i.e., when the default procedure provides a negative
value). Specifically, we present a statistical argument for why the ML estimate of the
variance must be zero in this case, which can also be considered a formal justification
for fixing the variance to zero and then estimating the model again in order to deal with
negatively estimated variances in practice. The basic premise for the argument is the
notion that ML estimates must be admissible; that is, they can only take on possible values
(e.g., a nonnegative value for a variance). Technically speaking, ML estimates must lie
in the parameter space. This notion is also backed up by the statistical literature. For
example, Searle et al. [11] pointed out that “the very definition of maximum likelihood
demands that the likelihood be maximized over the parameter space” (p. 81). In other
words, whereas the initial solution to the optimization problem can be inadmissible, an ML
estimate can never be inadmissible because it can only take on values from the parameter
space. Therefore, a distinction should be made between inadmissible solutions and the
actual results from ML estimation; see [11,18–20]. The property of being admissible is also
highly desirable from a practical point of view because improper solutions can hardly
be interpreted, particularly when this improper solution has been tested as statistically
significant. For example, one cannot interpret a negative value for a variance because
the parameter space of a variance includes only nonnegative values. By contrast, the ML
estimate of the variance—and also any function thereof that is itself an ML estimate—can
be interpreted in a straightforward way.

Our article is organized as follows: We consider a simple one-factor model as an
example, which allows us to clarify our main point without too many distracting details.
Specifically, we show that the ML estimate of the variance of the latent factor must be
zero when the initial solution for this variance is negative. In addition, we show how
the ML estimate of the remaining model parameter in the simple factor model (i.e., the
measurement error variance in this case) can be obtained, and we argue that our findings
also hold for variances in more complex factor models and other classes of statistical models.
Using simulations, we evaluate and compare the proposed ML procedure with Mplus’
default procedure.

In the following discussion, we will assume that the analysis model is not misspec-
ified and that it fits the data well, but in the discussion, we will also elaborate a bit on
inadmissible solutions due to model misspecification.

2. Example Model

In psychology, a widely used approach for assessing a person characteristic is to ask
i = 1, . . . , n persons to rate this characteristic on k = 1, . . . , K items. Based on these ratings,
a simple one-factor model can be formulated, which relates the ratings to an underlying
latent factor η. To improve readability, we assume that the variables are mean-centered (i.e.,
intercepts equal to zero). The factor model reads:

yki = 1 · ηi + εki (1)

where εki are measurement errors, which are normally distributed with variance θ. Notice
that, in the model, the item loadings are all one and thus equal across items. In addition,
the measurement error variances are equal across items, which we indicated by dropping
the index k from the θ symbol.
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One efficient way to fit this factor model is optimizing the likelihood function. Be-
cause the model assumes parallel items (i.e., equal loadings and equal measurement error
variances across items) and identification is achieved by setting the first item’s loading to
one, only two parameters need to be estimated, the variance of the latent factor (ψ) and
the measurement error variance (θ)—, a task that can be easily solved analytically. To
this end, we begin with the assumption that the ith person’s responses y1i,. . . ,yKi follow a
multivariate normal distribution with the following density function:

f (y1i, . . . , yKi) =
1

(2π)K/2 det

 ψ + θ . . . ψ
...

. . .
...

ψ . . . ψ + θ


−1/2

· exp

−
1
2
(y1i, . . . , yKi)

 ψ + θ . . . ψ
...

. . .
...

ψ . . . ψ + θ


−1 y1i

...
yKi


 .

(2)

This density can be interpreted as the ith person’s likelihood function Li. The individ-
ual log-likelihood is then given by:

log(Li) = c− K− 1
2

log(θ)− 1
2

log(g)

− 1
2

1
θ(Kψ + θ)

(K− 1)ψ
K

∑
k=1

y2
ki + θ

K

∑
k=1

y2
ki − ψ

K

∑
k′=1
k′ 6=k

K

∑
k=1
k 6=k′

ykiyk′i


(3)

where c is a constant term. If we use g = Kψ + θ and some algebraic tricks, the individual
log-likelihood can further be simplified to:

log(Li) = c− K− 1
2

log(θ)− 1
2

log(g)− 1
2

{
1
θ

K

∑
k=1

y2
ki −

K(g− θ)

θg
ȳ2
•i

}
. (4)

with ȳ•i = 1
K ∑K

k=1 yki. Because the n persons are independently drawn, the overall log-
likelihood is simply the sum of the individual log-likelihoods:

log(L) = c− n(K− 1)
2

log(θ)− n
2

log(g)− 1
2θ

n

∑
i=1

K

∑
k=1

y2
ki +

K(g− θ)

2θg

n

∑
i=1

ȳ2
•i . (5)

In order to obtain the estimates of the parameters θ and g, the log-likelihood needs
to be maximized. To this end, we first calculate the partial derivatives with respect to the
two parameters:

∂log(L)
∂θ

= −n(K− 1)
2θ

+
1

2θ2

(
n

∑
i=1

K

∑
k=1

y2
ki − K

n

∑
i=1

ȳ2
•i

)
∂log(L)

∂g
= − n

2g
+

K
2g2

n

∑
i=1

ȳ2
•i

(6)
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Then, setting these equations equal to zero yields an equation system. Solving the
system and indicating the solutions by a hat ( ˆ ) yields the following estimation equations:

θ̂ =
1

n(K− 1)

(
n

∑
i=1

K

∑
k=1

y2
ki − K

n

∑
i=1

ȳ2
•i

)

ĝ =
K
n

n

∑
i=1

ȳ2
•i

(7)

Because ĝ = Kψ̂ + θ̂, we obtain:

ψ̂ =
1
n

n

∑
i=1

ȳ2
•i −

1
K

θ̂ (8)

When we exclude the special case of yki equaling ȳ•i for all i and k, it is evident from
Equation (7) that θ̂ can take on only positive values. However, because ψ̂ is computed as
the difference between two terms, and the latter term can be greater than the former, ψ̂ can
become negative. However, as the ML estimate has to be nonnegative, ψ̂ cannot be the ML
estimate when ψ̂ < 0. But what is the ML estimate in this case? In the next section, we will
develop a formal argument for why the ML estimate of the variance of the latent factor is
zero when the initial solution to the optimization problem is negative.

3. The Argument

We consider an argument similar to those of Herbach [18] and Searle et al. [11]. Sup-
pose that the initial solution to the maximization problem is ψ̂ < 0. Our goal is to show
that the ML estimate is zero in this case. Because ML estimates of variances can only be
zero or greater than zero, it is sufficient to show that the ML estimate cannot be greater
than zero. Let ML estimates be indicated by a dot ( ˙ ) in order to better differentiate it from
the initial solutions to the optimization problem, which we indicated by a hat symbol in
the previous section.

Assume for a moment that the ML estimate ψ̇ would be greater than zero. Then, it
follows that:

ġ > θ̇ . (9)

Moreover, from ψ̂ < 0 and ĝ = Kψ̂ + θ̂, we infer:

θ̂ > ĝ . (10)

Now, consider the following two cases. Case 1: The first case is that of θ̇ ≥ θ̂. Because
of ġ ≥ θ̇ ≥ θ̂ > ĝ (using Equations (9) and (10)), it holds that ġ > ĝ or, equivalently:

ġ− ĝ > 0 . (11)

Calculating the partial derivative with respect to g at the ML estimate ġ yields:

∂log(L)
∂g

∣∣∣∣
g=ġ

= − n
2ġ

+
K

2ġ2

n

∑
i=1

ȳ2
•i

= − n
2ġ2

(
ġ− K

n

n

∑
i=1

ȳ2
•i

)
= − n

2ġ2 (ġ− ĝ) .

(12)
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Because of ġ > 0 (see Appendix A for the proof), the factor −n/
(
2ġ2) is negative.

Along with Equation (11), we obtain:

∂log(L)
∂g

∣∣∣∣
g=ġ

< 0 (13)

which contradicts the condition that the partial derivative at the ML estimate is zero and
thus that ġ is the ML estimate. To complete the proof, we need to show that the second case
also leads to a contradiction. Case 2: θ̇ < θ̂. Then:

θ̇ − θ̂ < 0 . (14)

The partial derivative with respect to θ at θ̇ is:

∂log(L)
∂θ

∣∣∣∣
θ=θ̇

= −n(K− 1)
2θ

+
1

2θ2

(
n

∑
i=1

K

∑
k=1

y2
ki + K

n

∑
i=1

ȳ2
•i

)

= −n(K− 1)
2θ̇2

{
θ̇ − 1

n(K− 1)

(
n

∑
i=1

K

∑
k=1

y2
ki + K

n

∑
i=1

ȳ2
•i

)}

= −n(K− 1)
2θ̇2

{
θ̇ − θ̂

}
.

(15)

Generally, K > 1. Thus, we have −n(K− 1)/
(
2θ̇2) < 0, and because of Equation (14),

we obtain:
∂log(L)

∂θ

∣∣∣∣
θ=θ̇

> 0 (16)

which is a contradiction to θ̇ being the ML estimate.
It can be concluded that ψ̇ cannot be greater than zero, and as ML estimates of variances

can only be equal to or greater than zero, ψ̇ must thus be zero, which proves that the ML
estimate is indeed zero when the initial solution to the optimization problem is negative. �

Having shown that ψ̇ is zero, it follows that ġ = Kψ̇ + θ̇ = θ̇. Thus, to obtain θ̇, the
log-likelihood needs to be optimized subject to the constraint g = θ. To this end, we modify
the log-likelihood in Equation (5) by setting g to θ:

log(L∗) = c− n(K− 1)
2

log(θ)− n
2

log(θ)− 1
2θ

n

∑
i=1

K

∑
k=1

y2
ki . (17)

The modified log-likelihood is optimized by first computing the following derivative:

∂log(L∗)
∂θ

= −n(K− 1)
2θ

− n
2θ

+
1

2θ2

n

∑
i=1

K

∑
k=1

y2
ki (18)

and then equating it to zero. Finally, solving the equation for θ̇ and making use of
Equations (7) and (8) yields the ML estimate:

θ̇ =
1

nK

n

∑
i=1

K

∑
k=1

y2
ki = ψ̂ + θ̂ . (19)

It is interesting to note that, because we assumed that the initial solution for the
variance of the latent factor is negative (ψ̂ < 0), it follows from Equation (19) that the
ML estimate of the measurement error variance is smaller than the initial solution for the
measurement error variance (θ̇ < θ̂).

To summarize so far, we have seen that the ML estimates can deviate from the initial
solutions to the optimization problem. Taking the simple one-factor model as an example,
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the ML estimation procedure for estimating the two variance parameters can be stated
as follows:

ψ̇ =

{
ψ̂ if ψ̂ ≥ 0
0 if ψ̂ < 0

(20)

θ̇ =

{
θ̂ if ψ̂ ≥ 0

ψ̂ + θ̂ if ψ̂ < 0
. (21)

When the initial solution ψ̂ for the variance of the latent factor is equal to or greater
than zero and is thus admissible, the ML estimate ψ̇ of the variance of the latent factor and
the ML estimate θ̇ of the measurement error variance are simply the initial solutions ψ̂ and
θ̂ to the optimization problem. However, when ψ̂ is smaller than zero and thus a Heywood
case, ψ̇ is zero, and θ̇ takes on the value ψ̂ + θ̂.

To describe the statistical properties of this ML procedure, a simulation was run, which
we will report in the following section.

4. Simulation Study

The primary goal of the study was to evaluate the proposed ML procedure and to
compare it with the default procedure of the prominent latent variable software Mplus. We
did not include lavaan as another comparison standard because Mplus and lavaan were
assumed to yield identical results.

4.1. Method and Evaluation Criteria

We simulated data from a simple one-factor model with three items, each with an
unstandardized loading of 1 because the one from the first item was set equal to 1, and
the items were assumed to be parallel (i.e., equal loadings and equal measurement error
variances across items). The variance of the latent factor was 1. As a negatively estimated
variance will likely occur when only a little information is available for assessing the
latent factor (e.g., when the standardized loadings are weak or the sample is small), the
standardized loadings were varied to be all either 0.3, 0.4, or 0.6 and thus rather small (see
Appendix B). In addition, the sample size was varied between 25, 50, 100, and 200 persons.
Thus, the study design included 3 · 4 = 12 conditions. For each condition, we generated a
total of 1000 data sets. To analyze them, a factor model with one latent factor was specified
in Mplus, with three items loading on this factor. The first item’s loading was fixed to 1
in order to identify the factor. Moreover, the loadings and measurement error variances
were constrained to be equal across items (i.e., parallel items). Thus, the analysis model
corresponded with the data-generating model. Differences in the results could thus be
attributed to the use of different estimation procedures. The first procedure was Mplus’
default procedure, which is an example of an unconstrained estimator that tends to exhibit
inadmissible solutions when the standardized loadings are weak or the sample is small.
The second approach was our proposed ML procedure, which we developed based on
the premise that ML estimates cannot be inadmissible because such estimates must lie in
the parameter space. In the simple one-factor model, this procedure yields values that are
identical to those from Mplus’ default procedure when the initial solution for the variance
of the latent factor is nonnegative. Otherwise, the procedure yields zero as the value for
the variance of the latent factor, and it yields the sum of the initial solutions for the two
variance parameters in the model as the value for the measurement error variance (see
Equation (20)). In the latter case, we fixed the variance of the latent factor to zero by
using the at operator (@) in Mplus (see the Mplus code in Appendix B). Note that this is
equivalent to constraining g in Equation (5) to be equal to the measurement error variance,
which we did in the previous section in order to derive the ML estimates. Mplus’ default
procedure and the proposed ML procedure were compared with regard to the relative
bias, the overall estimation accuracy as assessed by the relative root mean squared error
(RMSE), and coverage rate for estimating both the variance of the latent variable and the
measurement error variance. The relative bias is the deviation of the expected value of the
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estimates from the population parameter divided by that parameter. The relative RMSE
can be expressed as the square root of the sum of the squared bias and the variability of the
estimates divided by the population parameter e.g., [21,22], and the coverage rate is defined
as the probability that the 95% confidence interval captures the population parameter.

4.2. Results

In the simulation, the simple one-factor model always converged with Mplus’ default
procedure as indicated by 0% nonconverged solutions in all conditions.

4.2.1. Percentage Inadmissible Solutions

Table 1 offers an overview of the percentages of inadmissible solutions that Mplus’
default procedure provided. An inadmissible solution was indicated either by WARNING:
THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE DEFINITE or
the message RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.
As can be seen, Mplus’ default procedure yielded inadmissible solutions when the sample
was rather small (i.e., n < 100). Notably, all inadmissible solutions were negatively
estimated variances of the latent factor. The percentage of inadmissible solutions was
particularly high in these situations when the standardized loadings were very weak
(λs = 0.3). However, when the sample size increased or the standardized loadings became
stronger, inadmissible solutions became less likely.

Table 1. Simulation study results: Percentages of inadmissible solutions for Mplus’ default procedure.

No. of Persons Standardized Loadings Inadmissible Solutions

n = 25 λs = 0.3 23.7
λs = 0.4 11.5
λs = 0.6 0.4

n = 50 λs = 0.3 15.6
λs = 0.4 4.0
λs = 0.6 0.0

n = 100 λs = 0.3 6.9
λs = 0.4 0.4
λs = 0.6 0.0

n = 200 λs = 0.3 1.6
λs = 0.4 0.0
λs = 0.6 0.0

Note. n = number of persons; λs = standardized loadings.

4.2.2. Statistical Properties

Before we proceed with the statistical properties, note that we computed those of
Mplus’ default procedure in two ways. First, we computed them based on the full set
of data sets per condition, including also data sets for which Mplus’ default procedure
provided an inadmissible solution. Second, the properties were computed only from the
data sets for which Mplus’ default procedure provided an admissible solution because it
is very common to exclude data sets that caused estimation problems e.g., [23,24]. The
statistical properties of the proposed ML procedure were based on the full set of data sets
per condition.

Table 2 shows the comparisons of the relative bias, the relative RMSE, and the coverage
rate for the variance of the latent factor and the measurement measurement error variance
between Mplus’ default procedure (computed in the two mentioned ways) and the proposed
ML procedure. Both estimation procedures provided approximately unbiased estimates of
the two model parameters in large samples without any noticeable difference between the
procedures. These findings reflect the fact that both estimators are asymptotically unbiased
(i.e., unbiased when the sample size approaches infinity). However, differences existed for
the variance of the latent factor in rather small samples, particularly when the standardized
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loadings were weak. Whereas the bias was absent for Mplus’ default procedure when
its computation was based on the full set of data sets per condition, it was positive and
substantial when computed from only the data sets for which the procedure provided
admissible solutions. Notably, there was no bias for the proposed ML procedure except
in the most extreme condition (i.e., n = 25, λs = 0.3). However, this bias was only small.
Both procedures provided negligibly biased estimates for the measurement error variance,
without any noticeable difference.

In extreme conditions, the relative RMSE for the variance of the latent factor differed
between the estimation procedures. Mplus’ default procedure exhibited the largest relative
RMSE when it was computed from the full set of data sets per condition, meaning that this
procedure provided less accurate estimates than the proposed ML procedure. However,
Mplus’ default procedure became more accurate when based on only the data sets for which
the procedure provided admissible solutions. However, when the sample size increased,
the differences between the estimation procedures vanished. The relative RMSE for the
measurement error variance was approximately equal between the procedures.

The coverage rate for the variance of the latent factor was close to the nominal 95%
in all conditions when Mplus’ default procedure was used, and the coverage rate was
computed from the full set of data sets per condition. However, the coverage rate for this
procedure tended to be too high when when it was computed from only the data sets for
which the procedure provided admissible solutions, particularly when the loadings were
rather weak. By contrast, the coverage rate for the proposed ML procedure tended to be too
low. The coverage rate for the measurement error variance was acceptable in all conditions
except in those with a very small sample size (i.e., n = 25), where it tended to be too small.
However, it did not differ between the estimation procedures.
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Table 2. Simulation study results: Relative bias, relative root mean squared error (RMSE), and coverage rate from estimating the variance of the latent factor and the
measurement error variance with Mplus’ default procedure and the maximum likelihood (ML) procedure.

Relative Bias Relative RMSE Coverage Rate

No. of
Persons

Standardized
Loadings Default † Default ‡ ML † Default † Default ‡ ML † Default † Default ‡ ML †

Variance of Latent Factor

n = 25 λs = 0.3 0.00 0.51 0.15 1.34 1.19 1.14 95.3 99.6 76.0
λs = 0.4 −0.02 0.16 0.02 0.85 0.74 0.78 93.2 99.8 88.3
λs = 0.6 −0.03 −0.03 −0.03 0.46 0.45 0.46 91.0 91.4 91.0

n = 50 λs = 0.3 −0.02 0.24 0.05 0.97 0.83 0.86 94.8 99.4 83.9
λs = 0.4 −0.01 0.04 0.00 0.62 0.58 0.61 93.5 97.1 93.2
λs = 0.6 −0.01 −0.01 −0.01 0.33 0.33 0.33 92.4 92.4 92.4

n = 100 λs = 0.3 0.03 0.12 0.04 0.70 0.64 0.67 95.7 98.9 92.1
λs = 0.4 0.01 0.01 0.01 0.42 0.42 0.42 95.1 95.5 95.1
λs = 0.6 −0.02 −0.02 −0.02 0.23 0.23 0.23 93.2 93.2 93.2

n = 200 λs = 0.3 -0.01 0.01 -0.01 0.48 0.46 0.48 95.4 97.0 95.4
λs = 0.4 0.02 0.02 0.02 0.31 0.31 0.31 94.9 94.9 94.9
λs = 0.6 −0.01 −0.01 −0.01 0.16 0.16 0.16 95.5 95.5 95.5

Measurement Error Variance

n = 25 λs = 0.3 −0.05 −0.09 −0.06 0.20 0.20 0.19 89.0 86.4 88.1
λs = 0.4 −0.04 −0.07 −0.05 0.20 0.19 0.20 90.1 88.9 89.5
λs = 0.6 −0.05 −0.05 −0.05 0.20 0.20 0.20 89.2 89.2 89.2

n = 50 λs = 0.3 −0.02 −0.04 −0.02 0.14 0.14 0.14 91.9 90.5 91.1
λs = 0.4 −0.03 −0.04 −0.03 0.14 0.14 0.14 91.7 91.7 91.5
λs = 0.6 −0.02 −0.02 −0.02 0.14 0.14 0.14 93.3 93.3 93.3

n = 100 λs = 0.3 −0.01 −0.02 −0.01 0.10 0.10 0.10 93.3 93.0 93.3
λs = 0.4 −0.01 −0.01 −0.01 0.10 0.10 0.10 94.8 94.9 94.7
λs = 0.6 −0.01 −0.01 −0.01 0.10 0.10 0.10 94.5 94.5 94.5

n = 200 λs = 0.3 0.00 0.00 0.00 0.07 0.07 0.07 94.7 95.0 94.6
λs = 0.4 −0.01 −0.01 −0.01 0.07 0.07 0.07 92.4 92.4 92.4
λs = 0.6 −0.01 −0.01 −0.01 0.07 0.07 0.07 94.6 94.6 94.6

Note. † Results are based on the full set of simulated data sets per condition. ‡ These results are based on only those data sets for which Mplus’ default estimator provided an admissible
converged solution. n = number of persons; λs = standardized loadings.
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4.3. Summary

To sum up, our presentation revealed that, in the simple one-factor model, only the
initial solution for the variance of the latent factor can become inadmissible (i.e., a negative
value for that variance), and we argued that this will likely occur when there is only
little information in the data. This was confirmed by the findings that all inadmissible
solutions were indeed negatively estimated variances of the latent factor and that they
occurred when the sample was small or the loadings were weak. Moreover, we found
that Mplus’ default procedure led to less bias than the proposed ML procedure in extreme
conditions but that Mplus’ default procedure was less accurate (i.e., it exhibited a larger
RMSE) than the proposed ML procedure in these conditions when data sets for which
Mplus’ default procedure provided an inadmissible solution were not excluded. However,
the ML procedure provided standard errors that were not very accurate as indicated by
coverage rates that were too low. This could have been expected because the standard error
is zero when the variance of the latent factor is fixed in Mplus. In the next section, we will
offer a pragmatic approach to the standard error, and we will discuss a more sophisticated
resampling technique.

5. Discussion and Recommendations

With the default procedures in latent variable software, one might encounter inad-
missible solutions—for example, a negative value for a variance. They are dealt with in
different ways. Some scholars have even argued that such solutions are completely useless
e.g., [23]. We do not wish to go so far because the researcher’s focus may be on a derived
quantity, and such a quantity can be meaningfully interpreted even when it is computed
from an inadmissible solution. See, for example, Molenberghs and Verbeke [25], who ar-
gued that, in the context of random effects modeling, the negative intraclass correlation
obtained from a negatively estimated random effects variance can simply be interpreted as
a negative within-cluster correlation. However, when the focus is directly on the variance,
a negative value can hardly be interpreted. Therefore, one strategy to deal with this is
fixing the negatively estimated variance to zero and estimating the model again to obtain
the ML estimates of the remaining parameters. Using a simple one-factor model as an
example, we showed that the ML estimate of the variance of the latent factor must indeed
be zero when the initial solution for this variance is a negative value. We built on the
statistical literature in which an inadmissible solution is distinguished from the actual
result of the ML estimation. For example, Searle et al. [11] pointed out that the exact
definition of ML estimation involves that the likelihood is maximized over the parameter
space, and the parameter space includes only possible values. Therefore, an ML estimate
must be admissible; see also [16]. An alternative to our proposed ML procedure is using
constrained estimation e.g., [26]. As Gerbing and Anderson [27] noted, using a nonnega-
tivity constraint for a variance is similar to equating the negatively estimated variance to
zero. Some software programs follow this strategy. For example, EQS [28] uses it as the
default. A similar strategy is penalized or Bayesian estimation, where prior distributions
are often specified in such a way that results will be admissible [23,29,30]. For example,
inverse gamma distributions are often specified for variances [31–34]. A variance is said
to be inverse-gamma distributed when its inverse (i.e., the precision) follows a gamma
distribution [35–37]. When properly specified, the resulting posterior distribution supports
only nonnegative values, meaning that a negatively estimated variance cannot occur; see
Figure 1 in [38]. Examples of software that use inverse gamma priors or, in the multivariate
case, inverse Wishart priors are WinBUGS [39] and JAGS [40]. One may also parameterize
a variance as the square of a standard deviation and then specify a prior for the standard
deviation. Even if the prior also supports negative values (e.g., a uniform distribution over
a wide range of values, including negative values), squaring leads to nonnegative values
and thus to an admissible result for the variance. It is interesting to note that Hill and
Thompson [10] pointed out that whether an admissible solution is useful or not depends
on the specific question at hand and the requirements to address this question. Savalei and



Psych 2022, 4 353

Kolenikov [6]; see also Kolenikov and Bollen [7], who argued that an inadmissible solution
can help to reveal model misspecifications when the statistical test is significant (e.g., when
the null hypothesis that the variance is zero in the population can be rejected) . This proce-
dure works even if the model is saturated with zero degrees of freedom [7]. In addition,
Savalei and Kolenikov [6] argued that it would suffice to require that parameters (not ML
estimates!) lie in the parameter space. In other words, according to their view, any solution
to the optimization problem is possible. However, Gerbing and Anderson [27] argued that
statistical properties of an estimator can be poor in this case; see also [23,41]—an argument
that is also supported by our findings from the simulation study. We found that Mplus’
default procedure was less accurate than our proposed ML procedure, particularly when
the data provided only a little information.

Before moving on to the practical recommendations, some possible limitations of our
presentations should be mentioned. The example model is a simple one-factor model with
only two parameters (mean structure ignored), and more realistic models are significantly
more complex. Thus, the question arises whether our findings would generalize beyond
the simple one-factor model. To address this question, more complex models could be
investigated to develop ML estimators with similar properties. In less restrictive factor
models (e.g., congeneric items) or in models with multiple factors, initial solutions for
many more parameters can be inadmissible when certain conditions are met; see [5]. How-
ever, formal accounts would probably become tedious because they involve an increasing
number of case distinctions. A general account for arbitrary factor models would certainly
be preferable. As long as there is no such account, our findings should be applied with
caution. An anonymous reviewer suspected that our findings would generalize to esti-
mates of variances that are (approximately) independent as indicated by the information
matrix (or the asymptotic covariance matrix). It would be interesting to test this assump-
tion empirically by manipulating the dependency of variance estimates. This question
can best be addressed in future simulation work. Another limitation is that the extreme
conditions of the simulation were rather unrealistic because the data contained only a little
information (i.e., a small sample or weak loadings), and thus, negatively estimated variance
was likely to occur with Mplus’ default procedure. However, this does not mean that, in
settings with larger samples and loadings, inadmissible solutions will be less likely because
whether an inadmissible solution occurs depends also on many other factors including
model complexity and misspecification.

We recommend that researchers should use the proposed ML procedure rather than
Mplus’ default procedure to obtain admissible and thus easily interpretable results. One
way for Mplus users to implement this ML procedure is first fitting the model using the
software’s default procedure. When the initial solution for a variance is a nonnegative value
and thus admissible, this solution is the ML estimate, and one can interpret the estimate
accordingly. However, when the initial solution is negative (i.e., a Heywood case), the actual
ML estimate is zero, and the model needs to be estimated again with the variance fixed to
zero in order to obtain the ML estimates of the remaining model parameters. The usual
procedure is to interpret the ML estimate as what the data tells us about the population
parameter. Thus, an ML estimate of zero can be interpreted as “the data suggested that
persons did not differ much”. As the standard error is zero when a variance is fixed to
zero, we suggest that the standard error from Mplus’ default procedure should be used
for inferential purposes; see [17] for a similar recommendation in the context of penalized
estimation. Alternatively, one can adopt a resampling technique, such as the jackknife
procedure. The jackknife first computes estimates of the variance of the latent factor from
R subsamples, each omitting d persons, and then these estimates are entered into a formula
in order to obtain the standard error. One may divide the indices (1, . . . , n) into R = n/d
non-overlapping subsets and use these subsets to create the subsamples see [42], who
argued that this procedure can be computationally very efficient.

To conclude, we presented a formal approach for justifying the practice of constraining
a negatively estimated variance to zero and estimating the model again in order to obtain
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the remaining estimates, which is very common in confirmatory factor analysis and thus in
the analysis of data from questionnaires. However, there are other strategies to deal with
inadmissible solutions, and we briefly discussed them. Future research could extend our
argument to other models and parameters and conduct extensive simulations to compare
the different strategies for dealing with inadmissible solutions with one another.
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Appendix A. Proof of ġ > 0

Proof of ġ > 0. This follows from the relation ġ = Kψ̇ + θ̇, θ̇ ≥ θ̂, our observation that,
in general, θ̂ > 0, and the assumption ψ̇ > 0, which we want to prove wrong. More
specifically, rearranging ġ = Kψ̇ + θ̇ yields ġ− Kψ̇ = θ̇. From θ̇ ≥ θ̂ and θ̂ > 0, it follows
that θ̇ ≥ θ̂ > 0 and thus θ̇ > 0. If we use θ̇ > 0, we obtain ġ − Kψ̇ > 0, which can be
rearranged to ġ > Kψ̇. As Kψ̇ > ψ̇ and we assumed ψ̇ > 0, we have Kψ̇ > ψ̇ > 0 and thus
Kψ̇ > 0. Finally, using Kψ̇ > 0 yields ġ > 0.

Appendix B. R & Mplus Code

The following R function can be used to generate data according to the simple one-
factor model.

generateSimpleOneFactorModelData <- function( n, sl ) {

v <- 3 # number of items
sl <- rep( sl , v ) # standardized loadings
l <- rep( 1, v ) # loadings

m.eta <- 0 # mean of latent factor
m.yy <- rep( 0, times = v ) # means of items

var.eta <- 1.0 # variance of latent factor
# Measurement error variances of items
var.me.yy <- rep( NA, v )
for ( j in 1 : v ) {
var.me.yy[ j ] <- ( ( 1 - sl[ j ]^2 ) / sl[ j ]^2 ) * l[ j ]^2 * var.

eta
}

# Latent factor
eta <- rep( NA , n )
for ( i in 1 : n ) {
eta[ i ] <- rnorm( 1, m.eta , sqrt( var.eta ) )
}
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# Items
yy <- array( rep( NA, n*v ), dim=c(n,v) )
for ( i in 1 : n ) {
for ( jj in 1 : v ) {
yy[ i, jj ] <- rnorm( 1, m.yy[jj] + l[jj]*eta[i], sqrt( var.me.yy[jj]

) )
}
}

dat = data.frame( yy )
return( dat )

}

The following code fits the simple one-factor model with Mplus.

Title: Simple one -factor model

Data: File is
filename.dat;

Variable: Names are y_1 y_2 y_3;
Usevariables are y_1 y_2 y_3;

Model: eta by y_1 y_2@1 y_3@1;

eta(vareta);
!eta@0(vareta); ! use this line to set the variance of the latent

factor to zero when the initial solution for this variance is a
negative value

y_1(vare);
y_2(vare);
y_3(vare);
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